Reconstructing Cosmology using Principal Component Analysis

Ranbir Sharma

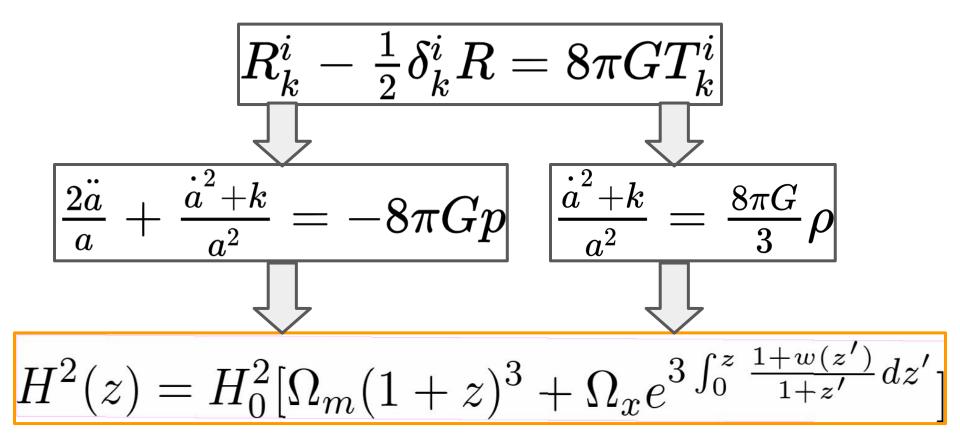
IISER Mohali, Punjab

Collaborators: Ankan Mukherjee, H K Jassal

Content:

- Cosmology
- Observational datasets and methods to probe the Universe
- Statistical ways to Interpret Infer Imply
- Principal Component Analysis (PCA)
- Reconstruction of late-time cosmology using PCA
- Inference of model parameter using PCA
- Summary and Conclusion

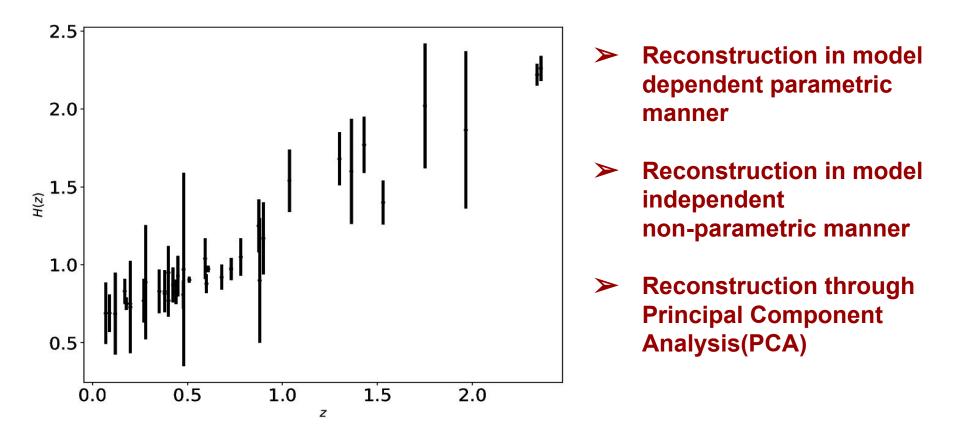
Cosmology



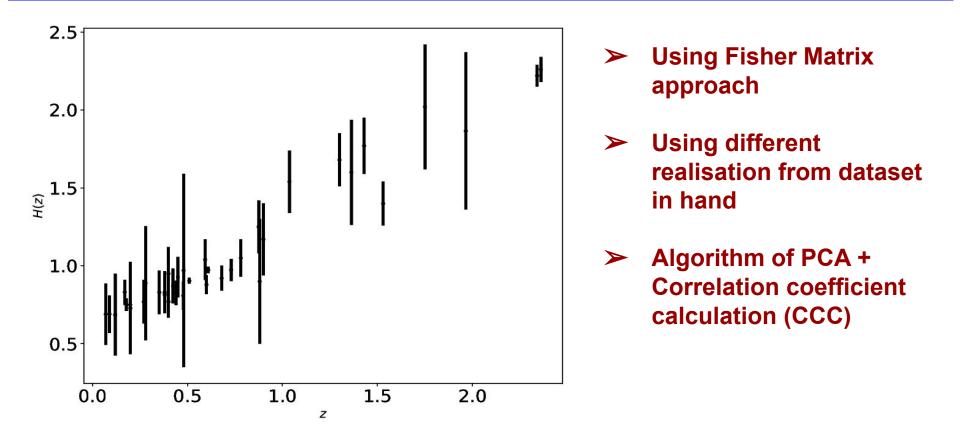
Observational datasets

\boldsymbol{z}	$\mid m \mid$	σ_m		z	h	σ_h
0.01	0.139	0.198		0.07	0.69	0.196
•	-	-		-	•	-
•	•	-		•	•	-
			_			

