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magnetogenesis
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−g λ(φ)FµνF
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(
a

aI
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where Fµν ≡ ∂µAν − ∂νAµ

I The perturbed metric:
ds2 = −dt2 + a2(t) e2ζ(t,x)[eγ(t,x)]ijdx

idx j
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Quantum Fluctuations
Metric perturbations and gauge field

I The power spectra associated with metric perturbations

〈ζ(k, τ)ζ(k′, τ)〉 = (2π)3δ(3)(k + k′)Pζ(k , τ)
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Ai (τ, k)Aj(τ, k

′)
〉

= (2π)3δ(3)(k + k′)

(
δij −

kikj
k2

)
|Ak(τ)|2

with the mode function Ak(τ) is given by

Ak(τ) =
1√
λI

√
π

2
e iπ(n+1)/2

√
−τ
(
τ

τI

)n

H
(1)

n+ 1
2

(−kτ)
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Electric and magnetic fields

I One can covariantly define the electric field Eµ and magnetic
field Bµ with respect to an observer having four-velocity uν .
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Electric and Magnetic fields

I One can covariantly define the electric field Eµ and magnetic
field Bµ with respect to an observer having four-velocity uν .

Eµ = Fµνu
ν , Bµ = ∗Fµνu

ν .

I Then the corresponding power spectra are,〈
Bµ(τ, k)Bµ(τ, k′)

〉
= (2π)3δ(3)(k + k′)PB(k , τ),〈

Eµ(τ, k)Eµ(τ, k′)
〉

= (2π)3δ(3)(k + k′)PE (k , τ).

Thus,

PB(k, τ) = 2
k2

a4
|Ak(τ)|2

PE (k, τ) =
2

a4
|A′k(τ)|2
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Cross-correlation of inflationary tensor
perturbation with primordial gauge fields
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The in-in formalism

I In order to compute the correlation function during inflation,
we adopt a very useful and powerful tool of the in-in
formalism. In this formalism, the expectation value of an
operator O at time τI is given by
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I The leading order interaction Hamiltonian is
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formalism. In this formalism, the expectation value of an
operator O at time τI is given by

〈O(τI )〉 = 〈0| T̄
(
e i

∫ τI
−∞ dτHint

)
O(τI )T

(
e−i

∫ τI
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)
|0〉

I The leading order interaction Hamiltonian is

Hint(τ) =
1

2

∫
d3x λ(τ)

(
γ ijA′iA

′
j − γ ijδkl(∂iAk∂jAl + ∂kAi∂lAj)

+2γ ijδkl∂iAk∂lAj

)
I Using in-in formalism, we have calculated 〈γAµAµ〉,〈γBµBµ〉

and 〈γEµEµ〉 perturbatively
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〈γAµAµ〉
I Let us first compute the cross-correlation of a tensor mode

with two gauge field modes, i.e., a correlator of the form
〈γAµAµ〉.
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=
1

a2
γAiAi −

1

a2
γγijAiAj +O(γ3)

29 / 73



Kinematical correction terms

I There exist some leading order correction terms in the
correlator which are arising from VEV.
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Kinematical terms

I There exist some leading order correction terms in the
correlator which are arising from VEV.

γAµA
µ =

1

a2
γAiAi − 1

a2
γγijAiAj︸ ︷︷ ︸

Kinematical correction term

+O(γ3)

I Then the contribution from this kinematical correction can
easily calculate,

〈0| γ(k1)Aµ(k2)Aµ(k3) |0〉 =
1

2
(2π)3δ(3)(k1 + k2 + k3)εij

k2ik2j

k̃22
Pγ(k1)PA(k̃2)

Here, k̃2 = k2 + 1
2k1.
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〈γAµAµ〉
I Let’s get back to our in-in formula

〈γ(k1, τI )Aµ(k2, τI )A
µ(k3, τI )〉 = 〈0| γ(k1, τI )Aµ(k2, τI )A

µ(k3, τI ) |0〉

+i

∫ τI

−∞
dτ 〈0| [Hint(τ), γ(k1, τI )Aµ(k2, τI )A

µ(k3, τI )] |0〉

I The second term in the above equation can calculate using
the standard methods
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Correction terms for 〈γBµBµ〉 and 〈γEµEµ〉
I There exist similar kinematical correction terms for γBµB

µ
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subtile. Since we know that

Eµ(x, τ) ∝ i [Htot,Aµ] = i [H0,Aµ] + i [Hint,Aµ]

I From the definition of electric field, we can see that
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γEµE
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1
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[
γ
dAi

dτ

dAi

dτ
− γγij

dAi

dτ

dAj

dτ

+iγ

(
dAi

dτ
[Hint,Ai ] + [Hint,Ai ]
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dτ
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γEµE
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1
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[
γ
dAi

dτ

dAi
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Kinematical correction term︷ ︸︸ ︷
−γγij

dAi

dτ

dAj
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+iγ

(
dAi
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Dynamical correction term
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The magnetic and electric non-linearity parameters

