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Accelerated Expansion

• Cosmological observations(Supernovae IA and other observations)
suggest that the Universe’s expansion rate is increasing.

Figure: Observations from supernovae suggest that universe is in mode of accelerated
expansion.[Image Source:Supernovae, Dark Energy, and the Accelerating Universe, Saul Perlmutter, PhysicsToday 2003]
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Beyond Λ: A plethora of theories1 proposed

Although, ΛCDM has been phenomenal in comparisons with data, theoretical
basis of such a constant is problematic. There are issues like fine-tuning
problem, coincidence problem, etc. This provides motivation for looking for
models beyond Λ. Some that are relevant in context of this discussion:

• Quintessence
• Tachyonic
• Effective fluids
• K-essence
• Chaplygin gas

Cosmological Constant acts as dark energy with a constant density and
pressure. In contrast, in other theories of dark energy e.g. quintessence,
chaplygin gas, tachyonic field,k-essence, etc. density and pressure can vary in
space-time.

1L. Amendola and S. Tsujikawa, Dark Energy: Theory and Observations. Cambridge University Press, 2010
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Scalar Field Models

• Quintessence2 is canonical scalar field minimally coupled to metric. Its
Lagrangian is:

Lquint = ∂µφ∂
µφ− V(φ)

• Lagrangian for Tachyonic fields3 is field theory analogue of Lagrangian for
relativistic particles:

Ltach = −V(φ)
√

1− ∂µφ∂µφ

• More generally a scalar field Lagrangian can be written as:

Lsf = f(K, φ)

where
K = ∂µφ∂

µφ

2S. Tsujikawa, Quintessence: A Review, Class. Quant. Grav. 30 (2013) 214003 [1304.1961].
3J. Bagla, H. K. Jassal and T. Padmanabhan, Cosmology with tachyon field as dark energy, Phys. Rev. D 67 (2003)
063504 [astro-ph/0212198].
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Different Levels of Cosmological Calculations

• Background Cosmology: Based on assumption of homogeneity and
isotropy.

ds2 = dt2 − a2(dx2 + dy2 + dz2)

ä
a

= −4πG
3

[ρ(1 + 3w)]

• Linear Perturbations: First order approximations to background
metric/dynamics:

ds2 = (1 + A)dt2 − Bidtdxi − a2(δij + ηij)dxidxj

• Nonlinear Simulations in some symmetries/special cases: spherical,
ellipsoidal collapse, etc.
• N-body simulations: many diverse approximations/implementations.
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Questions that we look into:

• Methods need to be developed that can help distinguish between these
models. Study of perturbations can help achieve this as perturbations
might evolve differently in different models. Perturbations are studied at
varying level of approximations. This sets the context for this thesis. In this
thesis, we study nonlinear(as well as linear) perturbations in scalar field
based dark energy models: quintessence and tachyonic fields.
• Probing the effects coming from nonlinear relativistic simulations in

spherical symmetry. Here we start from action and derive equations with no
approximations about clustering of DE but spherical symmetry.
• We ask if two scalar field dark energy models(Lagrangians) which give

exactly same results for evolution of background, can be distinguished by
perturbations: linear and nonlinear level.
• If ignoring spatial fluctuations in an effective description will have any

observable effect.
• Study the evolution of spacetime fluctuations in dark energy field.
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Outline of this project

• Nonlinear spherically symmetric perturbations in quintessence dark energy
cosmology.
• Reconstruction of quintessence and tachyonic potentials for given

background expansion.
• Non-linear spherical collapse in tachyon models and a comparison of

collapse in tachyon and quintessence models of dark energy
• Comparison on perturbations in cosmological linear perturbation theory

and efficiency of linear perturbations to distinguish two models under CMB
data.
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Spherically Symmetric Perturbations
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Spherical Collapse visual
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Spherically Symmetric Perturbations: Metric

For modelling spatially isotropic perturbations, we start by considering a general
spatially isotropic metric:

ds2 = −e(2B)dr2 − R2(dθ2 + sin2θdφ2) + dt2 (1)

where B(t, r) and R(t, r) are arbitrary functions of r and t.
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Equations for Quintessence