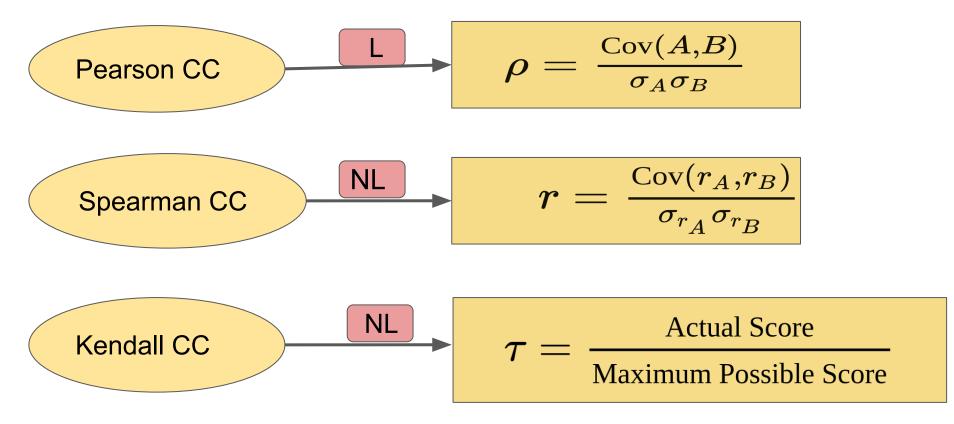
Ways of reconstruction from data



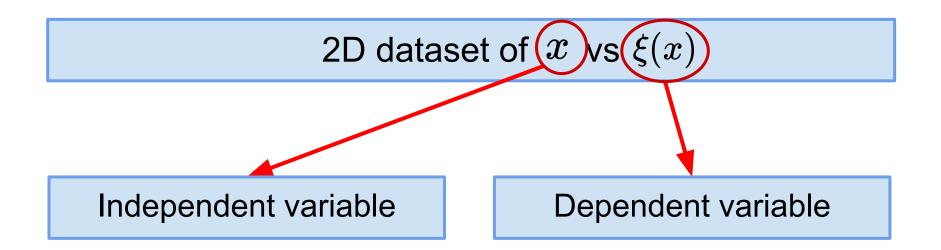
Ways of reconstruction using PCA



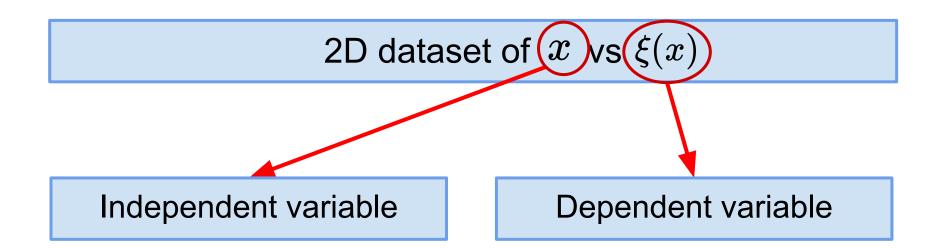
Correlation coefficient calculation (CCC)



