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INTRODUCTION
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The zoology of the viable models of slow-roll inflation is vast . However, there is no a priori reason why 
one model is more favourable than others. Exactly speaking, certain models may enjoy theoretical 
advantages. Such models would be theoretically more aesthetic than others. But regarding 
observational viability, as long as observational constraints are satisfied within the same confidence 
level, every model is equivalent. 


Therefore, an attractive alternative to the model building of slow-roll inflation is, directly from the 
given power spectrum, to reconstruct the potential.


We suggest a method to reconstruct, within canonical single-field inflation, the inflaton potential 
directly from the primordial power spectrum which may deviate significantly from near scale-
invariance. 


Our approach relies on a more Generalized Slow-Roll (GSR) approximation than the standard one
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Using Green’s function technique, the first order solution can be written as
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then the following equation is satisfied:
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Here, we have defined the positive conformal time ⇠:
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with f
0

⌘ df/d log ⇠. In Eq. (8), the left-hand side represents the mode function equation
in the perfect de Sitter background and the corresponding power spectrum of the solution,
conveniently written as

PR(k) = lim
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is exactly scale-invariant. The function g on the right-hand side of Eq. (8) represents all the
possible deviations from the scale-invariance of the power spectrum. It includes the contribu-
tions suppressed by the slow-roll parameters Eqs. (1) and (2) and their time variations, which
are all equivalent here. Thus the expansion parameter of GSR is the function g itself.

To the leading order of GSR, i.e. up to O(g), the power spectrum can be expressed as [21, 22]

log PR(k) =

Z 1

0

d⇠

⇠

⇥
� k⇠W

0(k⇠)
⇤

log

✓
1

f 2

◆
+

2

3

f
0

f
+ O(g2)

�
, (11)

where W (x) is the following window function:
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In the standard slow-roll approximation, as can be read from Eq. (11), f
0 is slowly-varying and

the power spectrum is to the zeroth order given by the well-known result PR ⇡ [H2
/(2⇡�̇)]2.

This relation was used to reconstruct the potential in the previous literature on the reconstruc-
tion programme [14, 15, 16]. However in GSR, f

0
/f may vary rapidly while it remains small,

and thus gives notable features in the power spectrum. Furthermore, in GSR the evolution of
each mode throughout the entire inflationary epoch is taken into account automatically as the
range of integration shows, while in the standard slow-roll approximation one only considers
the e↵ects around the moment of horizon crossing, k = aH.
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1 Introduction

2 Solving Perturbation equations using Green’s function

Slow-roll parameters
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The function g represents all the possible deviations from the scale-invariance of the power spectrum. 
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The general solution for the above equation with the Bunch-Davies initial conditions can be
written as [see, Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. ”Chapter
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It is evident from the figure that PR and Pp have same shape in terms of k
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4.5 Preliminary results

see figures 1, 2 and 3

Figure 1: Evolution of g and gp for suitable parameters
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3 Examples

3.1 Power-law spectrum

First, we consider a power-law spectrum given by
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✓
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f 2

◆
= log As + (ns � 1)

⇥
↵ � log(k⇤⇠)

⇤
, (22)

where ↵ ⌘ 2 � log 2 � � ⇡ 0.729637, with � ⇡ 0.577216 being the Euler-Mascheroni constant.
That is,

f
2 =

(k⇤⇠)ns�1

Ase
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. (23)

Then Eq. (17) gives
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H
2
i
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�
+

(k⇤⇠)ns�1

�

�
, (24)

where Hi is the value of the Hubble parameter at ⇠ = ⇠i, and � is a positive constant defined
by

� ⌘ 4⇡2(1 � ns)As
m

2
Pl

H
2
i

e
↵(ns�1)

. (25)

Using H above along with f in Eq. (20), we find

�� ⌘ � � �i = �
2mPl

p
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(k⇤⇠0)ns�1

� � (k⇤⇠i)ns�1

#�����

⇠0=⇠

⇠0=⇠i

, (26)

where we have chosen the minus sign for f from Eq. (23) to make the field decreasing as inflation
goes on. We can absorb the k⇤⇠i term into the constant �0 as