43 / 73



The magnetic and electric non-linearity parameters

I The bispectra associated with 〈γBµBµ〉 and 〈γEµEµ〉 are,

44 / 73



The magnetic and electric non-linearity parameters

I The bispectra associated with 〈γBµBµ〉 and 〈γEµEµ〉 are,

〈γ(k1)Bµ(k2)Bµ(k3)〉 ≡ (2π)3δ(3)(k1 + k2 + k3)BγBB(k1, k2, k3)

〈γ(k1)Eµ(k2)Eµ(k3)〉 ≡ (2π)3δ(3)(k1 + k2 + k3)BγEE (k1, k2, k3)

45 / 73



The magnetic and electric non-linearity parameters
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〈γ(k1)Eµ(k2)Eµ(k3)〉 ≡ (2π)3δ(3)(k1 + k2 + k3)BγEE (k1, k2, k3)

I The strength of these bispectra can be characterised by
defining the non-linearity parameters bγNL and eγNL as follows

BγBB(k1, k2, k3) =
1

2
bγNLPγ(k1)

[
PB(k2) + PB(k3)

]
BγEE (k1, k2, k3) =

1

2
eγNLPγ(k1)

[
PE (k2) + PE (k3)

]
I If the two non-linearity parameters bγNL and eγNL are

momentum independent, they correspond to a local shape of
the bispectra
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momentum independent, they correspond to a local shape of
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B = BG +
1

2
bγNLγ

GBG ,

E = EG +
1

2
eγNLγ

GEG ,
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The in-in results
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The extent of the non-linearity parameters bγNL (left) and eγNL
(right) corresponding to different triangular configuration are
plotted for the case of n = 2. Here, we defined x1 = k1

k2
and

x3 = k3
k2

while k2 is set at an arbitrary scale. The colour legends
representing the magnitude are also shown below each plot.
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Squeezed/Soft limit and new consistency relations
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Squeezed/Soft limit and new consistency relations

In this limit, we have k1 → 0 and k2 → −k3 ≡ k. The primed
correlator 〈...〉′ indicate that we have suppressed the factor
(2π)3δ(3)(k1 + k2 + k3).
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Semi-classical derivation of the consistency relations

I The presence of long wavelength mode can be studied as
modified background. Since inflationary perturbations are
conserved in super horizon scale we can absorb the effect of
long wavelength perturbation in to coordinates.
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Semi-classical derivation of the consistency relations

I The presence of long wavelength mode can be studied as
modified background. Since inflationary perturbations are
conserved in super horizon scale we can absorb the effect of
long wavelength perturbation in to coordinates.

I Then the rescaled background will be: ds2 = −dt2 + a2(t)dx̃2

with dx̃2 → dx2 + γBij dx
idx j .

56 / 73



Semi-classical derivation of the consistency relations

I In the squeezed limit, due to the rescaled background by the
long wavelength graviton mode, one can write a three point
correlation function in terms of the modified two point
function as,
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Semi-classical derivation of the consistency relations

I In the squeezed limit, due to the rescaled background by the
long wavelength graviton mode, one can write a three point
correlation function in terms of the modified two point
function as,

lim
k1→0

〈γ(τI , k1)Yµ(τI , k2)Y µ(τI , k3)〉 =
〈
γ(τI , k1) 〈Yµ(τI , k2)Y µ(τI , k3)〉B

〉
with Yµ = {Aµ,Bµ,Eµ}
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Semi-classical derivation of the consistency relations

I In the squeezed limit, due to the rescaled background by the
long wavelength graviton mode, one can write a three point
correlation function in terms of the modified two point
function as,

lim
k1→0

〈γ(τI , k1)Yµ(τI , k2)Y µ(τI , k3)〉 =
〈
γ(τI , k1) 〈Yµ(τI , k2)Y µ(τI , k3)〉B

〉
where Yµ = {Aµ,Bµ,Eµ}

I The two point function in the modified background:

〈Yµ(x)Y µ(x)〉B = 〈Yµ(x)Y µ(x)〉0 + γBij
∂

∂γBij
〈Yµ(x̃)Y µ(x̃)〉|γB=0 + . . .
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Semi-classical derivation of consistency relations

I We show that the semi-classical derivation for the graviton
magnetic fields cross-correlator can only be trusted or n > 1/2
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Semi-classical derivation of consistency relations

I We show that the semi-classical derivation for the graviton
magnetic fields cross-correlator can only be trusted or n > 1/2

lim
k1→0

〈γ(τI , k1)Aµ(τI , k2)Aµ(τI , k3)〉′ =

(
n +

1

2

)
εij

k2ik2j
k22

Pγ(k1)PA(k2),

lim
k1→0

〈γ(τI , k1)Bµ(τI , k2)Bµ(τI , k3)〉′ =

(
n − 1

2

)
εij

k2ik2j
k22

Pγ(k1)PB(k2),
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Semi-classical derivation of consistency relations

