Perturbations In Some Dark Energy Models

Srijita Sinha

Department of Physical Sciences Indian Institute of Science Education and Research Kolkata

IIT-Madras

July 24, 2021

The Universe

> The Universe is described by a spatially flat metric (scale factor) $ds^2 = a^2(\tau) \left(-d\tau^2 + dx^2 + dy^2 + dz^2\right)$ $a_0 = 1$

- ► Large scales → larger than the large scale structures ⇒ Universe is spatially homogeneous and isotropic
- Small scales ⇒ Universe is not so uniform → start seeing the structures galaxies, galaxy clusters, voids ...
- Large scale structures evolved from some initial fluctuations
- > Evolution of fluctuations depend on background dynamics

Goal: If some dark energy models can provide a congenial environment for structure formation

Perturbations In A Scalar Field Model With Virtues Of ACDM

Scalar Field Model

(P. J. E. Peebles, B. Ratra, ApJL 1988, V. Sahni and A. A. Starobinsky, IJMPD 2000)

Assume: Cold dark matter (CDM) is like the perfect fluid distribution & a scalar field (φ) with a potential $V(\varphi)$ is acting as dark energy with Kinetic: E_V

• Energy density
$$\Rightarrow \rho_{\varphi} = \underbrace{\frac{1}{2a^2} \varphi'^2}_{\varphi'^2} + \underbrace{V(\varphi)}_{\varphi'^2}$$

► Pressure
$$\Rightarrow p_{\varphi} = \frac{1}{2a^2} \varphi'^2 - V(\varphi)^{(Potential)}$$

• EoS parameter
$$\Rightarrow w_{\varphi} = \frac{p_{\varphi}}{\rho_{\varphi}} = \frac{\frac{1}{2q^2} \varphi'^2 - V(\varphi)}{\frac{1}{2q^2} \varphi'^2 + V(\varphi)}$$

- > When $E_K \gg E_P \implies$ scalar field behaves as a stiff fluid with $w_{\varphi} = 1$
- ▶ when $E_P \gg E_K \implies$ scalar field behaves a cosmological constant with $w_{\varphi} = -1$

Klein-Gordon equation $\implies \varphi'' + 2\mathscr{H}\varphi' + a^2 \frac{dV}{d\varphi} = 0$

Potential

 $V(\varphi) = V_0 e^{-\lambda \kappa \varphi} \Theta(-\varphi) + V_0 \Theta(\varphi),$

- **>** Free Parameter- $1 \Rightarrow \lambda \rightarrow slope$
- > λ constrained by BBN condition $\Omega_{\varphi}(a \sim 10^{-10}) \lesssim 0.09$ (C. Wetterich, NPB 1988, E. J. Copeland *et al.*, PRD 1998)
- > V_0 depends on $\Omega_b h^2$, $\Omega_c h^2$, H_0
- ► $\Omega_{\varphi 0}$ depends on the height of the slow-roll region $\rightarrow V_0$
- > At late time $w_{\varphi} = -1 \longrightarrow$ independent of V_0 or λ or initial conditions
- ► Free Parameter-2 $\Rightarrow \phi_0 \rightarrow$ transition point
- > Once in tracking region, evolution of ρ_{φ} is independent of $\varphi_0 \longrightarrow$ used $\varphi_0 = 0$

S. Sinha & N. Banerjee, JCAP **04** 060 (2021)

$$\Theta(\varphi - \varphi_0) = \begin{cases} 0 & \text{for } \varphi < \varphi_0 \\ 1 & \text{for } \varphi \ge \varphi_0 \end{cases}$$

Potential

 $V\left(arphi
ight) = V_{0} \, e^{-\lambda \kappa \left(arphi - arphi_{0}
ight)} \Theta(-arphi + arphi_{0}) + V_{0} \, \Theta(arphi - arphi_{0}),$

- **Free Parameter- 1** $\Rightarrow \lambda \rightarrow$ slope
- > λ constrained by BBN condition $\Omega_{\varphi}(a \sim 10^{-10}) \lesssim 0.09$ (C. Wetterich, NPB 1988, E. J. Copeland *et al.*, PRD 1998)
- > V_0 depends on $\Omega_b h^2$, $\Omega_c h^2$, H_0
- ► $\Omega_{\varphi 0}$ depends on the height of the slow-roll region $\rightarrow V_0$
- > At late time $w_{\varphi} = -1 \longrightarrow$ independent of V_0 or λ or initial conditions
- ► Free Parameter-2 $\Rightarrow \phi_0 \rightarrow$ transition point
- > Once in tracking region, evolution of ρ_{φ} is independent of $\varphi_0 \longrightarrow$ used $\varphi_0 = 0$

S. Sinha & N. Banerjee, JCAP 04 060 (2021)

 $V_0 e^{-\lambda\kappa\varphi} \longrightarrow V_0 e^{-\lambda\kappa(\varphi-\varphi_0)}$ to accommodate for the continuity of $V(\varphi)$

(1) φ rolls down the potential, $E_K \gg E_P \Longrightarrow \rho_{\varphi} \propto a^{-6} \longrightarrow \rho_{\varphi}$ is dominated by E_K

- (1) φ rolls down the potential, $E_K \gg E_P \Longrightarrow \rho_{\varphi} \propto a^{-6} \longrightarrow \rho_{\varphi}$ is dominated by E_K
- (2) φ rolls down very slowly $\Longrightarrow \varphi''$ inconsequential $\Longrightarrow \rho_{\varphi}$ becomes flat $\longrightarrow \rho_{\varphi}$ is determined by E_P