� sinh�1

"s
(k⇤⇠)ns�1

� � (k⇤⇠i)ns�1

#
= �� + sinh�1

"s
(k⇤⇠i)ns�1

� � (k⇤⇠i)ns�1

#
⌘ � � �0 . (27)

Finally, the potential can be written in terms of � from Eq. (18) as

V (�) =
3m2

PlH
2
i �

� � (k⇤⇠i)ns�1

1 �
1
6(1 � ns) tanh2

h
p

1 � ns
���0

2mPl

i

1 + sinh2
h
p

1 � ns
���0

2mPl

i . (28)

Note that if we assume Hi is the value of the Hubble parameter relevant for the CMB scales,
we find � ⇡ 0.282195/r using the central value ns = 0.9656, where r is the tensor-to-scalar
ratio. Considering the current bound r < 0.056 [10], we find that � > (k⇤⇠i)ns�1 for k⇤⇠i >

3.82402 ⇥ 10�21. This includes practically all the observable scales, once ⇠i is chosen not too
far from the CMB scales.
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Now, defining q ⌘
p
2/k p and x ⌘ k⇠, Eq. (9) becomes
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+ q =
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gp(log ⇠)q , (11)
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The function gp on the right-hand side of Eq. (11) represents all the possible deviations from
the de Sitter. Recalling g as

g ⌘ 1

z

d
2
z

d⇠2
⇠
2 � 2. (13)

and
d
2
y

dx2
+

✓
1� 2

x2

◆
y =

1

x2
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gp and g can be written in terms of slow roll parameters as
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Using Green’s function technique, the first order solution can be written as

q(x) = q0(x)�
Z 1

x

du

u2
gp(u)q0(u) Im[q⇤0(u)q0(x)] , (17)
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The general solution for the above equation with the Bunch-Davies initial conditions can be
written as [see, Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. ”Chapter
9”.]

q(x) = �i

r
x ⇡

2
e
i(⌫+1/2)⇡/2

H
(1)
⌫

(x) . (45)

where
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s
✏1

(1� ✏1)2
+

1

4
=

1 + ✏

2(1� ✏)
(46)

when x ! 1,

lim
x!1

H
(1)
⌫

(x) '
r

2

⇡x
e
ix
e
�i(⌫+1/2)⇡/2

. (47)

then
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x!1

q(x) = �ie
i x = q0(x) . (48)

when x ! 0,
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(x) ' � i
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and
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2

⌘1�2⌫

. (51)

For Mukhanov-Sasaski variable v we have

d
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dx2
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y = 0 . (52)

Then the solution can be written as
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(x) . (53)
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In the asymptotic limit,
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and then
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Power law spectrum

then the following equation is satisfied:
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d⇠2
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z

d
2
z

d⇠2

◆
= 0 . (5)

Here, we have defined the positive conformal time ⇠:

⇠ ⌘ �

Z
dt

a
=

1

aH

⇥
1 + O(✏)

⇤
. (6)

Now, defining y ⌘
p

2k' and x ⌘ k⇠, and taking the ansatz that z takes the form

f(log ⇠) ⌘
2⇡xz

k
=

2⇡a⇠�̇

H
, (7)

Eq. (5) becomes
d
2
y

dx2
+

✓
1 �

2

x2

◆
y =

1

x2
g(log ⇠)y , (8)

where

g ⌘
f
00
� 3f 0

f
, (9)

with f
0

⌘ df/d log ⇠. In Eq. (8), the left-hand side represents the mode function equation
in the perfect de Sitter background and the corresponding power spectrum of the solution,
conveniently written as

PR(k) = lim
x!0

����
xy

f

����
2

, (10)

is exactly scale-invariant. The function g on the right-hand side of Eq. (8) represents all the
possible deviations from the scale-invariance of the power spectrum. It includes the contribu-
tions suppressed by the slow-roll parameters Eqs. (1) and (2) and their time variations, which
are all equivalent here. Thus the expansion parameter of GSR is the function g itself.

