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1. Evolution of Density perturbations: z = 1000
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2. Scales in the problem

• Matter-radiation equality:

keq ' 0.2 Ωmh
2 Mpc−1 (1)

Determines the shape of CDM perturbations

• Sound velocity of baryon-photon fluid:
cs ' c/

√
3. At z ' 1000:

ksound '
√

3H(z) ' 0.02(Ωmh
2)1/2 Mpc−1 (2)

• Silk damping: The damping scale of baryon-photon
fluid owing to viscosity. l2s ' H−1lmf :

ks ' 0.5

(
Ωbh

2

0.022

)1/2

(Ωmh
2)1/4 Mpc−1 (3)

• Free streaming of massive neutrino: Roughly
H−1 at T ' mν, e.g. for mν ' 0.2 eV,
kfs ' 0.01 Mpc−1
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3. SDSS results: power spectrum
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(Beutler et al. 2013)
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4. Probes of matter Power Spectrum



Title Page

JJ II

J I

Page 6 of 24

Go Back

Full Screen

Close

Quit

5. Determining the nature of Dark matter: Planck
results

• Primordial perturbations: scalar spectral index,
ns = 0.9652± 0.0062

• Baryons: ΩBh
2 = 0.022± 0.00023

• Nonrelativistic component of the dark matter:
Ωcdmh

2 = 0.1199± 0.0022

• Hubble’s constant: H0 = 67.26± 0.98, the most
precise measurement of Hubble’s constant

• Massive neutrinos:
∑
mν < 0.23 eV, ⇒ Ων < 0.005

(particle physics data gives: Ων > 0.001)

• Massless neutrinos: Neff = 3.15± 0.23

• Total matter content: Consistent with spatially
flat universe Ωtotal = 1± 0.005
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6. Does CDM work at sub-galactic scales?

• Missing sub-haloes of Milky Way: Simulation
reproduce adequately substructures of clusters but
predict up to 25 times more dwarf spheroidals than
detectable in Milky Way. Less power at small scales?

• Cuspy profiles: Simulations suggest cuspy profiles in
the center of galaxies, yet observations suggest flat
profiles. Interacting dark matter?

• Too big to fail conundrum: Simulations suggest
substructures of Milky Way are too big or they
should have hosted baryonic structures.
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7. Dark matter detection experiments
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8. Alternative dark matter models

• Warm Dark Matter: massive particle of mwdm ' keV
free streams and suppresses density perturbations at
cosmological scales.

• Late Forming Dark matter: The dark matter forms
due to a phase transition at z = zf , inheriting the
initial conditions of massless neutrinos. Power
suppressed at scales inside the horizon for z < zf .

• Ultra-Light Axion (ULA): Dark matter is a scalar
field with non-zero effective mass, ma, and sound
velocity. Density perturbations at scales smaller than
the sound horizon cannot grow.

• Decaying Charged particle: A charged particle
decays into a neutral particle and an electron at
z = zdecay, impacting scales below horizon for
z < zdecay.
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9. Classical scalar field (ULA) as cold dark matter

• Background evolution: The field behaves like
cosmological constant at early time ma � H, but
oscillates and on average behaves as matter ρφ ' 1/a3

at late times.

• Perturbation theory: The effective sound speed:

c2
s =

k2/(m2
aa

2)

(1 + k2/(m2
aa

2))
(4)

• Early times: c2
s =⇒ 1, but scalar field has little

impact on the gravitational potential.

• Late times: scalar field energy density comparable to
radiation: For normal CDM, the density contrast
increases as either log(a) or a, but for scalar field,
finite sound speed prevents growth.

• Very late times: cs =⇒ 0 and scalar field behaves as
pressureless CDM.
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10. Matter power spectra
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11. Cosmological observables at small scales

• Lyman-α clustering: Probes nearly non-linear density
perturbations at scales up to k ' 4 Mpc−1 (Sarkar
et al. 2021)

• Epoch of reionization: Halo population decreases for
alternative dark matter models, leading to different
reionization histories and the neutral hydrogen (HI)
signal. Scales k ' 5–25 Mpc−1.

• Collapsed fraction of matter at high redshifts:
Average HI mass density upto z ' 5 is known from
damped Lyman-α studies. This is extremely sensitive
to the matter power spectrum at scales k ' 5 Mpc−1.

• CMB spectral distortion from Silk damping: Viscous
damping damps scales in the range 0.3 < k < 104 Mpc
in pre-recombination era. This is the only linear
probe of such a range of scales (Sarkar et al. 2017).
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12. Non-minimally coupled scalar field

• Lagrangian:

Lφ = −1

2

√−g[gµν∂µφ∂νφ+m2
φφ

2 + ξRφ2]. (5)

ξ is a dimensionless coupling constant.

• Background evolution: Owing to the R2 term, the
background evolution of the scalar field changes
substantially at early times. In particular, the scalar
field might not behave as cosmological constant at
early times.

• Evolution of first order perturbation: The anisotropic
stress is non-zero which can impact the small scales.
The ’sound velocity’ of the scalar field is non-singular
in this case, which has a bearing on all scales.
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13. The multi-component fluid: the usual case

• Early times: Both the background and the first order
evolution (at both sub- and super-horizon scales) is
dominated by photons and neutrinos at early times.

• Intermediate times: 106 < z < 103. The scalar field
makes a transition to the matter phase 〈ρφ〉 ∝ 1/a3

and dominates the energy density after the
matter-radiation equality. Photons and baryons are
still tightly coupled

• post-recombination era: The photons and baryons
decouple. The energy density is dominated by scalar
field with baryons contributing around 16% of the
energy density.



Title Page

JJ II

J I

Page 15 of 24

Go Back

Full Screen

Close

Quit

14. Background evolution: non-minimal case
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15. Background evolution: equation of state
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16. Large scale gravitational potential
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17. Gravitational potential: intermediate scales
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18. Gravitational potential: small scales
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19. Large scale density contrast
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20. Density contrast: Intermediate scales
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21. Density contrast: Small scales
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22. Matter power spectrum: adiabatic and
isocurvature modes
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23. Summary and future prospects

• The nature of dark matter is still unknown, in spite of
the success of ΛCDM model. Experimental searches
have failed so far and there are issues with the model
at small scales.

• Many cosmological observables at small scales
constrain alternative dark matter models, e.g.
Lyman-α data, collapsed fraction of HI at high
redshifts.

• A classical scalar field can act as cold dark matter. In
addition, it might result in suppression of small scale
power which might be preferred by observations.

• A non-minimally coupled scalar field introduces new
features at large scale which can be measured by
large scale and CMB observation.
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