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Introduction



Cosmic Microwave Background Temperature

CMB temperature T (n̂) can be conveniently split into two parts 1:

• Isotropic part :

T̄ =
1

4π

∫
dΩT (n̂)

• Anisotropic part :

δT (n̂) ≡ T (n̂) − T̄

T̄
=
∑
`m

a`m Y`m(n̂),

1see, for instance, S. Weinberg, Cosmology (Oxford University Press, 2008); R. Durrer, The Cosmic Microwave Background
(Cambridge University Press, Cambridge, 2008).
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Cosmic Microwave Background Temperature

CMB temperature T (n̂) can be conveniently split into two
parts:

• Isotropic part :

T̄ =
1

4π

∫
dΩT (n̂)

• Anisotropic part :

δT (n̂) ≡ T (n̂) − T̄

T̄
=
∑
`m

a`m Y`m(n̂),

COBE (Fixsen 2009)

T̄ = 2.7260K

At multipoles ` . 2500:
Planck
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CMB Temperature anisotropies

ΛCDM model predicts only the statistical properties of the temperature fluctuations. Hence,
we are interested in moments of δT (n̂) or in multipole space a`m.

We will focus on two-point correlations of temperature fluctuations. For a statistically ho-
mogeneous and isotropic universe, 〈a`ma∗`′m′〉 must be diagonal in ` and m, and m-
independent:

〈a`m a∗`′m′〉 = C` δ``′ δmm′ .

Deviation from statistical isotropy or homogeneity would imply a non-diagonal covariance
of a`m.

Equivalently, in angular space, 〈δT (n̂) δT (n̂′)〉 depends only on the angle between the two
directions.

C(θ) ≡ 〈δT (n̂) δT (n̂′)〉 =
1

4π

∑
`

(2 ` + 1)C` P`(cos θ) .
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Cosmic Variance

Given a theoretical model, we can compute predictions for C` or C(θ) exactly. However,
observations are constrained due to the fact that we only have one realisation of the Uni-
verse. Thus, a theoretical model will agree with the observations only within an error bar
known as cosmic variance:

σ2(C`) = ±
√

2

2 ` + 1
C`

σ2(C(θ)) =
1

8π2

∑
`

(2 ` + 1)C2
` P

2
` (cos θ)
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Anomalies in the Cosmic Microwave Background

Anomalies 2 refer to certain features in the CMB that deviate from the predictions of ΛCDM
model together with the standard ansatz.

• Power suppression at large angular scales
• Dipolar modulation
• Lensing anomaly
• Preference for odd parity etc.

They are called anomalies because their departure from the predictions of standard model
is only of the order of 2 – 3σ. Hence, taken individually, the statistical significance of these
anomalies is not enough to establish a violation of ΛCDM model. However, the presence
of several of these anomalies, indicates either that we live in a very rare realisation of the
universe predicted by ΛCDM model, or they may be signatures of new physics.

2Planck collaboration, A&A 571, A23 (2014); A&A 594, A16 (2016); A&A 641, A7 (2020).
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Statistical significance of CMB anomalies

ΛCDM model predicts only the statistical property of temperature fluctuations. Hence, in
order to qualify an observation as a signal of departure from ΛCDM, one needs to quantify
the amount by which an observation departs from theoretical predictions: p-value.
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Power Suppression

In multipole space:

ΛCDM refers to standard six parameter model together with the standard ansatz (SA) of
nearly scale invariant spectrum.
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Power Suppression

In angular space:
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Power Suppression3

In angular space:

Power at angular scales
θ > 600 is very small. It is
quantified using

S1/2 =

∫ 1/2

−1
C(θ)2 d(cos θ)) .

Planck reports a value of
S1/2 = 1209. ΛCDM leads
to S1/2 ≈ 42000.

3Planck collaboration: Y. Akrami et al., A&A 641, A7 (2020).
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Dipolar modulation anomaly

Planck has observed a dipolar modulation of the entire CMB which leads to a correlation
between ` and ` + 1 multipoles.

It was first modeled as4

T (n̂) = T0(n̂)
[
1 + A1 n̂ · d̂

]
.

Planck has measured A1 ≈ 0.07 in the multipole range [2 − 64] which departs from the
ΛCDM by more than 3σ.