To the leading order of GSR, i.e. up to O(g), the power spectrum can be expressed as [21, 22]

log PR(k) =

Z 1

0

d⇠

⇠

⇥
� k⇠W

0(k⇠)
⇤

log

✓
1

f 2

◆
+

2

3

f
0

f
+ O(g2)

�
, (11)

where W (x) is the following window function:

W (x) =
3 sin(2x)

2x3
�

3 cos(2x)

x2
�

3 sin(2x)

2x
� 1 . (12)

In the standard slow-roll approximation, as can be read from Eq. (11), f
0 is slowly-varying and

the power spectrum is to the zeroth order given by the well-known result PR ⇡ [H2
/(2⇡�̇)]2.

This relation was used to reconstruct the potential in the previous literature on the reconstruc-
tion programme [14, 15, 16]. However in GSR, f

0
/f may vary rapidly while it remains small,

and thus gives notable features in the power spectrum. Furthermore, in GSR the evolution of
each mode throughout the entire inflationary epoch is taken into account automatically as the
range of integration shows, while in the standard slow-roll approximation one only considers
the e↵ects around the moment of horizon crossing, k = aH.
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From the spectrum to inflation: an inverse formula for the general slow-roll spectrum

that also does not rely on the standard slow-roll approximation. In section 2 we give our
inverse, in section 3 we give some examples which illustrate the use and properties of our
inverse, and in the appendix we give some alternative forms for some of our formulae.

2. General slow-roll formulae

For single-field inflationary models, it is convenient to express inflationary quantities in
terms of

f =
2πaξφ̇

H
, (1)

where ξ = −
∫

dt
a = 1

aH (1 − Ḣ
H2 + · · ·) is minus the conformal time [6, 13]. We think of f

as a function of ln ξ so that f ′ ≡ df/d ln ξ.
To leading order in the general slow-roll approximation, the spectrum can be expressed

as [6]

lnP(k) =

∫ ∞

0

dξ

ξ
[−kξW ′(kξ)]

[
ln

(
1

f 2

)
+

2

3

f ′

f

]
. (2)

There are a variety of other forms for this formula, some of which are given in the appendix.
The window function −xW ′(x) is given by4

W (x) =
3 sin(2x)

2x3
− 3 cos(2x)

x2
− 3 sin(2x)

2x
− 1. (3)

It has the asymptotic behaviour

lim
x→0

W (x) = 2
5x

2 + O(x4), (4)

the window property
∫ ∞

0

dx

x
[−x W ′(x)] = 1, (5)

and the degeneracy
∫ ∞

0

dx

x
[−x W ′(x)]

1

x
= 0. (6)

2.1. Inverse formula

Our inverse formula is

ln

(
1

f 2

)
=

∫ ∞

0

dk

k
m(kξ) lnP, (7)

where

m(x) =
2

π

[
1

x
− cos(2x)

x
− sin(2x)

]
. (8)

4 Note that we define W (x) with an extra −1 compared with our previous works [6].
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In the standard slow-roll approximation, as can be read from Eq. (11), f
0 is slowly-varying and

the power spectrum is to the zeroth order given by the well-known result PR ⇡ [H2
/(2⇡�̇)]2.

This relation was used to reconstruct the potential in the previous literature on the reconstruc-
tion programme [14, 15, 16]. However in GSR, f

0
/f may vary rapidly while it remains small,

and thus gives notable features in the power spectrum. Furthermore, in GSR the evolution of
each mode throughout the entire inflationary epoch is taken into account automatically as the
range of integration shows, while in the standard slow-roll approximation one only considers
the e↵ects around the moment of horizon crossing, k = aH.
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Mathematically, Eq. (11) represents an integral transformation between PR(k) and f(log ⇠)
via the window function Eq. (12). Thus we can find a formal inverse formula valid to the
leading order in GSR [24, 25]:
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�
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Now, assuming that the matter sector is canonical, we can find the following equation for
the Hubble parameter:
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2
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where in the second equality we have used Eq. (7) to eliminate �̇. In the slow-roll limit ✏ ⌧ 1,
using ⇠ ⇡ 1/(aH), we find the following di↵erential equation for H:

H
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f
2
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where the unknown function f(log ⇠) is determined from the given power spectrum by Eq. (13).
The integration gives H in terms of ⇠ as
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Note that if the second term is small compared to the integration constant 1/H2
i , we can

approximate H ⇡ Hi to leading order in GSR. Meanwhile, from the Friedmann equation with
Eq. (7), we can write easily the potential as a function of log ⇠:
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Finally, from Eq. (7) we find the di↵erential equation for �:
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and integrating this equation gives
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d log ⇠ . (20)

By eliminating ⇠ in Eq. (18) using Eq. (20), finally we can reconstruct the potential as a function
of the inflaton field, V (�). This is the main result of this article.