B̈ = −c2e−2B R′2

R2 +
c2

R2 +
Ṙ2

R2 − Ḃ2 − 4πGρ− 8πG
c

[
Φ̇2

2c2 − e−2B Φ′2

2

]
R̈
R

= −4πG
c

[
Φ̇2

2c2 +
e−2BΦ′2

2
− V

]
− 1

2
Ṙ2

R2 +
c2

2

[
e−2B R′2

R2 −
1
R2

]
Φ̈ = c2

[
− ∂V
∂Φ

+ e−2B
{

Φ
′′
−
(
B′ − 2R′

R

)
Φ′
}]
−

(
Ḃ +

2Ṙ
R

)
Φ̇

Here a dash represents a partial derivative with respect to r and a dot represents
a partial derivative with respect to t.
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Virialization

The solutions of system of equations, for spherical collapse, lead to a
singularity. Each shell reaches turn around and collapses to origin. This is the
"mathematical solution". In real world, perturbations collapse to form
stable/pseudo-stable structures, they "virialise"4. a simplistic approach
assuming that in-falling perturbation stabilizes at radius where kinetic energy
and potential energy satisfy virial theorem:

< T > +
1
2
〈RFR〉 = 0 (2)

here T is the kinetic energy, R is the radius of the shell and FR is the radial force
on the shell.

4 I. Maor and O. Lahav, On virialization with dark energy, Journal of Cosmology and Astroparticle Physics 2005
(2005) 003
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Turn around and Virial Characteristics

Properties of spherical perturbations at turn around and virialization are
dependent on cosmology. For example:

• In case of Einstein-deSitter universe, the radius of the virialised halo is
exactly half of the maximum or the turn around radius for the shell.
• In case of ΛCDM,

RV =

(
2
3

)1/3
(

ΩΛR3
T + ΩM( a0

ain
)3(1 + δin)R3

in

ΩΛRT

)1/2

sin

 1
3

arcsin

ΩMa3
0(1 + δin)R3

in

a3
inR3

T

(
1.5

1 + ΩM
ΩΛ

( a0Rin
ainRT

)3(1 + δin)

)3/2
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RESULTS for QUINTESSENCE
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Effects on Dark Matter Perturbations

• For studying the effects of dark energy perturbations on dark matter
clustering, we run besides quintessence simulations, corresponding
simulations with a non-clustering fluid with same equation of state as that
in quintessence case. We call it w(z) fluid.
• We show results for both- overdense and underdense spherical halos. While

overdense results involve virialisation, underdense cases do not have
assumptions related to virialisation.
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Effects on matter clustering
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Figure: Markers(w(z) fluid) represent a non-clustering fluid implementation which has
same background evolution. These show that the induced DE fluctuations, shown in
coming figures, do not have significant effect on matter.
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Overdense Case: Perturbations in DE
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Figure: Density contrast for dark energy as a function of scale at different epochs. We see
that the amplitude of perturbations in dark energy remains small at all scales and at all
times. The left panel is for V ∝ ψ2 while the right panel is for V ∝ exp(−ψ).
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Spatio-temporal Fluctuations in Dark Energy
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Figure: Fluctuations develop in dark energy field, which was set homogeneous at initial
time at z ∼ 1000. This is an initially underdense halo (void).
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Spatio-temporal Fluctuations in Dark Energy

Spatio-temporal Fluctuations in Dark Energy visual
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Comparison with linear theory
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Figure: A comparison of the evolution of dark energy perturbations.
At very large scales the linear theory prediction for the magnitude of dark energy
perturbations scales as (1 + w)δdm. The linear evolution for dark energy perturbations is
slower at small scales as compared to the expected variation at large scales.
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Significance of spatial gradients

Φ̈ = c2
[
− ∂V
∂Φ

+ e−2B
{

Φ
′′
−
(
B′ − 2R′

R

)
Φ′
}]
−

(
Ḃ +

2Ṙ
R

)
Φ̇
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Figure: We show the variation computed by retaining only the local Hubble expansion
terms in the equation of motion and compare it with the full simulation. In the former case,
we ignore the gradient term. We find that the variation of w is fairly strong and has some
localised features when the gradient terms are ignored. The localised features are not
present in the full simulation indicating that the gradients of the scalar field are suppressed
in the evolution, and the local Hubble expansion is not the only determining factor.

