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The Randall-Sundrum model

I A 5D spacetime with two 3-brane scenario. The spacetime
within the branes is known as bulk.

I If φ is the extra dimensional coordinate, then the branes are
location of constant φ hypersurfaces. In particular, φ = 0 and
φ = π are two branes: hidden and visible branes respectively.

I The visible brane is identified with our visible universe.

I The bulk contains 5D cosmological constant (Λ) and the
branes contain certain amount of tension.

I therefore there are three matter parts: (1) bulk cosmological
constant (Λ), (2) hidden brane tension (Vhid ) and (3) visible
brane tension (Vvis).



The Randall-Sundrum model- Continued

I The action:

S5 =

∫
d5x
√
−g5

[
2M3R(5) − Λ− Vhidδ(φ)− Vvisδ(φ− π)

]
I The Randall-Sundrum (RS) metric becomes,

ds2 = e−2k0rcφηµν + r2
c dφ

2

where rc is the inter-brane separation and k0 =
√
−Λ

24M3 .

I Here Vhid = −Vvis = 24M3k0.

I Note: the induced metric of the branes are flat. This is due
to, Λ, Vhid and Vvis exactly cancel their effects on the branes
and thus the effective brane energy is zero.



The Randall-Sundrum model- Continued

I Due to the intervening gravity, the branes should collapse and
the model becomes unstable.

I Thus, we need some stabilizing agent which acts as a repeller
in-between the branes and make them stable at a fixed
separation.

I According to Goldberger-Wise mechanism, a bulk scalar field
can act as suitable stabilizing agent. However the source of
scalar field is unknown.



The Randall-Sundrum model- Continued

I The stabilization procedure goes as follows:
(1) make rc vary, i.e rc → T (x) where T (x) is radion field.

(2) The stabilizing agent generates a potential for T (x) in 4D
effective action.

(3) The radion potential has a stable minimum (say at 〈T 〉).

(4) The radion field gets stable or the brane separation gets
fixed at 〈T 〉 - stabilized brane separation.



The Randall-Sundrum model- Continued

I Two problems of original RS model:
(1) The branes are flat, i.e Λ, Vhid and Vvis exactly cancel
their effects on the branes to make the effective brane energy
zero. One may think it as extremely fine tuned model.

(2) In stabilization, one needs a bulk scalar field. However the
source of scalar field is unknown.



Generalized RS scenario- Our model

I Here Λ, Vhid and Vvis do not exactly cancel their effects on
the branes, thus they are not fine tuned.

I Thereby, the effective brane energy density is not zero and the
branes are curved.

I In stabilization, we do not need any extra bulk scalar field.

I Actually the non-zero effective brane energy density generates
a potential term for the radion in 4D action.

I The radion potential has a stable point where the radion or
the brane separation gets stabilized.



Generalized RS scenario- Our model

I The action:

S5 =

∫
d5x
√
−g5

[
2M3R(5) − Λ− Vhidδ(φ)− Vvisδ(φ− π)

]
I The spacetime metric:

ds2 = e−2A(rc ,φ)gµνdx
µdxν + r2

c dφ
2

where,

e−A = ω sinh
(

ln
c2

ω
− k0rcφ

)
I The effective brane energy density ∝ ω. For ω = 0, we

recover the original RS model.

I The induced metric on the branes are not flat. This is due to
ω 6= 0.



Generalized RS scenario- Our model

I In regard to stabilization, let us go with the stabilization
procedure as mentioned earlier.

I Make rc → T (x) which is known as radion field.

I Next, we need to find the 4D effective action.

I The we have to investigate whether any stable radion
potential generate in the 4D action.

I In this case, we will see that the effective brane energy (∝ ω)
generates a radion potential which is indeed stable.



4D effective action

I Plugging the 5D metric into the 5D action and integrating
over the extra dimensional coordinate φ will yield the 4D
effective action - Goldberger-Wise mechanism.

I Ŝeff = S1 + S2 + S3.
with,

S1 =
2M3

k0

∫
d4x

√
−ĝ h (ξ) R̂

S2 = −2M3k0

∫
d4x

√
−ĝ V̂ (ξ)

S3 =

∫
d4x
√
−g

(
1

2
∂µΦ∂µΦ

)
Ĝ (ξ) (1)

I ξ = e−k0πT (x).