It is worthwhile to mention that Eqs. (15), (18) and (19) closely resemble the Hamilton-
Jacobi approach to the inflationary dynamics [26], in the sense that essentially H is regarded
as a function of the inflaton �, rather than time ⇠. The critical di↵erence from the standard
Hamilton-Jacobi approach is that the time derivative of � is not related to dH/d� but to H

itself, as given in Eq. (19). This allows, for a monotonic evolution of �, an exact one-to-one
correspondence between ⇠ and � directly given the fundamental GSR function f(log ⇠) inferred
from Eq. (13).
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from Eq. (13).

4

JCAP 04 (2005), 012



RECONSTRUCTION : POWER LAW SPECTRUM

9

3 Examples

3.1 Power-law spectrum

First, we consider a power-law spectrum given by

PR(k) = As

✓
k

k⇤

◆ns�1

. (21)

Then Eq. (13) gives

log

✓
1

f 2

◆
= log As + (ns � 1)

⇥
↵ � log(k⇤⇠)

⇤
, (22)

where ↵ ⌘ 2 � log 2 � � ⇡ 0.729637, with � ⇡ 0.577216 being the Euler-Mascheroni constant.
That is,

f
2 =

(k⇤⇠)ns�1

Ase
↵(ns�1)

. (23)

Then Eq. (17) gives
1

H2
=

1

H
2
i


1 �

(k⇤⇠i)ns�1

�
+

(k⇤⇠)ns�1

�

�
, (24)

where Hi is the value of the Hubble parameter at ⇠ = ⇠i, and � is a positive constant defined
by

� ⌘ 4⇡2(1 � ns)As
m

2
Pl

H
2
i

e
↵(ns�1)

. (25)

Using H above along with f in Eq. (20), we find

�� ⌘ � � �i = �
2mPl

p
1 � ns

sinh�1

"s
(k⇤⇠0)ns�1

� � (k⇤⇠i)ns�1

#�����

⇠0=⇠

⇠0=⇠i

, (26)

where we have chosen the minus sign for f from Eq. (23) to make the field decreasing as inflation
goes on. We can absorb the k⇤⇠i term into the constant �0 as

� sinh�1

"s
(k⇤⇠)ns�1

� � (k⇤⇠i)ns�1

#
= �� + sinh�1

"s
(k⇤⇠i)ns�1

� � (k⇤⇠i)ns�1

#
⌘ � � �0 . (27)

Finally, the potential can be written in terms of � from Eq. (18) as

V (�) =
3m2

PlH
2
i �

� � (k⇤⇠i)ns�1

1 �
1
6(1 � ns) tanh2

h
p

1 � ns
���0

2mPl

i

1 + sinh2
h
p

1 � ns
���0

2mPl

i . (28)

Note that if we assume Hi is the value of the Hubble parameter relevant for the CMB scales,
we find � ⇡ 0.282195/r using the central value ns = 0.9656, where r is the tensor-to-scalar
ratio. Considering the current bound r < 0.056 [10], we find that � > (k⇤⇠i)ns�1 for k⇤⇠i >

3.82402 ⇥ 10�21. This includes practically all the observable scales, once ⇠i is chosen not too
far from the CMB scales.
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Small-field potential First we consider � � (k⇤⇠i)ns�1. In this case, Eq. (26) is approximated
as

�� ⇡ �
2mPl

p
1 � ns

s
(k⇤⇠)ns�1

�
, (29)

and Eq. (28) becomes the following simple form:

V (�) ⇡ 3m2
PlH

2
i


1 �

1 � ns

4
(��)2

�
. (30)

This potential is vacuum-dominated, with small field variations. This is reasonable as a
small value of r indicates a small value of ✏, which corresponds to a small field excursion.