Requirements of reconstruction

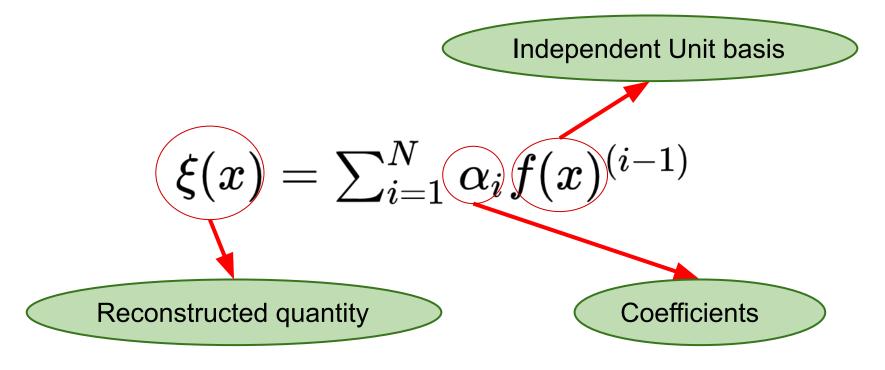


Requirements of reconstruction

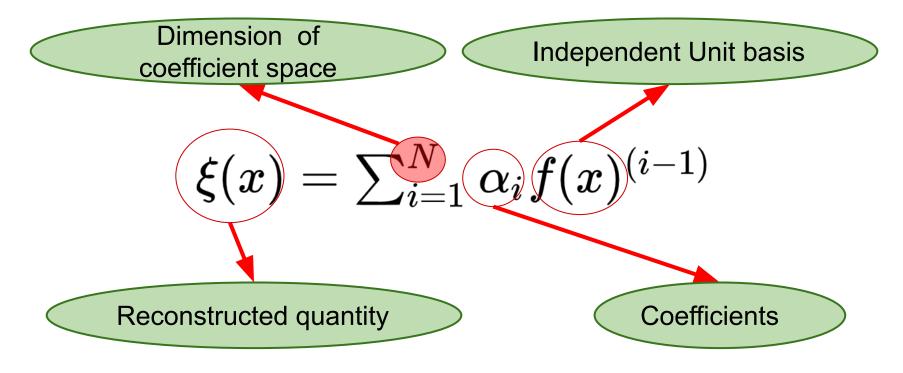


Data should have lesser non-linear correlation than the linear

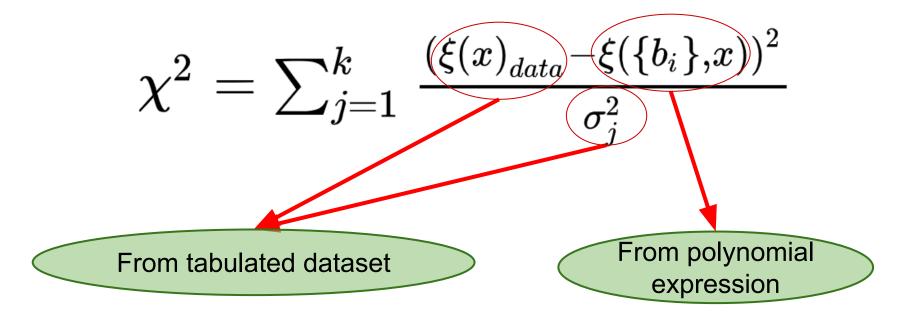
1) Expressing the dependent variable in a polynomial

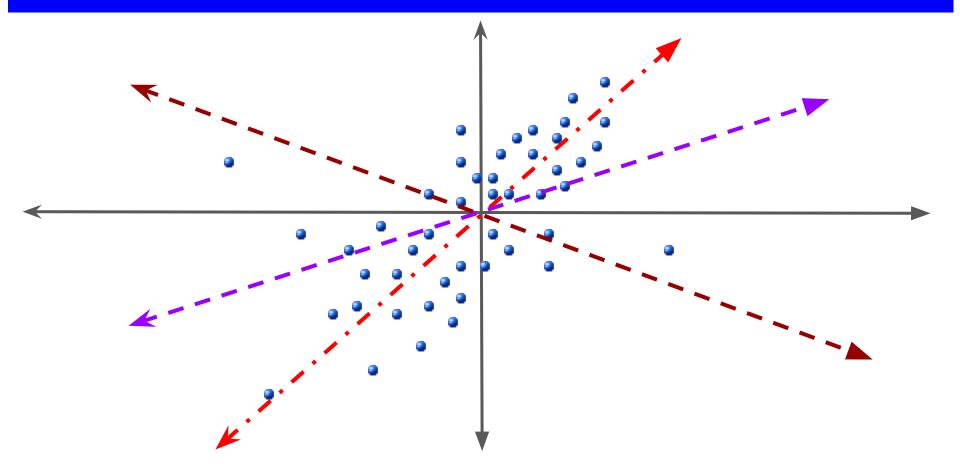


1) Expressing the dependent variable in a polynomial

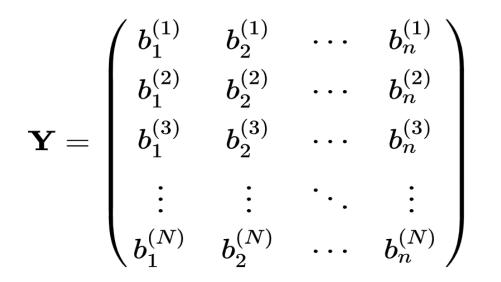


2) Division of N-dim coefficient space and the calculation of data-matrix of PCA





3) PCA data-matrix

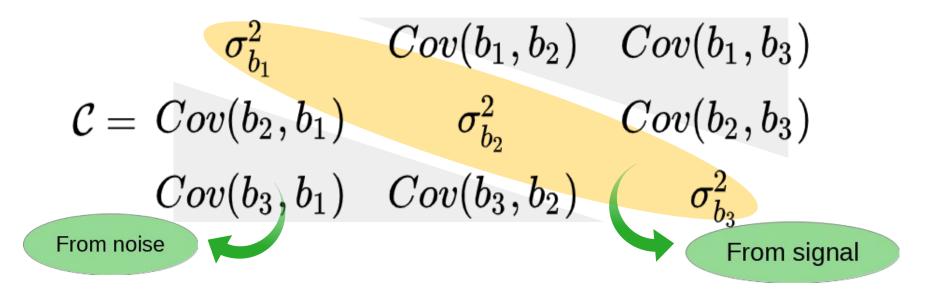


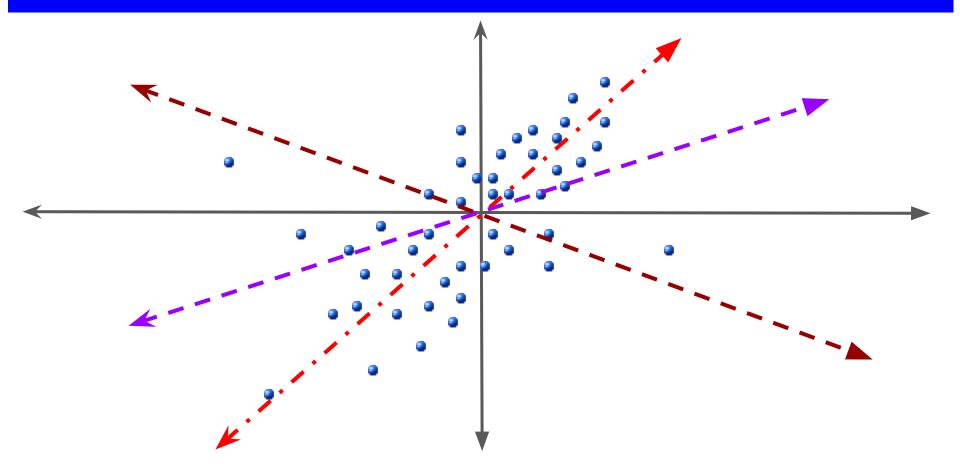
N —> Number of dimension of coefficient space