- (1) φ rolls down the potential, $E_K \gg E_P \Longrightarrow \rho_{\varphi} \propto a^{-6} \longrightarrow \rho_{\varphi}$ is dominated by E_K
- (2) φ rolls down very slowly $\Longrightarrow \varphi''$ inconsequential $\Longrightarrow \rho_{\varphi}$ becomes flat $\longrightarrow \rho_{\varphi}$ is determined by E_P
- (3) ho_r reaches the flat $ho_{arphi} \longrightarrow$ both start evolving together

- (1) φ rolls down the potential, $E_K \gg E_P \Longrightarrow \rho_{\varphi} \propto a^{-6} \longrightarrow \rho_{\varphi}$ is dominated by E_K
- (2) φ rolls down very slowly $\Longrightarrow \varphi''$ inconsequential $\Longrightarrow \rho_{\varphi}$ becomes flat $\longrightarrow \rho_{\varphi}$ is determined by E_P
- (3) ho_r reaches the flat $ho_{arphi} \longrightarrow$ both start evolving together
- (4) ho_{ϕ} tracks ho_{r} and subsequently ho_{m}

- (1) φ rolls down the potential, $E_K \gg E_P \Longrightarrow \rho_{\varphi} \propto a^{-6} \longrightarrow \rho_{\varphi}$ is dominated by E_K
- (2) φ rolls down very slowly $\Longrightarrow \varphi''$ inconsequential $\Longrightarrow \rho_{\varphi}$ becomes flat $\longrightarrow \rho_{\varphi}$ is determined by E_P
- (3) ho_r reaches the flat $ho_{arphi} \longrightarrow$ both start evolving together
- (4) ho_{arphi} tracks ho_r and subsequently ho_m
- (5) V_0 takes over $\longrightarrow
 ho_{arphi}$ behaves like the cosmological constant

 In synchronous gauge, perturbed metric takes the form (H. Kodama, M. Sasaki, PTPS 1984, C.-P. Ma, E. Bertschinger, ApJ 1995, K. A. Malik *et al.*, PRD 2003)

$$ds^{2} = a^{2}(\tau) \left\{ -d\tau^{2} + \left[(1-2\psi)\delta_{ij} + 2\partial_{i}\partial_{j}E \right] dx^{i} dx^{j} \right\}$$

- $\psi = \eta \& k^2 E = -h/2 3\eta \longrightarrow (\eta, h)$ are synchronous gauge fields in the Fourier space, $k \rightarrow$ comoving wavenumber
- DM density contrasts $\Rightarrow \delta_c = \delta \rho_c / \rho_c$, DM velocity perturbation $\Rightarrow v_c$
- Scalar field density contrasts $\Rightarrow \delta_{arphi} = \delta
 ho_{arphi} /
 ho_{arphi}$
- Perturbed energy and momentum conservation equations are

$$\delta_{C}' + kv_{C} + \frac{h'}{2} = 0$$
$$v_{C}' + \mathscr{H}v_{C} = 0$$

• The perturbation $\delta \varphi$ in the scalar field has the equation of Motion (J. Martin, D. J. Schwarz, PRD 1998, P. Brax *et al.*, PRD 2000)

$$\begin{split} \delta\varphi'' + 2\mathscr{H}\delta\varphi' + k^2\delta\varphi + \alpha^2 \; \frac{d^2V}{d\varphi^2}\delta\varphi + \frac{1}{2}\varphi'h' &= 0 \\ \end{split}$$
 where,
$$\frac{d^2V}{d\varphi^2} \approx \frac{3}{2}\frac{\mathscr{H}^2}{\alpha^2} \left[-\frac{1}{2} \left(c_{s,\varphi}^2 - 1 \right) \left(3c_{s,\varphi}^2 + 5 \right) + \frac{\mathscr{H}'}{\mathscr{H}} \left(c_{s,\varphi}^2 - 1 \right) \right] \end{split}$$

• Adiabatic sound speed sq. $\rightarrow c_{s,\phi}^2 = 1 + \frac{2a^2}{3\mathscr{H}\phi'} \frac{dV}{d\phi}$

• The perturbation in energy density $\delta \rho_{\phi}$ and pressure $\delta \rho_{\phi}$ are given as

$$\begin{split} \delta\rho_{\varphi} &= -\delta T^{0}_{0(\varphi)} = \frac{\varphi' \delta\varphi'}{a^{2}} + \delta\varphi \frac{dV}{d\varphi}, \\ \delta T^{j}_{0(\varphi)} &= -\frac{\mathrm{i} k_{j} \, \varphi' \, \delta\varphi}{a^{2}}, \qquad \mathrm{i} \equiv \sqrt{-1} \\ \delta\rho_{\varphi} \delta^{j}_{j} &= \delta T^{j}_{j(\varphi)} = \left(\frac{\varphi' \delta\varphi'}{a^{2}} - \delta\varphi \frac{dV}{d\varphi}\right) \delta^{j}_{j}. \end{split}$$

- Solved with adiabatic initial conditions
- Matter density contrast $\Rightarrow \delta_m = \frac{\delta \rho_m}{\rho_m} = \frac{(\delta_c \rho_c + \delta_b \rho_b)}{(\rho_c + \rho_b)}$
- Evolution of δ_m for φ CDM and Λ CDM
- δ_m for both φ CDM and Λ CDM have been scaled by $\delta_{m0} = \delta_m (a = 1)$ of Λ CDM
- δ_m for $\lambda = 15.2$ takes a slightly smaller value compared to that of δ_m for $\lambda = 15.6$
- Growth of δ_m decreases with decrease in λ