Large-field potential The opposite limit, � ⌧ (k⇤⇠i)ns�1, is interesting – not consistent
with observations though, since this case corresponds to r & 0.32. Then, H

�2
⇡

H
�2
i (k⇤⇠)ns�1

/�, so that f
2
H

2
⇡ Hi�e

↵(1�ns)/As is constant. Thus the field variation
becomes

�� ⇡
p

1 � nsmPl log

✓
⇠

⇠i

◆
, (31)

so that we can absorb k⇤⇠i as follows:

log(k⇤⇠) =
��

p
1 � nsmPl

+ log(k⇤⇠i) ⌘
� � �0

p
1 � nsmPl

. (32)

Then, the reconstructed potential is obtained as an exponential function:

V (�) = 3m2
PlH
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. (33)

3.2 Featured power spectrum

A su�ciently flat and slowly varying inflaton potential gives a featureless and nearly scale-
invariant power spectrum. However, the outliers of the CMB power spectrum may imply,
though not decisively preferred as of now, occasional departures from the usual slow-roll phase.
This can, with the matter sector being canonical, be achieved by an inflaton potential that
possesses some features [27] – deviations from otherwise smooth potential. Since the standard
slow-roll approximation is broken across the features in the potential, usually one resorts to the
numerical approach, and/or to restricted analytic approximations such as matching the mode
function solutions at the features. With GSR, however, we have a fully valid analytic machinery
to deal with features. Especially, if the features – if exist at all – are small as indicated by
the CMB observations, we may obtain a fully analytic formula for the power spectrum. In
this section, we consider such a fortunate case – the power spectrum with features is given
analytically, from which we directly reconstruct the inflaton potential.

Since the possible analytic form of the power spectrum is diverse depending on the potential
and features [28], we just consider as an example the following form for the localized oscillatory
features [10, 29] which results from a tanh step in the potential [30]:

log PR(k) = log P
0
R(k) + I0(k) + log

⇥
1 + I

2
1 (k)

⇤
, (34)
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Small-field potential First we consider � � (k⇤⇠i)ns�1. In this case, Eq. (26) is approximated
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and Eq. (28) becomes the following simple form:
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This potential is vacuum-dominated, with small field variations. This is reasonable as a
small value of r indicates a small value of ✏, which corresponds to a small field excursion.

Large-field potential The opposite limit, � ⌧ (k⇤⇠i)ns�1, is interesting – not consistent
with observations though, since this case corresponds to r & 0.32. Then, H
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Then, the reconstructed potential is obtained as an exponential function:
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3.2 Featured power spectrum

A su�ciently flat and slowly varying inflaton potential gives a featureless and nearly scale-
invariant power spectrum. However, the outliers of the CMB power spectrum may imply,
though not decisively preferred as of now, occasional departures from the usual slow-roll phase.
This can, with the matter sector being canonical, be achieved by an inflaton potential that
possesses some features [27] – deviations from otherwise smooth potential. Since the standard
slow-roll approximation is broken across the features in the potential, usually one resorts to the
numerical approach, and/or to restricted analytic approximations such as matching the mode
function solutions at the features. With GSR, however, we have a fully valid analytic machinery
to deal with features. Especially, if the features – if exist at all – are small as indicated by
the CMB observations, we may obtain a fully analytic formula for the power spectrum. In
this section, we consider such a fortunate case – the power spectrum with features is given
analytically, from which we directly reconstruct the inflaton potential.

Since the possible analytic form of the power spectrum is diverse depending on the potential
and features [28], we just consider as an example the following form for the localized oscillatory
features [10, 29] which results from a tanh step in the potential [30]:
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3 Examples

3.1 Power-law spectrum

First, we consider a power-law spectrum given by
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Then Eq. (13) gives
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where ↵ ⌘ 2 � log 2 � � ⇡ 0.729637, with � ⇡ 0.577216 being the Euler-Mascheroni constant.
That is,
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Then Eq. (17) gives
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where Hi is the value of the Hubble parameter at ⇠ = ⇠i, and � is a positive constant defined
by
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Using H above along with f in Eq. (20), we find
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where we have chosen the minus sign for f from Eq. (23) to make the field decreasing as inflation
goes on. We can absorb the k⇤⇠i term into the constant �0 as
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Finally, the potential can be written in terms of � from Eq. (18) as
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Note that if we assume Hi is the value of the Hubble parameter relevant for the CMB scales,
we find � ⇡ 0.282195/r using the central value ns = 0.9656, where r is the tensor-to-scalar
ratio. Considering the current bound r < 0.056 [10], we find that � > (k⇤⇠i)ns�1 for k⇤⇠i >