4C. Gordon, W. Hu, D. Huterer, and T. Crawford, Physical Review D 72 (2005).
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Parity Anomaly

Observations from both WMAP and Planck have found a preference for odd parity two-
point correlations at low multipoles. The asymmetry in the parity can be quantified using
the estimator5

RTT (`max) =
D+(`max)

D−(`max)
,

where D±(`max) are defined as

D±(`max) =
1

`±tot

±∑
2,`max

`(` + 1)

2π
C`

where the + or − signs on the right refer to the fact that we include only even or odd
multipoles in the sum, respectively, and `±tot refers to the total number of multipoles in the
sum.

5Planck collaboration, A&A 571, A23 (2014); A&A 594, A16 (2016); A&A 641, A7 (2020).

11



Lensing Anomaly

• Along with measurements of temperature(T) and polarisation(E and B), Planck has
also reconstructed lensing potential (φ).

• The effect of lensing is a smoothing of small angular scales in the CMB.

• The level of smoothing observed in the temperature and polarisation spectra should
be consistent with the reconstructed power spectrum of lensing potential Cφφ` .

• Lensing parameter6 AL which scales Cφφ` was introduced as an additional free
parameter to check this consistency.

• If we perform a MCMC simulation by varying the standard six parameters along with
AL, if everything was consistent, AL = 1.

Planck reports7 AL = 1.072 ± 0.041 (when compared with TT+TE+EE+lowE+lensing
data), which is greater than one by more than 1σ.

6E. Calabrese et al, Phys. Rev. D 77, 123531 (2008).
7Planck Collaboration : N. Aghanim et al, A & A 641, A6 (2020).
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CMB Anomalies and Planck Scale
Physics in LQC



Loop Quantum Cosmology

Effective equations describing background8:

H2 =
8πG

3

(
1 − ρ

ρc

)
,

ä

a
= −4πG

3
ρ

(
1 − 4 ρ

ρc

)
− 4πGP (1 − 2

ρ

ρc
)

φ̈ + 3H φ̇ + Vφ = 0.

Use dressed metric approach to describe perturbations :[
� + U/a2

]
Q = 0.

where � and U are defined with respect to the dressed metric.

8See, for instance, A. Ashtekar and P. Singh, Class. Quant. Grav. 28, 213001.(2011); I. Agullo and P. Singh, World Scientific
(2017).
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Background Dynamics

LQC

GR
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Loop Quantum Cosmology
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In LQC9, there is an upper bound on the scalar curvature. This implies that only long
wavelengths feel the effect of curvature at the bounce.

9See, for instance, A. Ashtekar and P. Singh, Class. Quant. Grav. 28, 213001.(2011); I. Agullo and P. Singh, World Scientific
(2017).
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Curvature at the bounce sets a new scale
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Initial conditions

We work with some trial principles 10 to narrow down the initial state for both background
and perturbations:

• The expansion of the universe is such that the area of the horizon at the bounce corre-
sponds to the smallest area possible. This corresponds to an expansion of about 141
e-folds from the bounce till today.

• The initial state of perturbation is fixed using a quantum generalization of Penrose’s
Weyl curvature hypothesis, which requires the quantum state of perturbations to be as
homogeneous and isotropic in the Planck regime as allowed by Heisenberg’s uncer-
tainty principle.

10A. Ashtekar and B. Gupt, Class. Quan. Grav. 34, 035004 (2017); Class. Quan. Grav. 34, 014002 (2017).
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Primordial power spectrum
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Anomalies Alleviated : Power suppression
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Anomalies Alleviated : Power suppression
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S1/2 in LQC is only 1/3 of that ob-
tained in SA. These numbers should
be compared with S1/2 = 6771.7
obtained from Planck CTT` data.
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Anomalies Alleviated : Lensing anomaly

Surprisingly, lower power at longer wavelengths also leads to a preference for lower values
of AL.
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Lower power at longer wavelengths
imply that value of As in LQC is
larger than that in SA. This in turn
leads to a larger value of the reion-
ization depth. Since, τ and AL
are anti-correlated, LQC allows for a
lower value of AL.
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Non-Gaussian Origins of CMB
Anomalies in a Cosmic Bounce



Non-Gaussian modulation

• Temperature fluctuations δT/T are seeded by primordial perturbations R.

• Smallness of temperature fluctuations δT/T ≈ O
(
10−5

)
imply that perturbation theory

is an appropriate tool.