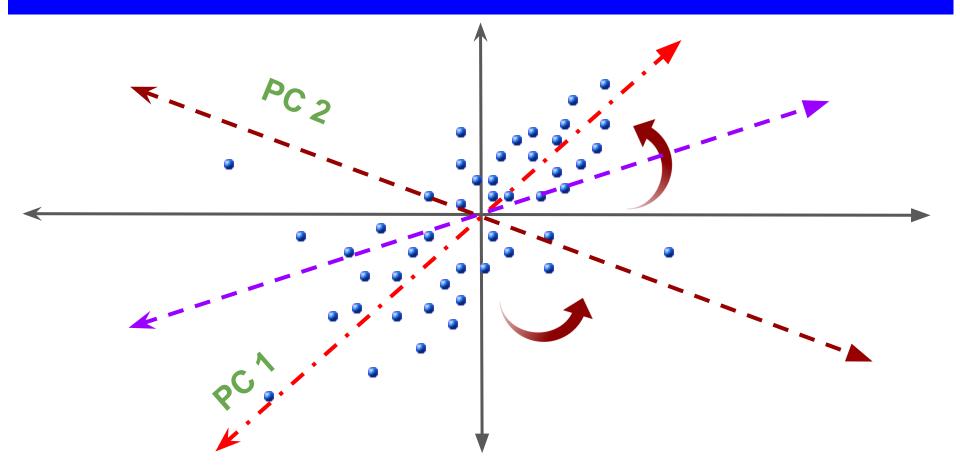
n —-> Number of patches created

-

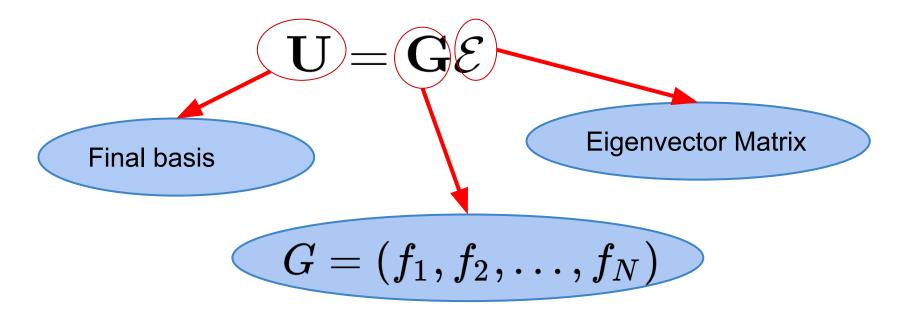
4) Covariance matrix
$$\mathbf{C} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^T$$



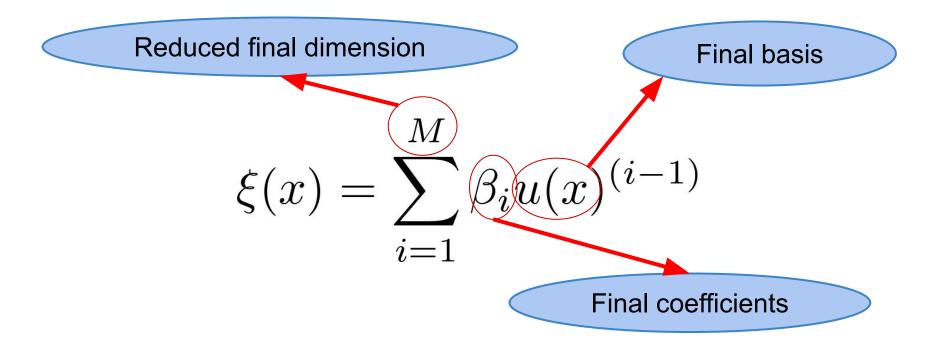




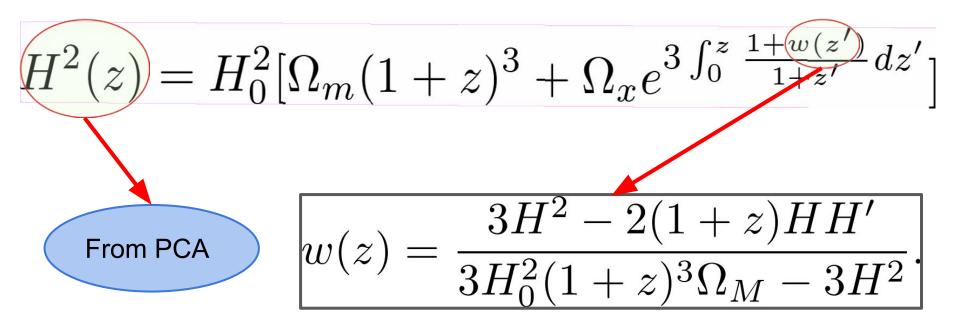
5) Diagonalisation of the covariance Matrix and finding of Eigenfunctions