22



Reconstruction of Potentials
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Need for reconstruction

• Give a particular potential(with its parameters) for a scalar field, it gives a
particular evolution.
• In context of cosmology, a particular potential leads a specific w(z) and a

specific expansion history.
• For the purpose of studying the differences in perturbations in different

scalar field models, we need to understand which effects are due to
differences in expansion history and which are due to differences in
dynamics of perturbations.
• Since, background expansion is already constrained, by data, to be close to

Λ(w ∼ −1). Theories often have tunable parameters which are then
constrained to bring the expansion close to Λ.

24



Reconstruction

Given a particular w(z), we want to find the corresponding potentials for
quintessence and tachyonic models, that simulate the prescribed w(z).
We focus on two particular form of w(z) or w(a):

• Constant w: w(a) = constant
• Chevallier-Polarski-Linder(CPL) paramterization5,6

w = w0 + wa(1− a
a0

)

But we develop and use a numerical scheme for any w(a).

5M. Chevallier and D. Polarski, Accelerating Universes with Scaling Dark Matter, International Journal of Modern
Physics D 10 (2001) 213
6E. V. Linder, Exploring the Expansion History of the Universe, Phys. Rev. Lett. 90 (2003) 091301
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Reconstruction of Potentials

For an arbitrary function w(a), continuity equation for that component gives:

ρφ = ρφi exp

[
−3
∫

1 + w
a

da
]

Equivalently

Ωφ :=
8πGρφ
3H2

i
= Ωφie

−3
∫ 1+w

a da

dφtach

da
=

√
1 + w√

α
a + a2Ωφtach

dφq

da
=

√
3(1 + w)Ωφq

√
8πG

√
α
a + a2Ωφq

V(a)

H2
i

=
3(1− w)Ωφq

16πG

V(a)

H2
i

=
3
√
−wΩφtach
8πG
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Reconstruction: Numerical Approach

One can numerically integrate equations to get φ(a) and V(a). Hence one can
obtain a numerical table of V(φ) vs φ in desired range.
This table can be used for numerical fitting or interpolation functions.
For example, cubic splines can be used for fitting to obtain spline coefficients
which can be used for calculating V(φ) and its gradients given a value of φ.
Once we have spline coefficients and φ, task is to find the interval in which the
value of φ lies so that we can use coefficients corresponding to that interval.
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Tachyon field:Constant w scenario

The integral for tachyonic field takes following form for constant w:

φ(a) =

∫ √
a(1 + w)√
α + β

a3w

da (3)

Defining:

x2 = α +
β

a3w (4)

reduces the integral to form:

φ(x) =

∫
σ

(x2 − α)k
dx (5)

where σ and k are:

σ =
2
√
1 + w

3wβ
β

w+ 1
2

w k =
w + 1

2
w

(6)
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Tachyon field: Constant w scenario...

Integral in eq.(5) is trivial for w = − 1
2 where we get:

φ(a) =

√
σ

α + βa3/2 (7)

Potential V(a) for constant w case is:

V(a)

H2
i

=
3
√
−wβ

8πGa3(1+w)
(8)

When w = − 1
2 , we get:

V(a)

H2
i

=
3β

8πG
√
2
[
σ
φ2β
− α

β

] (9)
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Tachyon field:Constant w scenario...

For other values of w, integral in equation (3) does not give a closed formula. We
use MATHEMATICA to do this integral and get result in form of
Hypergeometric2F1 functions:

φ(a) =
2a
√

a(w + 1)
√

βa−3w+α
α 2F1

[
1
2 ,−

1
2w ; 1− 1

2w ;− a−3wβ
α

]
3
√
βa−3w + α

(10)
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Tachyon field: Constant w scenario...