- In the matter dominated era, the modes of δ_m grow in a very similar fashion
- The modes of δ_{φ} oscillate rapidly with decreasing amplitude after entering the horizon

Power Spectra

- C^{Π}_{ℓ} are almost independent of λ
- Less matter content \Rightarrow higher oscillation amplitudes in C_ℓ^Π
- Smaller $\lambda \Rightarrow$ slightly lower low- ℓ modes
- Larger $\lambda \Rightarrow$ marginally lower P(k) at small scales

Growth Rate

- $f = \frac{d \ln \delta_m}{d \ln a}$ is almost same for all the models at low redshift ($z = \frac{1}{a} 1$)
- Smaller $\lambda \Rightarrow \text{lower } f$
- Substantial difference in f σ₈ for φCDM and ΛCDM
- A low $f\sigma_8 \rightarrow$ characteristic distinguishing feature

Model	λ	σ_8
	14.8	0.7638
φ CDM	15.2	0.7664
	15.6	0.7687
ΛCDM	—	0.8123

Differentiating Interaction In The Dark Sector With Perturbation

Motivation

Interaction in the dark sector may not be ruled out a priori

- Question: When is the interaction significant in the evolution history of the Universe?
- Possibilities: (a) Interaction was there from the beginning of the Universe and exists through its evolution, (b) Interaction is a recent phenomenon (c) Interaction was entirely an early phenomenon and not at all present today
- An evolving coupling parameter instead of being a constant may answer

To assess if there is any stage of evolution when the interaction is significant

S. Sinha, Phys. Rev. D 103, 123547 (2021)

Interaction In The Dark Sector

Interaction In The Dark Sector

 V'_{o}

 Perturbed energy and momentum conservation equations are

$$\begin{split} \delta_{c}' + k v_{c} + \frac{h'}{2} &= \mathscr{H}\beta(\alpha)\frac{\rho_{de}}{\rho_{c}}(\delta_{c} - \delta_{de})\\ v_{c}' + \mathscr{H}v_{c} &= 0 \end{split}$$

$$\begin{split} \delta_{de}' + 3\mathscr{H} \Big(c_{s,de}^2 - w_{de} \Big) \delta_{de} + (1 + w_{de}) \Big(k v_{de} + \frac{h'}{2} \Big) \\ + 3\mathscr{H} \Big[3\mathscr{H} (1 + w_{de}) \Big(c_{s,de}^2 - w_{de} \Big) \Big] \frac{v_{de}}{k} + 3\mathscr{H} w_{de}' \frac{v_{de}}{k} \\ &= 3\mathscr{H}^2 \beta(\alpha) \Big(c_{s,de}^2 - w_{de} \Big) \frac{v_{de}}{k} \\ e + \mathscr{H} \Big(1 - 3c_{s,de}^2 \Big) v_{de} - \frac{k \delta_{de} c_{s,de}^2}{(1 + w_{de})} = \frac{\mathscr{H} \beta(\alpha)}{(1 + w_{de})} \Big[v_c - \Big(1 + c_{s,de}^2 \Big) v_{de} \Big] \end{split}$$

- Solved with adiabatic initial conditions
- To avoid the instability in dark energy perturbations $\Rightarrow c_{s,de}^2 = 1$
- Matter density contrast $\Rightarrow \delta_m = \frac{\delta \rho_m}{\rho_m} = \frac{(\delta_c \rho_c + \delta_b \rho_b)}{(\rho_c + \rho_b)}$
- δ_m for Model E evolves close to the ΛCDM model
- δ_m for Model L & Model C grow to a little higher value
- At early time, δ_{de} oscillates and then decays to very small values
- Early time evolution of δ_{de} in Model E is similar to Model C
- Late time evolution of δ_{de} in Model L is similar to Model C

The origin on the x-axis is actually $10^{-5}\,$

Note: For fractional change, $\Delta \delta_m = \left(\delta_{m, \Lambda ext{CDM}} - \delta_m
ight)^2$

Power Spectra & Growth Rate

- ► Lower oscillation amplitudes in $C_{\ell}^{\Pi} \rightarrow$ Model C < Model L < Model E < \land CDM
 - Less dark energy \Rightarrow less ISW effect \rightarrow Model C < Model L < Model E < \land CDM
- Higher P(k) → Model C > Model L > Model E > ACDM

- Model L & Model C have slightly higher values of f and f \u03c6₈ at z = 0
- Model E & ACDM have same values of f and $f\sigma_8$ at z = 0
- Model E had a slightly larger value of f and f σ₈ than ΛCDM, in the recent past

Priors & Datasets

$$\mathscr{P} \equiv \{\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \beta_0, w_0, w_1, \ln\left(10^{10}A_s\right), n_s\}$$

Parameter	Prior
$\Omega_b h^2$	[0.005, 0.1]
$\Omega_c h^2$	[0.001,0.99]
100 <i>ө_{МС}</i>	[0.5, 10]
τ	[0.01,0.8]
β_0	[-1.0, 1.0]
W ₀	[-0.9999, -0.3333]
W	[0.005, 1.0]
$\ln(10^{10}A_s)$	[1.61,3.91]
n _s	[0.8, 1.2]

Priors & Datasets

model parameters

 $\mathscr{P} \equiv \{\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \beta_0, w_0, w_1\} \ln(10^{10} A_s), n_s\}$

Parameter	Prior
$\Omega_b h^2$	[0.005, 0.1]
$\Omega_c h^2$	[0.001,0.99]
$100\theta_{MC}$	[0.5, 10]
τ	[0.01,0.8]
β_0	[-1.0, 1.0]
w ₀	[-0.9999, -0.3333]
<i>w</i> ₁	[0.005, 1.0]
$\ln(10^{10}A_s)$	[1.61,3.91]
ns	[0.8, 1.2]