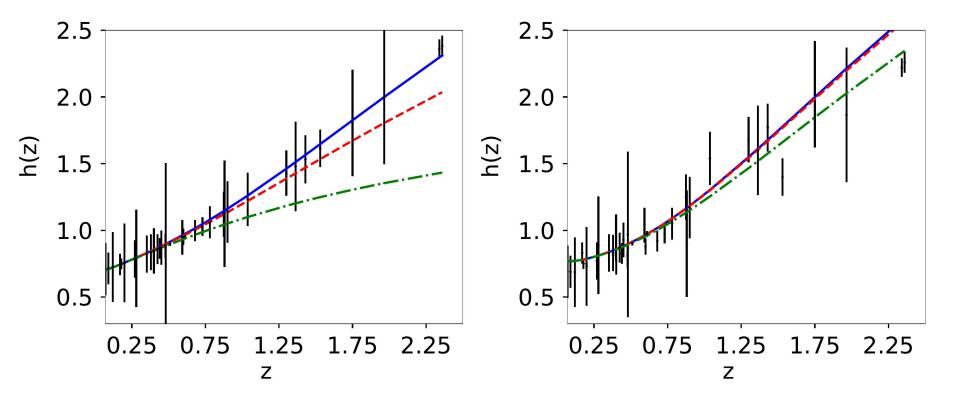
6) Reduction of dimension and the final form



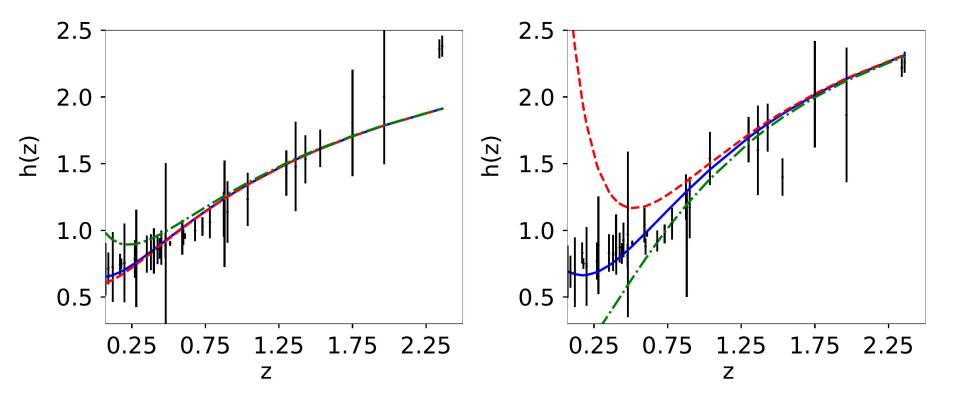
Reconstruction of w(z) derived approach



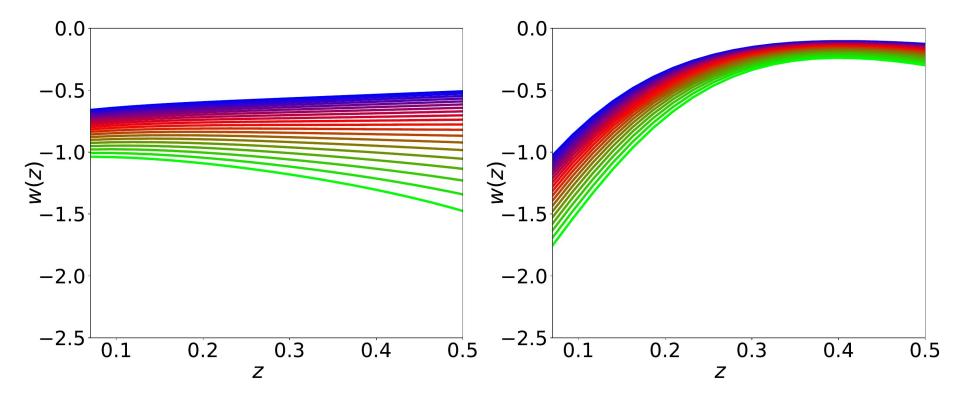
Results(derived approach) [basis: (1-a)] Hz