4D effective action- Continued

I S1 : the on-brane gravity part. S2 : the potential term for the
radion field. S3: the kinetic term for the radion field.

I The forms of various functions in Ŝeff come as,

h (ξ) =

{
c2

2

4
+ ω2 ln ξ +

ω4

4c2
2

(
1

ξ2

)
− ω4

4c2
2

− c2
2

4
ξ2

}
V̂ (ξ) = 6ω2h (ξ)

Ĝ (ξ) = 1 +
4

3

ω2

c2
2

(
1

ξ2

)
ln ξ − ω4

c4
2

(
1

ξ4

)
(2)



4D effective action- Continued

I The Ŝeff is in Jordan frame, because the coefficient of Ricci
scalar is not unity.

I We transform the effective action in Einstein frame by the
transformation

ĝµν −→ gµν = h(ξ)ĝµν (3)



4D effective action- Continued
I With this transformation, the Einstein frame effective action

becomes,

Seff =

∫
d4x
√
−g

[
R

2κ2
+

1

2
G (ξ)∂µΦ∂µΦ− 8M3κ2V (ξ)

]
(4)

(5)

I The quantity with an overhat is in Jordan frane and without
hat is in Einstein frame.

I V (ξ) is the radion potential in Einstein frame:

V (ξ) =
V̂ (ξ)

h(ξ)2
=

6ω2

h(ξ)

I G (ξ) is the non-minimal kinetic coupling of radion in Einstein
frame:

G (ξ) = Ĝ(ξ)
h(ξ) + 1

c2
2

[
h′(ξ)
h(ξ)

]2



4D effective action- Continued

I V (ξ) has an inflection point at 〈ξ〉 = ω/c2 where the radion
or the brane separation gets stabilized.

I Note: In the Einstein frame action -
(1) the coefficient of the Ricci scalar becomes unity.

(2) The radion field still has a non-minimal kinetic coupling.

(3) The V (ξ) is proportional to ω2 , i.e the radion potential
vanishes for Minkowskian brane where ω2 = 0.

I In order to better understand, we give the plots of V (ξ) and
G (ξ):



4D effective action- Continued

I
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Figure: The above figure depicts the variation of (a) the radion
potential V (ξ) and (b) the non-canonical kinetic coupling G (ξ), for
ω = 10−3.



Incorporating cosmolgical dynamics

I V (ξ) increases with ξ ⇒ during the cosmological evolution,
the radion field decreases with cosmic time.

I G (ξ) has a zero crossing from positive to negative as ξ
decreases ⇒ the kinetic energy of ξ becomes negative ⇒
violation of energy condition (may) ⇒ possibility of a
non-singular bounce.



Two questions

1. Does the cosmological evolution of radion field solve the
gauge hierarchy problem ?

2. Does the cosmological evolution of metric lead to a
non-singular bounce ?



Background equations

I Metric ansatz:

ds2 = −dt2 + a(t)2

[
dx2 + dy2 + dz2

]
(6)

I Background equations:

H2 =
κ2

3
ρ(t) =

c2
2

4
G (ξ)ξ̇2 +

k2
0

6
V (ξ)

Ḣ = −κ
2

2
(ρ+ p) = −3

4
c2

2G (ξ)ξ̇2

0 = ξ̈ + 3H ξ̇ +
G ′(ξ)

2G (ξ)
ξ̇2 +

k2
0

3c2
2

V ′(ξ)

G (ξ)



Background solutions

I Recall, our investigation- whether the model admits a bounce
scenario.

I If the bounce occurs, then it must occur during G (ξ) < 0,
because during this regime, the energy condition is violated.

I The regime of G (ξ) < 0 is ξ ∼ ω, so first we determine the
background solutions near ξ ∼ ω, in particular,

ξ(t) =
ω

c2
(1 + δ(t))

with δ(t) < 1.