Priors & Datasets

$$\mathscr{P} \equiv \{\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \beta_0, w_0, w_1, \ln\left(10^{10}A_s\right), n_s\}$$

Parameter	Prior
$\Omega_b h^2$	[0.005, 0.1]
$\Omega_c h^2$	[0.001,0.99]
100 <i>ө_{мс}</i>	[0.5, 10]
τ	[0.01,0.8]
β_0	[-1.0, 1.0]
W ₀	[-0.9999, -0.3333]
W	[0.005, 1.0]
$\ln(10^{10}A_s)$	[1.61,3.91]
ns	[0.8, 1.2]

Planck: CMB anisotropies measurements from Planck 2018 collaboration (Planck TT, TE, EE + lowE + lensing) (N. Aghanim et al. (Planck Collaboration), A&A 2020)

BAO: distance measurements from (a) 6dFGS at z = 0.106 (F. Beutler, MNRAS 2011), (b) SDSS-MGS at z = 0.15 (A. J. Ross, MNRAS 2015) & (c) DR12 of BOSS-SDSS III at z = 0.38, 0.51 and 0.61 (S. Alam *et al.*, MNRAS 2017)

Pantheon: 'Pantheon' catalogue for the luminosity distance measurements of the Type Ia supernovae (SNe Ia) (D. M. Scolnic *et al.*, ApJ 2018)

RSD: fo₈ data compilation (S. Nesseris, PRD 2017, B. Sagredo *et al.*, PRD 2018, F. Skara & L. Perivolaropoulos, PRD 2020)

Redshift Space Distortion Data

Survey	Z	$f\sigma_8(z)$	Ωm	Refs.
6dFGS+Snla	0.02	0.428 ± 0.0465	0.3	(D. Huterer et al., JCAP 2017)
Snla+IRAS	0.02	0.398 ± 0.065	0.3	(S. J. Turnbull et al., MNRAS 2017, M. J. Hudson et al., ApJL 2012)
2MASS	0.02	0.314 ± 0.048	0.266	(M. Davis et al., MNRAS 2011, M. J. Hudson et al., ApJL 2012)
SDSS-veloc	0.10	0.370 ± 0.130	0.3	(M. Feix et al., PRL 2015)
SDSS-MGS	0.15	0.490 ± 0.145	0.31	(C. Howlett et al., MNRAS 2015)
2dFGRS	0.17	0.510 ± 0.060	0.3	(YS. Song et al., JCAP 2009)
GAMA	0.18	0.360 ± 0.090	0.27	(C. Blake et al., MNRAS 2013)
GAMA	0.38	0.440 ± 0.060		(C. Blake et al., MNRAS 2013)
SDSS-LRG-200	0.25	0.3512 ± 0.0583	0.25	(L. Samushia et al., MNRAS 2012)
SDSS-LRG-200	0.37	0.4602 ± 0.0378		(L. Samushia et al., MNRAS 2012)
BOSS-LOWZ	0.32	0.384 ± 0.095	0.274	(A. G. Sánchez ef al., MNRAS 2014)
SDSS-CMASS	0.59	0.488 ± 0.060	0.307115	(CH. Chuang et al., MNRAS 2016)
WiggleZ	0.44	0.413 ± 0.080	0.27	(C. Blake et al., MNRAS 2012)
WiggleZ	0.60	0.390 ± 0.063	C _{WiaaleZ}	(C. Blake et al., MNRAS 2012)
WiggleZ	0.73	0.437 ± 0.072	00	(C. Blake et al., MNRAS 2012)
VIPERS PDR-2	0.60	0.550 ± 0.120	0.3	(A. Pezzotta et al., A&A 2017)
VIPERS PDR-2	0.86	0.400 ± 0.110		(A. Pezzotta et al., A&A 2017)
FastSound	1.40	0.482 ± 0.116	0.27	(T. Okumura et al., PASJ 2016)
SDSS-IV	0.978	0.379 ± 0.176	0.31	(GB. Zhao et al., MNRAS 2018)
SDSS-IV	1.23	0.385 ± 0.099	C _{SDSS-IV}	(GB. Zhao et al., MNRAS 2018)
SDSS-IV	1.526	0.342 ± 0.070		(GB. Zhao et al., MNRAS 2018)
SDSS-IV	1.944	0.364 ± 0.106		(GB. Zhao et al., MNRAS 2018)
VIPERS PDR2	0.60	0.49 ± 0.12	0.31	(F. G. Mohammad et al., A&A 2018)
VIPERS PDR2	0.86	0.46 ± 0.09		(F. G. Mohammad et al., A&A 2018)
BOSS DR12 voids	0.57	0.501 ± 0.051	0.307	(S. Nadathur et al., PRD 2019)
2MTF 6dFGSv	0.03	0.404 ± 0.0815	0.3121	(F. Qin et al., MNRAS 2019)
SDSS-IV	0.72	0.454 ± 0.139	0.31	(M. Icaza-Lizaola et al., MNRAS 2019)

 $\Omega_m \longrightarrow$ corresponding fiducial cosmology used to convert redshift to distance

Redshift Space Distortion

➤ The anisotropic red-shift space clustering of galaxies along the line-of-sight due to non-negligible galaxy peculiar velocities ⇒ Redshift-space distortion (RSD)

► Likelihood
$$\mathscr{L} \propto e^{-\chi^2/2}$$
, where $\chi^2 = V^i \mathbf{C}_{ij}^{-1} V^j$