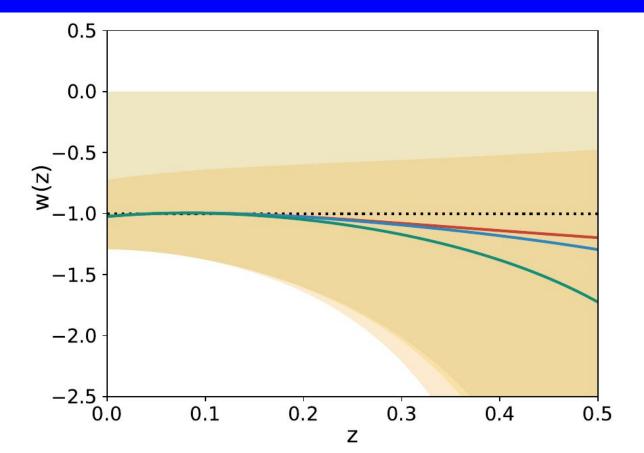
Results(derived approach) [basis: a] Hz



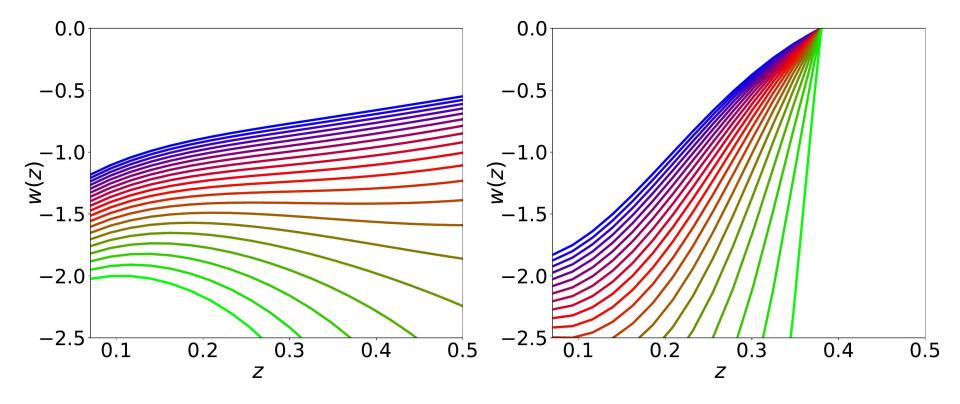
Results: w(z) from Hz simulated data



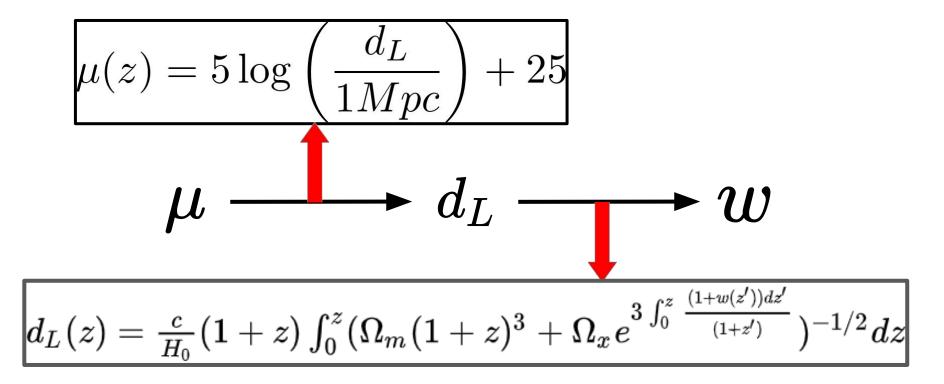
Results: w(z) from Hz simulated data



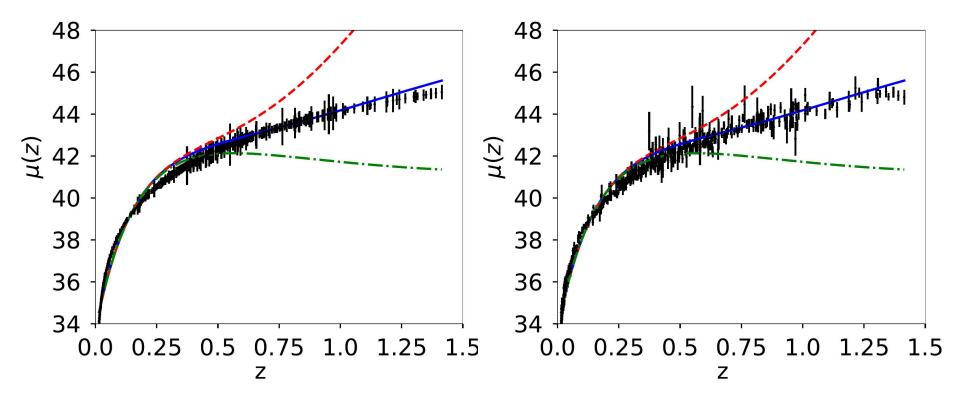
Results: w(z) from Hz real data



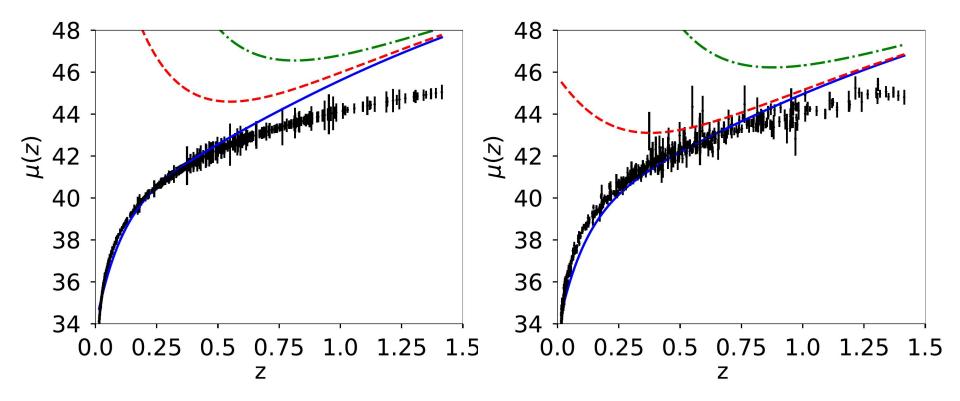
Reconstruction of w(z) derived approach



Results(derived approach) [basis: (1-a)] SNIa