Equation (3) can be written in the form of a differential equation.
Let

z = −a−3wβ

α
(11)

Then eq.(3) can be differentiated to obtain:

z(1− z)
d2φ

dz2 +

[(
1
2w

+ 1
)
−
(

3
2

+
1
2w

)
z
]
dφ
dz

= 0 (12)

It can be integrated twice to obtain φ(z) in terms of incomplete beta
functions(B(z; a, b)), which can be related to 2F1(a, b, c, z):

φ(z) = C1B(z; 1− u, 1 + u + v) + C2 (13)

u =

(
1
2w

+ 1
)

v =−
(

3
2

+
1
2w

) (14)

B(z; a, b) is related to 2F1(a, b, c, z):

B(z; a, b) =
za

a 2F1(a, 1− b, a + 1, z) (15)
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Quintessence field: Constant w scenario

For w(a) = constant case, one can obtain a closed formula for V(φ). In this
case,:

dφ
dt

=

√
(1 + w)

3
8πG

β

a3(1+w)
(16)

and
dφ
da

=

√
3(1 + w)

8πG

√√√√[ 1
αa3w
β

+ 1

](
1
a

)
(17)

Defining:

λ =

√
3(1 + w)

8πG
(18)

and

x2 =
αa3w

β
+ 1 (19)

Then
φ(x) = C1 +

2λ
3w

∫
dx

x2 − 1
(20)
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Quintessence field: Constant w scenario

Solution is :
φ(x) = − λ

3w
[log(1 + x)− log(x− 1)] (21)

Inverting this we get:

x =
e−3wφ/λ + 1
e−3wφ/λ − 1

(22)

Defining:

m = −3wφ
2λ

(23)

We rewrite eq.(22):
x = cothm (24)

We get

a3w =
β

α

[
(cothm)2 − 1

]
(25)

V(φ)

H2
i

=
3(1− w)β

16πG

[
α

β
sinh2

(
− 3wφ

√
8πG

2
√

3(1 + w)

)] (1+w)
w

(26)
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Spherical collpase in tachyonic models and
comparsion with quintessence
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Equations for Tachyonic DE

B̈ = −c2e−2B R′2

R2 +
c2

R2 +
Ṙ2

R2 − Ḃ2 − 4πGρ+
4πGV
c2

[
e−2BΦ′2 − Φ̇2
√
1− u2

]
R̈
R

=
4πGV

c
√
1− u2

[
1− u2 − e−2BΦ′2

]
− 1

2
Ṙ2

R2 +
c2

2

[
e−2B R′2

R2 −
1
R2

]

Φ̈RV(e2B + Φ′2) = 2e2BVR′Φ′3 − 2VṘΦ̇Φ′2 + 2VR′Φ′′(1− Φ̇2)− RV,ΦΦ′2

−RVB′Φ′(1− Φ̇2) + RVΦ′′(1− Φ̇2)− 2RVΦ̇ḂΦ′2

+2RVΦ̇Φ′Φ̇′

−RV,Φe2B(1− Φ̇2)− VΦ̇(1− Φ̇2)(RḂ + 2Ṙ)e2B
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Numerical Methods

• Set up a grid in r and evolve all quantities on this grid using RK4 scheme. At
each time step(sub-step), we calculate gradients using 3/5 order finite
difference schemes.
• For use of reconstructed potential: Cubic splines can be used for fitting to

obtain spline coefficients which can be used for calculating V(φ) and its
gradients given a value of φ. Using the fact the at at outer radii,
perturbations merge into background, we can start search for cubic interval
from outside to inside. In this way for each new inner point one has to only
search in the adjacent intervals for interpolation if the field is continuous.
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Perturbations in Tachyonic DE
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Figure: Dark energy(DE) density contrast as a function of comoving radius at two different
redshifts. Here the initial matter perturbation was underdense. There was no perturbation
in DE at initial time, but metric perturbations induce perturbation in DE field. This
perturbation grows stronger with time as can be seen from curves at 2 different redshifts.
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Comparing perturbations: Quintessence vs Tachyonic