► For RSD data $\rightarrow \chi^2_{f\sigma_8} = V^i_{f\sigma_8} \mathbf{C}^{-1}_{ij,f\sigma_8} V^j_{f\sigma_8}$, where

$$\mathbf{C}_{ij,f\sigma_8} = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \mathbf{C}_{WiggleZ} & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \mathbf{C}_{SDS-IV} & 0 \\ 0 & 0 & \cdots & 0 & \cdots & \sigma_N^2 \end{pmatrix} \qquad \qquad \mathbf{C}_{SDSS-IV} = 10^{-2} \begin{pmatrix} 6.400 & 2.570 & 0.000 \\ 2.570 & 3.969 & 2.540 \\ 0.000 & 2.540 & 5.184 \end{pmatrix},$$

► For vector $V_{f\sigma_8}^i$ → the theoretical predictions ($f\sigma_8^{th}$) are divided by a correction term \Re

$$V_{f\sigma_8}^i(z_i,\mathscr{P}) \equiv f\sigma_{8,i}^{\text{obs}} - \frac{f\sigma_8^{\text{th}}(z_i,\mathscr{P})}{\mathscr{R}(z_i)}, \quad \mathscr{R} \longrightarrow \text{Alcock-Paczyński (AP) correction}$$

Alcock-Paczyński (AP) Effect

- The anisotropies due to incorrect fiducial cosmology while converting the relative redshifts to comoving coordinates ⇒ Alcock-Paczyński (AP) effect (Alcock & Paczyński, Nature 1979, E. Macaulay et al., PRL 2013)
- Distance between two galaxies for true model

$$dL_{\perp} = (1+z)D_A(z)d\theta, \qquad dL_{\parallel} = rac{Cdz}{H(z)}$$

Distance between two galaxies for fiducial model

$$dL_{\perp}^{\text{fid}} = (1+z)D_{A}^{\text{fid}}(z)d\theta = \left(\frac{D_{A}^{\text{fid}}}{D_{A}}\right)dL_{\perp}, \qquad dL_{\parallel}^{\text{fid}} = \frac{Cdz}{H^{\text{fid}}(z)} = \left(\frac{H}{H^{\text{fid}}}\right)dL_{\parallel}$$

Amount of anisotropy included is

$$F = \left(\frac{H^{\text{fid}}}{H}\right) \left(\frac{D_A^{\text{fid}}}{D_A}\right)$$

The corrected observed quantity is (B. Sagredo et al., PRD 2018, L. Kazantzidis & L. Perivolaropoulos, PRD 2018, F. Skara & L. Perivolaropoulos, PRD 2020)

$$f\sigma_8(z) \simeq \frac{H(z)D_A(z)}{H^{\text{fid}}(z)D_A^{\text{fid}}(z)} f\sigma_8^{\text{fid}}(z) \equiv \mathscr{R}\left(z, \Omega_{0m}, \Omega_{0m}^{\text{fid}}\right) f\sigma_8^{\text{fid}}(z)$$

Presence of interaction for a brief period in the evolutionary history \implies Model E \longrightarrow describes the evolutionary history of the Universe better than Model L & Model C

Parameter	Planck	Planck + $f\sigma_8$	Planck + BAO	Planck + BAO + Pantheon	Planck + BAO + Pantheon + $f\sigma_8$
$\Omega_b h^2$	0.022358 ± 0.000165	0.022490 ± 0.000162	0.022489 ± 0.000156	0.022500 ± 0.000152	0.022546 ± 0.000151
$\Omega_c h^2$	0.12008 ± 0.00126	0.11848 ± 0.00117	0.11850 ± 0.00101	0.118405 ± 0.000970	0.117845 ± 0.000909
100 <i>0_{MC}</i>	1.040769 ± 0.000324	1.040941 ± 0.000318	1.040941 ± 0.000313	1.040945 ± 0.000315	1.040999 ± 0.000313
τ	0.05466+0.00699	$0.05630^{+0.00703}_{-0.00797}$	$0.05704^{+0.00704}_{-0.00792}$	0.05697 ± 0.00749	$0.05778^{+0.00700}_{-0.00790}$
β_0	0.0339 ± 0.0372	0.0395 ± 0.0381	0.0432 ± 0.0376	0.0448 ± 0.0377	0.0446 ± 0.0370
w ₀	< -0.914	< -0.977	< -0.969	< -0.981	< -0.985
w ₁	< 0.168	< 0.0645	< 0.0707	< 0.0604	< 0.0489
$\ln(10^{10}A_s)$	3.0486 ± 0.0147	3.0488 ± 0.0148	3.0509 ± 0.0148	3.0507 ± 0.0144	3.0511 ± 0.0146
ns	0.96315 ± 0.00453	0.96681 ± 0.00434	0.96652 ± 0.00419	0.96672 ± 0.00418	0.96802 ± 0.00404
$H_0 \left[\text{km s}^{-1} \text{Mpc}^{-1} \right]$	64.12 ^{+2.40} -1.39	67.00 ^{+1.02}	66.787 ^{+0.775} -0.600	67.200 ^{+0.577} -0.516	67.631±0.516
Ω _m	0.3492+0.0149	0.31569+0.00834 -0.0114	0.31765+0.00678 -0.00812	0.31353+0.00590 -0.00658	0.30842 ± 0.00588
σ_8	$0.7836\substack{+0.0221\\-0.0138}$	$0.80265\substack{+0.00992\\-0.00800}$	$0.8019\substack{+0.0102\\-0.00866}$	0.80539 ± 0.00830	0.80573 ± 0.00774