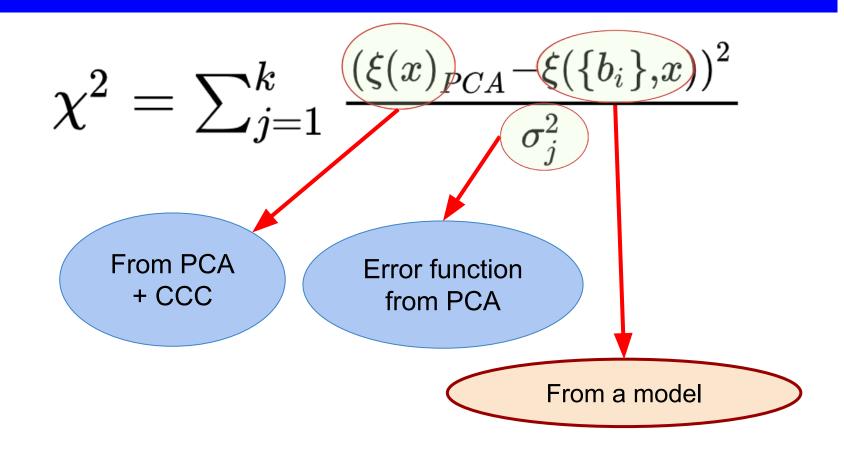
Results(derived approach) [basis: a] SNIa

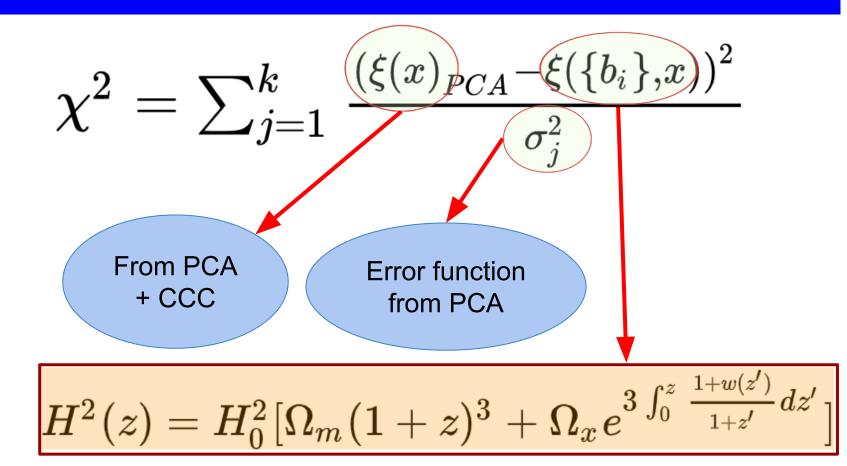


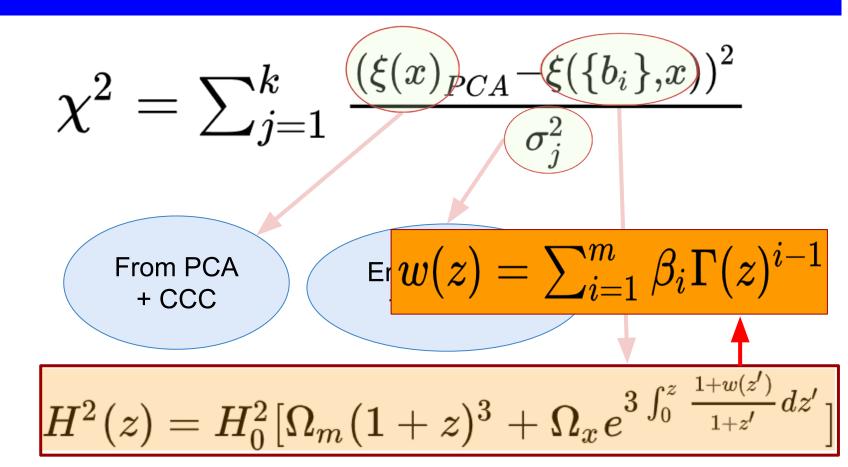
Error in PCA

- By masking the under-fitting points of the PCA-data-matrix we re-create the cov-matrix
- EigenValues of the cov-matrix gives the error information of the reconstruction

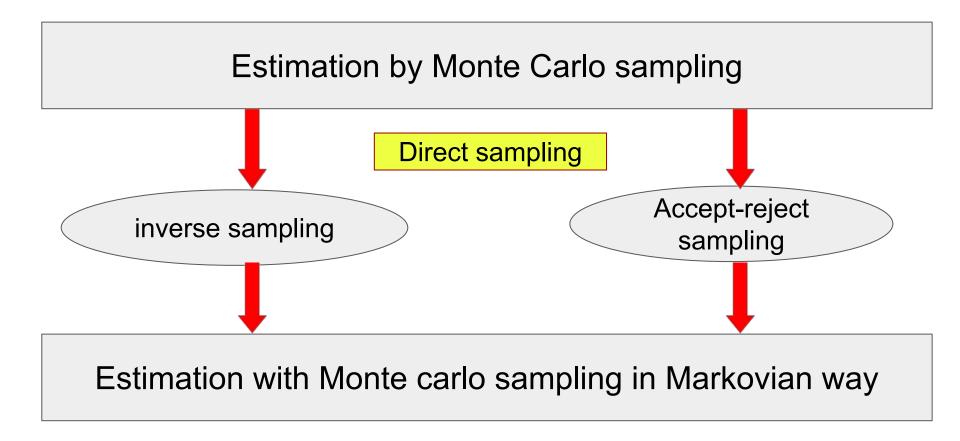
$$\sigma(\xi(x)) = \left[\sum_{i=1}^{M} \sigma^2(\beta_i) e_i^2(x)\right]^{\frac{1}{2}}$$