• We do spherical collapse simulations with reconstructed potentials, so the
background expansion is same for both quintessence and tachyonic fields.
• For the purpose of comparisons, we expansion corresponding to following

forms of w(z):
• Constant w: w(a) = constant
• Chevallier-Polarski-Linder(CPL) paramterization

w = w0 + wa(1−
a
a0

)

we have w0 = −0.9 and wa = ±0.09. In figures we represent cases with
wa = +0.09 with notation "cpl+" and wa = −0.09 model with "cpl-".
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Tachyonic vs Quintessence: Matter Perturbations
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Figure: Virial characteristics for CPL case. Left panel shows ratio of virial radius to turn
around radius as a function of the initial density contrast in dark matter. Right panel shows
Density contrast at virialisation as a function of the initial density contrast in dark matter.
"quint" denotes quintessence and "tach" represents tachyonic field. cpl+ denotes
wa = +0.09 and cpl- represents wa = −0.09.
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Tachyonic vs Quintessence: Matter Perturbations

0 50 100 150 200 250 300 350
r (MPc)

−1

0

1

2

3

4

δ d
m

q wbg∼ −0.5
t wbg∼ −0.5
q wbg∼ −0.9
t wbg∼ −0.9
q wbg∼ −0.975
t wbg∼ −0.975

0 50 100 150 200 250 300 350
r (MPc)

−1

0

1

2

3

4

δ d
m

quint cpl -
tach cpl -
quint cpl +
tach cpl +

Figure: Top panel shows
comparisons for
different constant w
backgrounds, while
bottom panel shows the
cases for two CPL
models.
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Tach vs Quintessence: Dark Energy Perturbations
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Tachyon-Quintessence comparisons: Summary

• We find that evolution of dark matter perturbations depends only on the
expansion history. There is no discernable imprint of the dark energy model
on the evolution of dark matter perturbations.
• The amplitude of dark energy perturbations depends on the expansion

history as well as the dark energy model (tachyon/quintessence). Thus in
principle there is an observable signature of the class of dark energy models,
though the differences are very small.
• These differences are larger for models that deviate significantly from the

ΛCDM model in terms of the expansion history.
• We may choose any dark energy model to reproduce the appropriate

expansion history as the evolution of dark matter perturbations is
insensitive to the specifics of the dark energy model other than the
expansion history.
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Quintessence and Tachyonic visual
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Tachyonic vs Quintessence dark energy:
prospects of distinguishing them using linear

perturbations and CMB data
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Linear Perturbations

Linear theory calculations do not assume any symmetry, but are valid for small
perturbations only. Linear Theory of Cosmological Perturbations7 forms the
basis for most of the calculations in modern (beyond FLRW) cosmology.

If ḡµν is background metric and gµν is the metric with perturbations δgµν , then

gµν ≈ ḡµν + δgµν (27)

Here we only consider scalar metric perturbations:

ds2 = (1 + 2ψ)dt2 − (1− 2ξ)a2(dx2 + dy2 + dz2) (28)

7H. Kodama and M. Sasaki, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl. 78 (1984) 1.
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Linear Equations

6 ψ
a2

[
a′2

a2 − 2a′′

a

]
− 12a′

a
φ′

a2 − 6a′

a
ψ′

a2 − 6φ
′′

a2 + 2 ∆

a2 [φ− ψ]

= 8πG(δT1
1 + δT2

2 + δT3
3)

(29)

3∑
i=1

[
a′

a
∂ψ

∂xi +
∂φ′

∂xi

]
= 4πGa2

3∑
i=1

δT0
i (30)

[
∂2

∂x1∂x2 +
∂2

∂x2∂x3 +
∂2

∂x3∂x1

]
(ψ − φ) = 8πGa2(δT1

2 + δT2
3 + δT3

1 ) (31)

− 3a′2

a2 ψ − 3a′

a
φ′ + ∆φ = 4πGa2δT0

0 (32)

Here δT represent first order perturbations to stress energy tensor and ∆ is
Laplacian operator defined as:

∆ ≡
3∑

i=1

∂2

∂xi2 (33)
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Linear Equations

. Decomposing pressure and density in background+perturbation:

ρ(x, y, z, t) = ρ̄(t)(1 + δm(x, y, z, t)) (34)
p = p̄ + δp (35)

and we have velocity perturbations(background/average velocity is 0) defined
as:

vi ≡ dxi

dη
(36)

Then stress energy tensor for matter fluid is:

(δT1
1 + δT2

2 + δT3
3) = −3ρ̄c2

sδm (37)
(δT1

2 + δT2
3 + δT3

1 ) = 0 (38)
3∑

i=1

δT0
i = ρ̄

3∑
i=1

vi (39)

Defining Θ:

Θ =
3∑

i=1

∂vi

∂xi = ikjvj (40)
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Continuity Equations

To obtain the equations of motion for density and velocity, we can use continuity
equations:

Tµν ;µ = 0 (41)

We get

δ′m = −3a′

a
(c2

s − w)δm + 3(1 + w)φ′ − (1 + w)Θ (42)

Θ′ = −
[
a′

a
(1− 3w) +

w′

1 + w

]
Θ + k2

[
c2
sδm

1 + w
+ ψ

]
(43)
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Scalar Fields and Effective Fluid Description

Let Φ be the field for a scalar field representing dark energy. Then its Tµν can be
written as:

Tµν = (ρ+ P)vµvν − Pgµν (44)
where

vν =
∂νΦ√
∂αΦ∂αΦ

(45)

Now we define first order quantities; density contrast and the corresponding
quantity for EoS variation:

ρ = ρ̄(1 + δ) W = w̄(1 + u) (46)

where quantities with bar are background quantities dependent on time only. We
also define:

ω = 1 + w̄ (47)

Effective pressure(P) for a scalar field theory is just the Lagrangian(LΦ) of field
while the effective density ρ is:

ρ = 2gµν ∂LΦ

∂gµν
− LΦ (48)

Writing field as background+perturbation:

Φ = φ+ (δφ) (49)
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Writing scalar field eqs into fluid form

δ̇ = 3u ȧ
a

(1− ω) + 3ψ̇ω +
1

4πGρ̄a2∇
2
[
ȧ
a
ψ + ψ̇

]
+
ρ̄dm
ρ̄
∇2U (50)

We also get a constrain equation for u

(−1+ω)
∂u
∂xj = (1−ω)

∂δ

∂xj +
ω

φ̇

∂(δφ)

∂xj

[
3 ȧ
a

+
˙̄ρ

ρ̄
+
ω̇

ω

]
+
ω

φ̇

[
− φ̈
φ̇

∂(δφ)

∂xj +
∂( ˙δφ)

∂xj

]
−ω∂ψ

∂xj

(51)

ψ̈ + 4 ȧ
a
ψ̇ + ψ

[
2ä
a

+
ȧ2

a2

]
= −4πGρ̄(u + δ)(1− ω) (52)

We observe that equations 50 and 52, explicitly do not have dependence on
particular details of scalar field(if it is quintessence or tachyonic), but equation
51 does have such dependence. We rewrite this equations in less "field specific"
forms and find that the equations in one of the field theory has more terms.
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Rewriting equation into less field specific form

For tachyonic field equation 51 becomes:

(−1 + ω)

2
∂u
∂xj = (1− ω) ∂δ

∂xj +
[
3(1− ω) ȧ

a + ω̇
2ω

]
[

1
4πGρ̄

(
ȧ
a
∂ψ

∂xj + ∂ψ̇

∂xj

)
+ a2 ρ̄dm

ρ̄
∂U
∂xj

]
(53)

While quintessence has some extra terms in addition to those present in
equation 53:

(−1 + ω)

2
∂u
∂xj = (1− ω) ∂δ

∂xj +
[
3(1− ω) ȧ

a + ω̇
2ω

]
[

1
4πGρ̄

(
ȧ
a
∂ψ

∂xj + ∂ψ̇

∂xj

)
+ a2 ρ̄dm

ρ̄
∂U
∂xj

]
+ω

[
3ȧ

8πGρ̄a
∂
∂xj

(
ȧ
aψ + ψ̇

)
+ 3ρ̄dm ȧa

2ρ̄
∂U
∂xj + 1

2
∂δ
∂xj

]
(54)
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Effects on Observables: w=-0.5
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Figure: Potential ψ and its time derivatives for w̄ = −0.5 case. Potentials are normalized
by their present day value(sub-scripted 0). Difference appears to be higher for λ ∼ 10k.
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Effects on Observables: w=-0.975