T-D marginalised values with errors at 1σ (68% Confidence Level) for Model E

Parameter	Planck	Planck + $f\sigma_8$	Planck + BAO	Planck + BAO + Pantheon	Planck + BAO + Pantheon + $f\sigma_8$
$\Omega_b h^2$	0.022358 ± 0.000165	0.022490 ± 0.000162	0.022489 ± 0.000156	0.022500 ± 0.000152	0.022546 ± 0.000151
$\Omega_c h^2$	0.12008 ± 0.00126	0.11848 ± 0.00117	0.11850 ± 0.00101	0.118405 ± 0.000970	0.117845 ± 0.000909
100 <i>0_{MC}</i>	1.040769 ± 0.000324	1.040941 ± 0.000318	1.040941 ± 0.000313	1.040945 ± 0.000315	1.040999 ± 0.000313
τ	0.05466+0.00699	$0.05630^{+0.00703}_{-0.00797}$	$0.05704\substack{+0.00704\\-0.00792}$	0.05697 ± 0.00749	$0.05778^{+0.00700}_{-0.00790}$
β ₀	0.0339 ± 0.0372	0.0395 ± 0.0381	0.0432 ± 0.0376	0.0448 ± 0.0377	0.0446 ± 0.0370
w ₀	< -0.914	< -0.977	< -0.969	< -0.981	< -0.985
w ₁	< 0.168	< 0.0645	< 0.0707	< 0.0604	< 0.0489
$\ln(10^{10}A_s)$	3.0486 ± 0.0147	3.0488 ± 0.0148	3.0509 ± 0.0148	3.0507 ± 0.0144	3.0511 ± 0.0146
ns	0.96315 ± 0.00453	0.96681 ± 0.00434	0.96652 ± 0.00419	0.96672 ± 0.00418	0.96802 ± 0.00404
$H_0 \left[\text{km s}^{-1} \text{Mpc}^{-1} \right]$	64.12 ^{+2.40} -1.39	67.00 ^{+1.02}	66.787 ^{+0.775} -0.600	67.200 ^{+0.577} -0.516	67.631±0.516
Ωm	0.3492+0.0149	0.31569+0.00834 -0.0114	0.31765+0.00678 -0.00812	0.31353+0.00590 -0.00658	0.30842 ± 0.00588
σ_8	0.7836 ^{+0.0221} -0.0138	$0.80265\substack{+0.00992\\-0.00800}$	0.8019_0.00866	0.80539 ± 0.00830	0.80573 ± 0.00774

- $\beta_0 > 0 \Rightarrow$ Energy flows from DM \rightarrow DE
- For *Planck* data, $\beta_0 = 0$ lies within the 1σ error region
- For other datasets, $\beta_0 = 0$ lies outside the 1σ error region
 - \sim w₀ and w₁ are unconstrained

Parameter	Planck	Planck + $f\sigma_8$	Planck + BAO	Planck + BAO + Pantheon	Planck + BAO + Pantheon + $f\sigma_8$
$\Omega_b h^2$	0.022358 ± 0.000165	0.022490 ± 0.000162	0.022489 ± 0.000156	0.022500 ± 0.000152	0.022546 ± 0.000151
$\Omega_c h^2$	0.12008 ± 0.00126	0.11848 ± 0.00117	0.11850 ± 0.00101	0.118405 ± 0.000970	0.117845 ± 0.000909
100 <i>0_{MC}</i>	1.040769 ± 0.000324	1.040941 ± 0.000318	1.040941 ± 0.000313	1.040945 ± 0.000315	1.040999 ± 0.000313
τ	0.05466+0.00699	0.05630+0.00703 -0.00797	$0.05704^{+0.00704}_{-0.00792}$	0.05697 ± 0.00749	$0.05778^{+0.00700}_{-0.00790}$
β_0	0.0339 ± 0.0372	0.0395 ± 0.0381	0.0432 ± 0.0376	0.0448 ± 0.0377	0.0446 ± 0.0370
w ₀	< -0.914	< -0.977	< -0.969	< -0.981	< -0.985
w ₁	< 0.168	< 0.0645	< 0.0707	< 0.0604	< 0.0489
$\ln(10^{10}A_s)$	3.0486 ± 0.0147	3.0488 ± 0.0148	3.0509 ± 0.0148	3.0507 ± 0.0144	3.0511 ± 0.0146
ns	0.96315 ± 0.00453	0.96681 ± 0.00434	0.96652 ± 0.00419	0.96672 ± 0.00418	0.96802 ± 0.00404
$H_0 \left[\text{km s}^{-1} \text{Mpc}^{-1} \right]$	64.12 ^{+2.40} -1.39	67.00 ^{+1.02}	66.787 ^{+0.775} -0.600	67.200 ^{+0.577} -0.516	67.631±0.516
Ω _m	0.3492+0.0149	0.31569+0.00834 -0.0114	0.31765+0.00678 -0.00812	0.31353+0.00590 -0.00658	0.30842 ± 0.00588
σ_8	$0.7836\substack{+0.0221\\-0.0138}$	$0.80265\substack{+0.00992\\-0.00800}$	$0.8019\substack{+0.0102\\-0.00866}$	0.80539 ± 0.00830	0.80573 ± 0.00774

P Derived parameters, H_0 , Ω_m and σ_8 are also listed

- For Planck data, central value of H_0 is small and error bars are high
- For Planck data, σ_8 is skewed towards the galaxy cluster value of $\sigma_8 = 0.77^{+0.04}_{-0.03}$