Background solutions- Continued

I During the regime ξ(t) = ω
c2

(1 + δ(t)), the background
equations become (leading order of δ):

Ḣ + 3H2 − 12k2
0ω

2

c2
2

= 0

δ̇2 =
c2

2

ω2

Ḣ

4ln
(

c2
ω

)[1 + δ

{
4 + 2ln

(
c2
ω

)
ln
(

c2
ω

) }]
I Condition: limt→∞ ξ(t)→ ω

c2
- due to stability of radion field.

I Solutions of above equations:

H(t) = 2k0
ω

c2
tanh

[
6
ω

c2
k0t

]
δ(t) =

2

A

[
exp

{
− A

6

ω

c2

√
3

ln
(

c2
ω

)(tan−1tanh

(
3ω

c2
k0t

)
− π

4

)}
− 1

]



Background solutions- Continued

I The solution of H(t) indicates a non-singular bounce at t = 0.

I Therefore the bounce occurs in a curved braneworld scenario
during G (ξ) < 0.

I The ξ(t) decreases with time and asymptotically reaches to
the value which solves the gauge hierarchy problem
concomitantly.



Background solutions- Continued

I In the earlier case, we determined the solutions during the
phantom regime.

I However it is unlikely that the radion field starts its journey
from phantom regime, the radion should start its journey from
normal regime where G (ξ) > 0.

I One immediate question: How does the radion field, starting
from normal regime, reach to the phantom regime by its
dynamical evolution ?

I To answer this, we solve the background equations for wide
range of ξ, numerically.

I In numerical analysis, the boundary conditions are provided
from the analytic solutions that we just determined. In
particular, H(0) = 0 and ξ(0) = 6.0041× 10−4 for ω = 10−3.



Background solutions- Continued
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Figure: The above figure depicts the time evolution of (a) H(t) and (b)
ξ(t)× 1000. The inset depicts the non-canonical kinetic term G (ξ)
(magenta curve) and ξ(t)× 1000 (blue curve) near the zero crossing of
G (ξ).



Background solutions- Continued

I The plot of H(t):
(1) admits a non-singular bounce at t = 0. Note, from the
inset, that the bounce occurs during G (ξ) < 0.

(2) H(t) leads to a late time acceleration at both sides of
bounce.

(3) The bounce is slightly asymmetric.

I The plot of ξ(t):
(1) monotonically decreases with the time.

(2) Finally reach to the stabilized value = ω/c2.



III. Evolution of perturbation variables



Scalar perturbation

I The scalar perturbation over FRW metric,

ds2 = a2(η)

[(
1 + 2Ψ

)
dη2 −

(
1− 2Ψ

)
δijdx

idx j

]
I The radion field perturbation is,

Φ(η,~x) = Φ0(η) + δΦ(η,~x)

I The scalar perturbation equation,

∇2Ψ− 3HΨ′ − 3HΨ =
κ2

2
a2δT 0

0(
Ψ′ +HΨ

)
,i

=
κ2

2
a2δT 0

i[
Ψ′′ + 3HΨ′ +

(
2H′ +H2

)
Ψ

]
δi

j = −κ
2

2
a2δT i

j



Scalar perturbation- Continued

I In the present context, the scalar perturbation equations,

∇2Ψ − 3HΨ′ − 3HΨ=
κ2

2

[
G (Φ0)Φ′0δΦ′

+
1

2
G ′(Φ0)(Φ′0)2δΦ + 2a2M3k0V

′(Φ0)δΦ

]

Ψ′ +HΨ =
κ2

2
Φ′0δΦ

Ψ′′ + 3HΨ′ +
(
2H′ +H2

)
Ψ=

κ2

2

[
G (Φ0)Φ′0δΦ′

+
1

2
G ′(Φ0)(Φ′0)2δΦ− 2a2M3k0V

′(Φ0)δΦ

]



Scalar perturbation- Continued

I The second equation can be used to obtain δΦ in terms of Ψ
and Ψ′, substituting which into the other two equations ⇒

Ψ′′ −∇2Ψ + 6HΨ′ +
(
2H′ + 4H2

)
Ψ

= −4a2M3k0

(
V ′(Φ0)

(
Ψ′ +HΨ

)
G (Φ0)Φ′0

)
I Or, in terms of cosmic time,

Ψ̈− 1

a2
∇2Ψ +

[
7H +

2k2
0 V ′(ξ0)

3c2
2G (ξ0)ξ̇0

]
Ψ̇

+

[
2Ḣ + 6H2 +

2k2
0H V ′(ξ0)

3c2
2G (ξ0)ξ̇0

]
Ψ=0



Scalar perturbation- Continued

I The present model leads to a late time acceleration at both
sides of bounce.