0 200 400 600 800 1000
1.0

1.1

1.2

1.3
Ψ Ψ 0

Quint λ 2000
Tach λ 2000
Quint λ 10000
Tach λ 10000
Quint λ 20000
Tach λ 20000

0 200 400 600 800 1000
a
ai

0.0

0.2

0.4

0.6

0.8

1.0

Ψ̇ Ψ̇ 0

Quint λ 2000
Tach λ 2000
Quint λ 10000
Tach λ 10000
Quint λ 20000
Tach λ 20000

Figure: Potential ψ and its time derivatives for w̄ = −0.975 case. Clearly relative
differences are much smaller than that in case of w = −0.5.
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Describing scalar field using effective c2s

For scalar fields8 , lets L(X, φ) be lagrangian density, where X = 1
2∂µφ∂

µφ is
kinetic term while φ is field. Rest frame for field is defined as one in which (δφ)
vanishes. In arbitrary frame:

(δp) =
∂p
∂X

(δX) +
∂p
∂φ

(δφ) (55)

with similar equation for (δρ). In rest frame:

(δp) =
∂p
∂X

(δX) (56)

Combining equations for (δp) and (δρ) in rest frame:

c2
s =

(δp)

(δρ)
=

p,X
ρ,X

(57)

where p,X is partial derivative wrt X.

8Erickson et. al. Phys. Rev. Lett., vol. 88, p. 121301, 2002.
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c2s for tachyonic field

c2
s for quintessence is exactly one.

For tachyonic field lagrangian density is:

L(X,Φ) = −V(Φ)
√
1− 2X (58)

In rest frame of a scalar field:

c2
s =

p,X
ρ,X

=
L,X

L,X + 2L,XXX
(59)

In case of tachyonic field:

c2
s = (1− 2X) = −w̄ − (1 + w̄)(δg00)rf (60)

In linear theory approximation, while using 60, one can ignore first order
approximation and c2

s is just −w̄.
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Parametric form for c2s

We adopt following parametric form for c2
s :

c2
s = c1 ∗ w + c0 (61)

This is a simplest form that can capture both quintessence and tachyonic
models. For quintessence, we have c1 = 0 and c0 = 1 and for tachyonic models
c1 = −1 and c0 = 0. We then do a MCMC sampling using CLASS with
MontePython. We use CMB (Planck 2018 high-l TT,TE,EE, low-l EE, low-l TT,
lensing) and BAO data(Boss Data Release 12, small-z BAO data from 6dF Galaxy
Survey and SDSS DR7 main Galaxy sample). We find that the two parameters c1
and c0 remain unconstrained.
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Data Constraints
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Figure: 1-dimensional posterior distributions.
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Data Constraints
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Figure: Best-fit model and observations
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Constraining Tachyon Models using Data

We also modify the CLASS to implement tachyonic models as genuine scalar
field at linear level, where equations are obtained from lagrangian corresponding
to tachyonic dark energy(The equations and modifications related information is
provided in appendix). Two potentials which we code in CLASS are:

• Exponential potential
V(φ) = V0exp(− φ

φa
) (62)

• Inverse Square Potential

V(φ) =
n

4πG

(
1− 2

3n

) 1
2
φ−2 (63)

We use following data combinations:

• CMB (Planck 2018)
• BAO (Boss Data Release 12, small-z BAO data from 6dF Galaxy Survey and

SDSS DR7 main Galaxy sample)
• Combination of the above mentioned CMB and BAO data.
• JLA data.
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Exponential Potential

0.1 0.2 0.3

cdm

0.9

0.8

0.7

0.6

0.5

w
0

4

6

8

lo
g 1

0(
a)