 Addition of datasets, changes the central values and decreases the error bars

Parameter	Planck	Planck + $f\sigma_8$	Planck + BAO	<i>Planck</i> + BAO + Pantheon	Planck + BAO + Pantheon + $f\sigma_8$
$\Omega_b h^2$	0.022358 ± 0.000165	0.022490 ± 0.000162	0.022489 ± 0.000156	0.022500 ± 0.000152	0.022546 ± 0.000151
$\Omega_c h^2$	0.12008 ± 0.00126	0.11848 ± 0.00117	0.11850 ± 0.00101	0.118405 ± 0.000970	0.117845 ± 0.000909
100 <i>0_{MC}</i>	1.040769 ± 0.000324	1.040941 ± 0.000318	1.040941 ± 0.000313	1.040945 ± 0.000315	1.040999 ± 0.000313
τ	0.05466+0.00699	$0.05630^{+0.00703}_{-0.00797}$	$0.05704^{+0.00704}_{-0.00792}$	0.05697 ± 0.00749	$0.05778^{+0.00700}_{-0.00790}$
β_0	0.0339 ± 0.0372	0.0395 ± 0.0381	0.0432 ± 0.0376	0.0448 ± 0.0377	0.0446 ± 0.0370
w ₀	< -0.914	< -0.977	< -0.969	<-0.981	< -0.985
w ₁	< 0.168	< 0.0645	< 0.0707	< 0.0604	< 0.0489
$\ln(10^{10}A_s)$	3.0486 ± 0.0147	3.0488 ± 0.0148	3.0509 ± 0.0148	3.0507 ± 0.0144	3.0511 ± 0.0146
ns	0.96315 ± 0.00453	0.96681 ± 0.00434	0.96652 ± 0.00419	0.96672 ± 0.00418	0.96802 ± 0.00404
$H_0 \left[\text{km s}^{-1} \text{Mpc}^{-1} \right]$	64.12 ^{+2.40} -1.39	67.00 ^{+1.02}	66.787 ^{+0.775} -0.600	67.200 ^{+0.577} _0.516	67.631±0.516
Ω _m	0.3492+0.0149	0.31569+0.00834 -0.0114	0.31765+0.00678 -0.00812	0.31353+0.00590 -0.00658	0.30842 ± 0.00588
σ_8	0.7836 ^{+0.0221} -0.0138	$0.80265\substack{+0.00992\\-0.00800}$	0.8019_0.00866	0.80539 ± 0.00830	0.80573 ± 0.00774

For all the combined datasets, the values shift towards the Planck ACDM values

Comparison

Parameter	Model L	Model E	Model C
β_0	0.00788 ± 0.00815	0.0339 ± 0.0372	0.00624 ± 0.00673
w ₀	< -0.909	<-0.914	< -0.907
W1	< 0.174	< 0.168	< 0.174
H ₀	63.98 ^{+2.45}	64.12 ^{+2.40}	63.93 ^{+2.51}
Ωm	$0.3507^{+0.0157}_{-0.0292}$	$0.3492^{+0.0149}_{-0.0282}$	0.3513 ^{+0.0153}
σ_8	$0.7825\substack{+0.0228\\-0.0141}$	$0.7836\substack{+0.0221\\-0.0138}$	0.7821+0.0232 -0.0140

Compared w.r.t. Planck data

- Model L and Model C have very close parameter central values
- Model E has larger β₀ compared to Model L and Model C
- Model E has larger H₀, σ₈ & smaller Ω_m compared to Model L and Model C

Comparison

Parameter	Model L	Model E	Model C
β_0	0.00788 ± 0.00815	0.0339 ± 0.0372	0.00624 ± 0.00673
W ₀	< -0.909	<-0.914	< -0.907
W1	< 0.174	< 0.168	< 0.174
H ₀	63.98 ^{+2.45}	64.12 ^{+2.40}	63.93 ^{+2.51}
Ωm	$0.3507^{+0.0157}_{-0.0292}$	$0.3492^{+0.0149}_{-0.0282}$	0.3513 ^{+0.0153}
σ_8	$0.7825\substack{+0.0228\\-0.0141}$	$0.7836\substack{+0.0221\\-0.0138}$	0.7821+0.0232
Compared v	v.r.t. Planck data		

 Model L and Model C have very close parameter central values

- Model E has larger β₀ compared to Model L and Model C
- Model E has larger H₀, σ₈ & smaller Ω_m compared to Model L and Model C

Bayesian evidence \Rightarrow In B_{ij} where
$B_{ij} = \frac{p(x M_i)}{p(x M_j)} \equiv \text{ratio of evidences}$

- ► $i \equiv \{\text{Model L}, \text{Model E}, \text{Model C}\}, j \equiv \Lambda \text{CDM}$
- ► In $B_{ij} < 0 \Rightarrow \Lambda CDM$ is preferred

Model	Dataset	In B _{ij}	∆ In B _{ij}
	Planck	-8.843	-2.244
	Planck + $f\sigma_8$	-11.410	-2.245
Model L	Planck + BAO	-10.610	-2.187
	Planck + BAO + Pantheon	-11.354	-2.104
	$Planck + BAO + Pantheon + f\sigma_8$	-11.977	-2.328
Model E	Planck	-7.233	-0.633
	Planck + $f\sigma_8$	-9.730	-0.566
	Planck + BAO	-9.047	-0.624
	Planck + BAO + Pantheon	-9.733	-0.483
	$Planck + BAO + Pantheon + f\sigma_8$	-10.192	-0.542
	Planck	-6.599	0.0
	Planck + $f\sigma_8$	-9.164	0.0
Model C	Planck + BAO	-8.423	0.0
	Planck + BAO + Pantheon	-9.250	0.0
	$Planck + BAO + Pantheon + f\sigma_8$	-9.650	0.0