3.82402 ⇥ 10�21. This includes practically all the observable scales, once ⇠i is chosen not too
far from the CMB scales.
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Small-field potential First we consider � � (k⇤⇠i)ns�1. In this case, Eq. (26) is approximated
as
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and Eq. (28) becomes the following simple form:

V (�) ⇡ 3m2
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This potential is vacuum-dominated, with small field variations. This is reasonable as a
small value of r indicates a small value of ✏, which corresponds to a small field excursion.

Large-field potential The opposite limit, � ⌧ (k⇤⇠i)ns�1, is interesting – not consistent
with observations though, since this case corresponds to r & 0.32. Then, H

�2
⇡

H
�2
i (k⇤⇠)ns�1

/�, so that f
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becomes

�� ⇡
p

1 � nsmPl log

✓
⇠

⇠i

◆
, (31)

so that we can absorb k⇤⇠i as follows:
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Then, the reconstructed potential is obtained as an exponential function:

V (�) = 3m2
PlH
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3.2 Featured power spectrum

A su�ciently flat and slowly varying inflaton potential gives a featureless and nearly scale-
invariant power spectrum. However, the outliers of the CMB power spectrum may imply,
though not decisively preferred as of now, occasional departures from the usual slow-roll phase.
This can, with the matter sector being canonical, be achieved by an inflaton potential that
possesses some features [27] – deviations from otherwise smooth potential. Since the standard
slow-roll approximation is broken across the features in the potential, usually one resorts to the
numerical approach, and/or to restricted analytic approximations such as matching the mode
function solutions at the features. With GSR, however, we have a fully valid analytic machinery
to deal with features. Especially, if the features – if exist at all – are small as indicated by
the CMB observations, we may obtain a fully analytic formula for the power spectrum. In
this section, we consider such a fortunate case – the power spectrum with features is given
analytically, from which we directly reconstruct the inflaton potential.

Since the possible analytic form of the power spectrum is diverse depending on the potential
and features [28], we just consider as an example the following form for the localized oscillatory
features [10, 29] which results from a tanh step in the potential [30]:
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0
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⇥
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2
1 (k)

⇤
, (34)
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Figure 1: (Left panel) Reconstructed potential from the featured power spectrum (34) for
r = 0.056 and �i = 0. The potential for the power-law power spectrum is shown with dashed
line for comparison. (Right panel) Power spectra calculated numerically from the reconstructed
potential for di↵erent values of r as shown in the figure. The input power spectrum (solid line)
is also shown for comparison.

where P
0
R is the power-law power spectrum Eq. (21), and the various functions are defined as

follows:
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(35)

With the pivot scale for the power-law spectrum being fixed at k⇤ = 5 ⇥ 10�2 Mpc�1, the
best-fit parameters are as follows [10]:

As = 2.0989 ⇥ 10�9
, ns = 0.9649 , As = 0.38 , log10 kx = �3.09 , log xs = 0.15 . (36)

In the left panel of Figure 1, we show the reconstructed potential for the tensor-to-scalar
ratio r = 0.056 with the initial value �i = 0. Indeed, as we can see, there is a smooth,
tiny step in the reconstructed potential. Since the height of the step is very tiny – O(0.1)%
or even smaller change of the potential – we can expect that GSR is very e↵ective. Indeed,
the magnitude of the function g, the expansion parameter of GSR [see the discussions below
Eq. (10)], remains smaller than 1 throughout so that GSR expansion is fully justified. As a
consistency check, in the right panel of Figure 1 we have calculated the power spectra from
the reconstructed potential by exact numerical calculations for several di↵erent values of the
tensor-to-scalar ratio r = 10�4, 10�3, 10�2, and 0.056. The original power spectrum Eq. (34),
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