0.4

0.6

0.8

h

cdm = 0.237+0.045
0.033

0.4 0.6 0.8
h

h = 0.68+0.18
0.16

4 6 8
log10( a)

log10( a) = 5.5 ± 1.4

0.8 0.6
w0

w0 = 0.971 0.026
0.030

jla
bao
cmb
cmb+bao

Figure: Triangle plot using four combinations of data, for exponetial potential. 60



Inverse-Square Potential
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Summary: Linear Perturbations

• We have shown, by recasting equations in a different form, that differences
between (linear) perturbations in dependent on the factor of 1 + w. So for
models close to w = −1, the differences diminish.
• We validate this by calculating the evolution of potential and its time

gradient. For expansion allowed by data, the differences are insignificant.
• Further, we use CMB data to constrain a parametric form of c2

s and found
that it cannot distinguish between tachyonic and quintessence models.
• Parameters of two common potentials for tachyonic field, exponential and

inverse-square potentials, remain weakly constrained by perturbations.

62



Summary and Prospects
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Summary

The main results of these studies are:

• For both, tachyonic fields and quintessence, perturbations in dark energy
field are induced by metric perturbations. These grow in time.
• The induced perturbations remain small, even when the matter/metric

perturbations have become highly nonlinear.
• Scale of amplitudes is very important for growth of dark energy

perturbations. Larger perturbations with small amplitudes evolve to be
stronger than those with bigger amplitudes but smaller lengthscales.
• Even though dark energy perturbations are induced and they grow with

time, their effect on dark matter or metric is insignificant. This can be
attributed to the fact that background is for the most part of expansion
history is dominated by dark matter, while dark energy domination is a
relatively recent phenomenon.
• Rate of growth of dark energy perturbations is higher(particularly at late

times) in nonlinear evolution as compared to linear calculations.
• Effective equation of state (w) becomes a function of spacetime.
• Dynamics of DE perturbations is stronger in large voids and these can be

plausible systems for diagnostics of DE perturbations.
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Summary...

• We found that the differences in perturbations are dependent on relative
differences in background. We simulated perturbations in two models with
exactly same background. For backgrounds close to ΛCDM(w ∼ −1),
differences are small and increase as we go away from w = −1. Dark
matter/metric perturbations do not exhibit any significant differences for
two different Lagrangians.
• Dark energy fluctuations do show differences, but these differences

diminish as background expansion is tuned towards Λ. For background
expansion history(or w) constrained by current observations, observables
do not show any significant distinguishing features.
• We used linear theory formalism to provide insight into how differences

depend on background expansion. Specifically, there is an extra term in
equations for quintessence which is proportional to (1 + w).
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Summary...

• We used effective speed of sound(of dark energy: c2
s) formalism to

constrain a parametric form of c2
s using CMB data(Planck 2018 data

release). We found that the parameters are not constrained to distinguish
tachyonic models from quintessence.
• We also constrained cosmology for two specific tachyonic models:

Inverse-square potential and exponential potential. Parameters of
potentials are weakly constrained, while value of Ωs is different from what
one would obtained from ΛCDM parameter estimation. This demonstrates
the fact the parameter values are dependent on dark energy model
assumed.
• This work suggests that if we are only interested in dark matter

perturbations then we may work with any model of dark energy for the
given expansion history and may even ignore dark energy perturbations.
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Prospects

• There is a need to explore methods of cosmological simulations, that go
beyond linear regime and spherical symmetry in order to study prospects of
differentiating between classes of dark energy models. Efforts are needed
for simulations that avoid split between background and perturbations.
Hence, we would like to explore N-body simulations that are based on
relativistic field theory. In the next phase of this research, we plan to study
development of numerical/computational methods for such simulations.
• Dynamics of dark energy perturbations in large voids with a focus on

identifying observables and degeneracy of these observations with dark
matter sector
• A systematic study of linear theory based expansion of Lagrangian, for

different types of background expansion, can be done and this can be used
for mock predictions for observations from existing/coming experiments.
• The work in this thesis motivates future work on forecast for CMB

observations to distinguish different scalar field models.
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