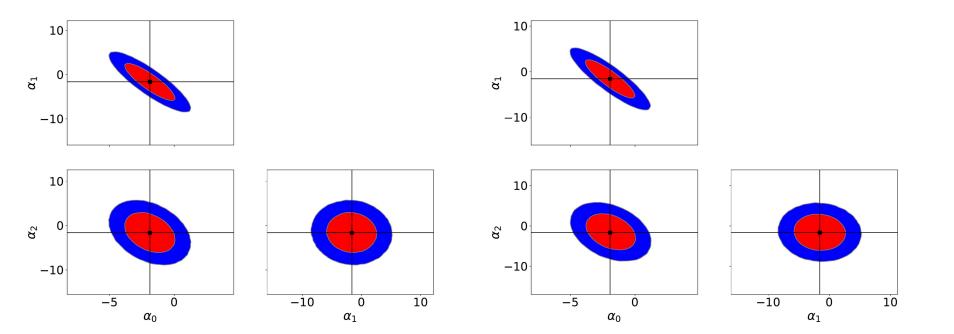
Markov Chain Monte Carlo (MCMC)

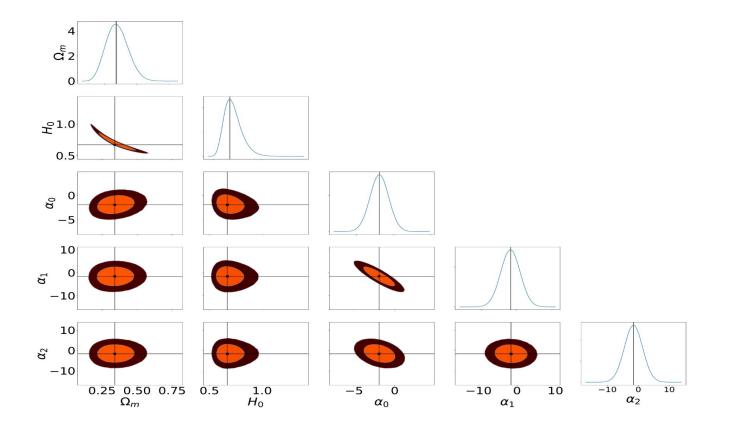


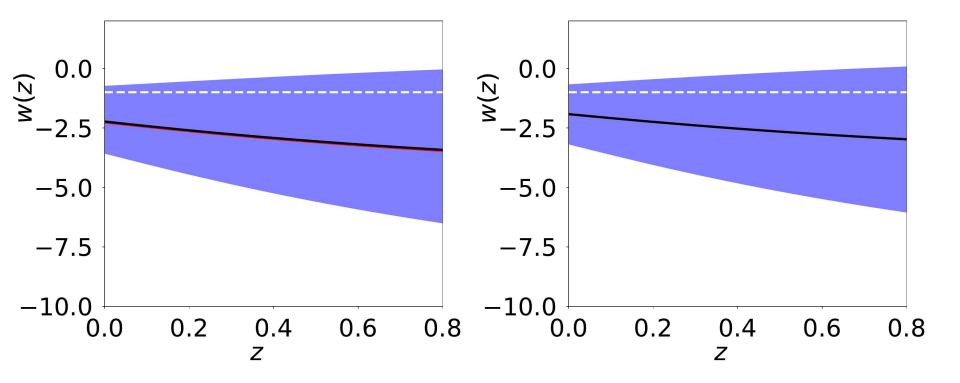
HMC and NUTS

- Modified MH, with an introduction of an auxiliary variable (called momentum)
- With the restriction of following the Hamiltonian dynamics

 Modified HMC, which can choose the "Leapfrog" steps and the step size automatically. This is done by imposing the "condition of Turning".







Summary and Conclusion :

- **PCA + CCC** gives a script to reconstruct a quantity in a non-parametric way.
- We need only the 2D dataset as input to reconstruct the quantity.
 Choice of basis function and number of PCs comes intrinsically from the algorithm.
- **PCA + CCC** implies a slowly varying dark-energy equation of state parameter.
- **PCA + CCC + MCMC** gives us a script to infer and constrain the parameters of a model without much biases.
- In the **PCA + CCC + MCMC** we need the error-function of the dataset.

Present and Future works :

- Comparison of different Kernel functions in the **Gaussian processes** reconstruction.
- Constraining **the modified gravity models** from PCA inference.
- Constraining Cosmological parameters from **Cluster and CMB data**.
- Principal Component Analysis in Maximum Likelihood estimation through different error function
- Maximum Likelihood Estimation using Principal Component Analysis for the **Pantheon dataset**

References :

- "Reconstruction of late-time cosmology using Principal Component Analysis", Ranbir Sharma, Anakan Mukherjee, H K Jassal, EPJP (2022)137:219
- "Inference of model parameter from Principal Component Analysis", Ranbir Sharma, H K Jassal, *arxiv::2211.13608* Email ID: ranbirsharma0313@gmail.com