I Thus the comoving Hubble radius decreases and
asymptotically goes to zero at both sides of bounce.

I However near the bounce, the comoving Hubble radius has an
infinite size.

I Thereby all the perturbation modes near the bounce lie within
the Hubble horizon.

I Due to this reason, we solve the perturbation equations near
the bounce where the Bunch-Davies condition is consistent.



Scalar perturbation- Continued

I Near the bounce (i.e near t = 0), the perturbation equation in
Fourier space (upto the leading order in t),

Ψ̈k +
[
−
√
αp + (q + 14)αt

]
Ψ̇k

+
[
k2 + 4α− 2α

√
αp t

]
Ψk (t) = 0

where α, p and q are constants and depend on ω.

I Solution of Ψk (t) :

Ψk (t) ∝ e [p
√
α t −7αt2− q

2
αt2]

H
[
− 1 +

k2 + 4α

α(q + 14)
,
−p + (q + 14)

√
α t√

2(q + 14)

]



Scalar perturbation- Continued

I Scalar power spectrum for k th mode:

PΨ(k , t) =
k3

2π2

∣∣∣∣Ψk (t)

∣∣∣∣2



Tensor perturbation

I The tensor perturbation over the FRW metric,

ds2 = −dt2 + a(t)2 (δij + hij ) dx
idx j

I There are two tensor polarization modes, both the modes (in
Fourier space) evolve by,

1

a(t)z2
T (t)

d

dt

[
a(t)z2

T (t)ḣk

]
+

k2

a2
hk (t) = 0

with zT (t) = a(t)/κ.

I The tensor perturbation does not couple with the radion field,
as expected.



Tensor perturbation- Continued

I Due to the reason mentioned earlier, we again solve the tensor
perturbation equation near the bounce.

I Near the bounce, the tensor perturbation equation (upto the
leading order in t),

ḧk + 6αḣk t + k2hk (t) = 0

I Solution of hk (t):

hk (t) ∝ e−3αt2
H

[
− 1 +

k2

6α
,
√

3α t

]



Tensor perturbation- Continued

I Tensor power spectrum for k th mode:

Ph(k, t) =
k3

π2

∣∣∣∣hk (t)

∣∣∣∣2



IV. Observable quantities



Observable quantities- Continued

I Scalar spectral index,

ns − 1 =
∂ lnPΨ

∂ ln k

∣∣∣∣
H.C

I Tensor-to-scalar ratio,

r =
Ph(k , t)

PΨ(k, t)

∣∣∣∣
H.C

I We are interested on large scale modes, in particular
k = 0.05Mpc−1 ≈ 10−40GeV.

I From the horizon crossing condition (k = aH) ⇒, the horizon
crossing instant of the k = 0.05Mpc−1 is,

th ≈ 10−93sec.



Observable quantities- Continued

I The horizon crossing of the large scale mode(s) occur very
near to the bounce.

I Thereby, using the solutions of Ψk (t) and hk (t) (that we
found near the bounce, in the previous section), we determine
the expressions of ns and r in the present context,

ns = ns(ω, k0/M)

r = r(ω, k0/M)

recall, k0 denotes the 5D bulk curvature scale.



Observable quantities- Continued

I For k0/M = 0.5 and within the interval 10−6 . ω . 10−3, we
get consistent observables with the Planck results.



TAKE HOME MESSAGE

I We consider a curved braneworld scenario where we
incorporate the cosmological dynamics.

I The model admits a non-singular bounce and the radion field
or the brane separation gets dynamically stabilized.

I The radion potential- which is essential for bounce, generates
from 5D spacetime.

I The bounce is not an ekpyrotic bounce scenario and thus
suffers from the BKL instability.



THANK YOU

HAVE A NICE DAY