 $0 \le |\ln B_{jj}| < 1 \Rightarrow$ weak, $1 \le |\ln B_{jj}| < 3 \Rightarrow$ Definite/Positive,

 $3 \le \ln |\ln B_{ij}| < 5 \Rightarrow$ Strong, $\ln |\ln B_{ij}| \ge 5 \Rightarrow$ Very Strong

Comparison

β ₀ w ₀	0.00788±0.00815 < -0.909	0.0339±0.0372 <-0.914	0.00624±0.00673 < -0.907
W ₀	< -0.909	< -0.914	< -0.907
14/-	< 0.174	0.1/0	0.174
w 1	< 0.174	< 0.108	< 0.1/4
H ₀	63.98 ^{+2.45}	64.12 ^{+2.40}	63.93 ^{+2.51}
Ωm	$0.3507^{+0.0157}_{-0.0292}$	$0.3492^{+0.0149}_{-0.0282}$	$0.3513^{+0.0153}_{-0.0299}$
σ_8	$0.7825\substack{+0.0228\\-0.0141}$	$0.7836\substack{+0.0221\\-0.0138}$	0.7821+0.0232

Compared w.r.t. Planck data

- ► **Bayesian evidence** ⇒ In B_{ij} where $B_{ij} = \frac{p(x|M_i)}{p(x|M_j)} \equiv$ ratio of evidences
- ► $i \equiv \{\text{Model L}, \text{Model E}, \text{Model C}\}, j \equiv \Lambda \text{CDM}$
- ► In $B_{ij} < 0 \Rightarrow \Lambda CDM$ is preferred
- relative differences △ In B_{ij}, w.r.t. Model C show:
 - (i) Model L \rightarrow strongly disfavoured
 - (ii) Model $E \rightarrow$ weakly disfavoured

- Model L and Model C have very close parameter central values
- Model E has larger β₀ compared to Model L and Model C
- Model E has larger H₀, σ₈ & smaller Ω_m compared to Model L and Model C

Model	Dataset	In B _{ij}	$\Delta \ln B_{ij}$
	Planck	-8.843	-2.244
	Planck + $f\sigma_8$	-11.410	-2.245
Model L	Planck + BAO	-10.610	-2.187
	Planck + BAO + Pantheon	-11.354	-2.104
	$Planck + BAO + Pantheon + f\sigma_8$	-11.977	-2.328
	Planck	-7.233	-0.633
	Planck + $f\sigma_8$	-9.730	-0.566
Model E	Planck + BAO	-9.047	-0.624
	Planck + BAO + Pantheon	-9.733	-0.483
	$Planck + BAO + Pantheon + f\sigma_8$	-10.192	-0.542
	Planck	-6.599	0.0
	Planck + $f\sigma_8$	-9.164	0.0
Model C	Planck + BAO	-8.423	0.0
	Planck + BAO + Pantheon	-9.250	0.0
	$Planck + BAO + Pantheon + f\sigma_8$	-9.650	0.0

 $0 \le |\ln B_{jj}| < 1 \Rightarrow$ weak, $1 \le |\ln B_{jj}| < 3 \Rightarrow$ Definite/Positive,

 $3 \le \ln |\ln B_{ij}| < 5 \Rightarrow$ Strong, $\ln |\ln B_{ij}| \ge 5 \Rightarrow$ Very Strong

When

From Perturbation Analysis

- Evolution of growth rate, CMB temperature spectrum and matter power spectrum show Model E behaves Closely as the ΛCDM model
- Model E performs better than Model L and Model C in describing the evolutionary history of the Universe.

When

From Perturbation Analysis

- Evolution of growth rate, CMB temperature spectrum and matter power spectrum show Model E behaves closely as the ΛCDM model
- Model E performs better than Model L and Model C in describing the evolutionary history of the Universe.

From Model Comparison

- Model E and Model C are favoured over Model L
- ➤ Model C is favoured ever so slightly over Model E → difference is too small to choose a clear winner

When

From Perturbation Analysis

- Evolution of growth rate, CMB temperature spectrum and matter power spectrum show Model E behaves closely as the ΛCDM model
- Model E performs better than Model L and Model C in describing the evolutionary history of the Universe.

From Model Comparison

- Model E and Model C are favoured over Model L
- \blacktriangleright Model C is favoured ever so slightly over Model E \longrightarrow difference is too small to choose a clear winner

Interaction, if present, is likely to be significant only at some early stage of evolution of the Universe

Summary & Conclusion

- Scalar field with a potential that drives the recent acceleration like the cosmological constant starting from arbitrary initial conditions
 - The evolution of perturbations is similar to the ACDM model
- Considered 'evolving' coupling parameter for interaction

 (a) interaction is a more recent phenomenon &
 (b) interaction is a phenomenon in the distant past
 - Early interaction describes the evolution of the perturbations better than the late interaction

Power Spectra & Growth Rate

$$C_{\ell}^{\Pi} = \frac{2}{k} \int k^2 dk P_{\zeta}(k) \Delta_{T\ell}^2(k)$$
$$P(k,a) = A_s k^{n_s} T^2(k) D^2(a)$$

$$f(a) = \frac{d \ln \delta_m}{d \ln a}$$

$$\sigma_8(a) = \sigma_8(1) \frac{\delta_m(a)}{\delta_m(1)}$$

$$f \sigma_8(a) \equiv f(a) \sigma_8(a)$$