I We show that the semi-classical derivation for the graviton
magnetic fields cross-correlator can only be trusted or n > 1/2

lim
k1→0

〈γ(τI , k1)Aµ(τI , k2)Aµ(τI , k3)〉′ =

(
n +

1

2

)
εij

k2ik2j
k22

Pγ(k1)PA(k2),

lim
k1→0

〈γ(τI , k1)Bµ(τI , k2)Bµ(τI , k3)〉′ =

(
n − 1

2

)
εij

k2ik2j
k22

Pγ(k1)PB(k2),

I Similarly for graviton electric fields cross-correlator can only
be trusted for n < −1/2
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Semi-classical derivation of consistency relations

I We show that the semi-classical derivation for the graviton
magnetic fields cross-correlator can only be trusted or n > 1/2

lim
k1→0

〈γ(τI , k1)Aµ(τI , k2)Aµ(τI , k3)〉′ =

(
n +

1

2

)
εij

k2ik2j
k22

Pγ(k1)PA(k2)

lim
k1→0

〈γ(τI , k1)Bµ(τI , k2)Bµ(τI , k3)〉′ =

(
n − 1

2

)
εij

k2ik2j
k22

Pγ(k1)PB(k2)

I Similarly for graviton electric fields cross-correlator can only
be trusted for n < −1/2

lim
k1→0

〈γ(τI , k1)Eµ(τI , k2)Eµ(τI , k3)〉′ = −
(
n +

1

2

)
εij

k2ik2j
k22

Pγ(k1)PE (k2)
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A direct correlation of tensor and curvature perturbations

I The curvature perturbation induced by any magnetic field is

ζB(τ) =

∫ τ

τ0

d ln τ ′λ(τ ′)
BiB

i

3H2ε
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A direct correlation of tensor and curvature perturbations

I the curvature perturbation induced by any magnetic field is

ζB(τ) =

∫ τ

τ0

d ln τ ′λ(τ ′)
BiB

i

3H2ε

I One may naively expect that due to the induced curvature
perturbations, there might exist a direct non-trivial correlation
of the primordial tensor mode

〈γζ〉 ' 〈γζB〉 ∝ 〈γB · B〉 6= 0
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A direct correlation of tensor and curvature perturbations

I The curvature perturbation induced by any magnetic field is

ζB(τ) =

∫ τ

τ0

d ln τ ′λ(τ ′)
BiB

i

3H2ε

I One may naively expect that due to the induced curvature
perturbations, there might exist a direct non-trivial correlation
of the primordial tensor mode

〈γζ〉 ' 〈γζB〉 ∝ 〈γB · B〉 6= 0

I But, we explicitly showed that such a correlator actually
vanishes due to the statistical isotropy.

〈γζ〉 = 0
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〈γζ〉 as a novel observervable

I It is worth noting that isotropy is broken by the
long-wavelength modes of vector field.
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I It is worth noting that isotropy is broken by the
long-wavelength modes of vector field.

Bi → Bcδix + δBi , Ei = δEi .
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〈γζ〉 as a novel observervable

I It is worth noting that isotropy is broken by the
long-wavelength modes of vector field.

Bi → Bcδix + δBi , Ei = δEi .

I This will leads to a direct coupling between γ and ζ.

H
(1)
int = −1

2
B2
c a ξ

∫
d3xa4ζγxx

with

ξ(τ) =
∂λ

∂φ

φ′(τ)

H
.
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〈γζ〉 as a novel observervable

I It is worth noting that isotropy is broken by the
long-wavelength modes of vector field.

Bi → Bcδix + δBi , Ei = δEi .

I This will leads to a direct coupling between γ and ζ.

H
(1)
int = −1

2
B2
c a ξ

∫
d3xa4ζγxx

with

ξ(τ) =
∂λ

∂φ

φ′(τ)

H
.

I There could be contributions from a quantum gravity induced
higher dimensional operators.

S = −1

4

∫
d4x
√
−g λ(φ)

(
FµνF

µν +
1

4M4
(FµνF

µν)2 + · · ·
)
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〈γζ〉 as a novel observervable

I It is worth noting that isotropy is broken by the
long-wavelength modes of vector field.

Bi → Bcδix + δBi , Ei = δEi .

I This will leads to a direct coupling between γ and ζ.

H
(1)
int = −1

2
B2
c a ξ

∫
d3xa4ζγxx

with

ξ(τ) =
∂λ

∂φ

φ′(τ)

H
.

I There could be contributions from a quantum gravity induced
higher dimensional operators.

S = −1

4

∫
d4x
√
−g λ(φ)

(
FµνF

µν +
1

4M4
(FµνF

µν)2 + · · ·
)

I Such kind of correction leads to 〈γBµBµ〉aniso and that will
lead to 〈γζ〉 6= 0
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Summary

I In a particular model of inflationary magnetogenesis, we
defined and calculated the non-Gaussian cross correlation of
gauge fields with the tensor perturbations.

I We showed that there exist a leading order correction to these
non-Gaussian cross correlations.

I We studied the shape function associated with these
non-Gaussian correlators.

I We have derived new set of consistency relations analogous to
known consistency relations in the literature.

I We have calculated a direct correlation between one graviton
mode and a curvature perturbation mode.
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Thank You
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