• If primordial perturbations generated in the early universe were linear, then only those
perturbations with wavelength smaller than the horizon will affect the CMB.

• However, if non-Gaussianity is present, then it could introduce coupling between super-
horizon modes and the observable modes in the CMB. Such a modulation of observ-
able modes by long wavelength super horizon modes is known as non-Gaussian mod-
ulation 11.

11L. Dai, D. Jeong, M. Kamionkowski, and J. Chluba, Phys. Rev. D 87, 123005 (2013); F. Schmidt and M. Kamionkowski, Phys.
Rev. D82, 103002 (2010); F. Schmidt and L. Hui, Phys. Rev. Lett. 110, 011301 (2013); D. Jeong and M. Kamionkowski, Phys.
Rev. Lett. 108, 251301 (2012).
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Effect of Non-Gaussian modulation

We will study the effects of non-Gaussian modulation in two steps:

1. Effect on primordial perturbations.

2. Effect on CMB covariance matrix.
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Curvature perturbations in the presence of non-Gaussianity

A convenient and general way to model the effects of non-Gaussian correlations, is to write
the curvature perturbations in terms of a Gaussian field RG as follows

R~k(t) = RG~k (t) +
1

2

∫
d3q

(2π)3
fNL(~q,~k − ~q)RG~q (t)RG~k−~q(t) .
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Curvature perturbations in the presence of non-Gaussianity

A convenient and general way to model the effects of non-Gaussian correlations, is to write
the curvature perturbations in terms of a Gaussian field RG as follows

R~k(t) = RG~k (t) +
1

2

∫
d3q

(2π)3
fNL(~q,~k − ~q) RG~q (t)RG~k−~q(t) .

where fNL is related to three-point function through the relations

〈R~k1R~k2R~k3〉 = (2π)3 δ(~k1 + ~k2 + ~k3)BR(~k1,~k2,~k3)

BR(~k1,~k2,~k3) = fNL(~k1,~k2) [PR(~k1)PR(~k2) + PR(~k2)PR(~k3) + PR(~k3)PR(~k1)].

PR(~k) is the power spectrum of RG, defined as

〈RG~k1R
G?

~k2
〉 = (2π)3 δ(~k1 − ~k2)PR(~k1) .

The dimensionless power spectrum is defined as PR(~k) = k3 PR(~k)/2π2.
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Two-point function in the presence of spectator mode

The long wavelength mode is frozen and can be considered as a spectator field. In its
presence, 〈R~k1 R~k2〉 can be computed as follows

〈R~k1R
?
~k2
〉|R~q

= 〈RG~k1R
G?
~k2〉 +

1

2

∫
d3q′

(2π)3
fNL(~q′,~k1 − ~q′) 〈RG~q′ R

G
~k1−~q′

RG?~k2〉

+
1

2

∫
d3q′

(2π)3
fNL(~q′,~k2 − ~q′) 〈RG~k1 R

G?
~q′ RG

?
~k2−~q′〉+O(f2NL).

Taking the spectator mode out of the average, we obtain

〈R~k1R
?
~k2
〉|R~q

= (2π)3 δ(~k1 − ~k2)PR(~k1)

+ fNL(~k1,−~k2)
1

2

(
PR(~k1) + PR(~k2)

)
R~q + · · · .
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Modulated power spectrum

Modulated two-point function is

〈R~k1R
?
~k2
〉|R~q

= (2π)3 δ(~k1 − ~k2)PR(~k1)

+ fNL(~k1,−~k2)
1

2

(
PR(~k1) + PR(~k2)

)
R~q + · · · .

• Non-Gaussianity leads to a modulation of power spectrum whose strength depends on
the amplitude and shape of fNL(~k1, ~k2).

• Since q is non-zero, k1 6= k2. Thus, modulation introduces correction to the non-
diagonal terms. Such non-diagonal terms indicate a breaking of homogeneity in the
local patch.

• When averaged over all realizations ofR~q, modulated term vanishes (since, 〈R~q〉 = 0)
indicating underlying statistical homogeneity.

Statistical homogeneity broken only in a particular realization due to modulation!
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Modulation of CMB

The primordial perturbations R~k are related to the CMB multipole coefficients a`m through
the relation

a`m = 4π

∫
d3k

(2π)3
(−i)` ∆`(k)Y ∗`m(k̂)R~k .

Then, the covariance matrix is

〈a`ma?`′m′〉 = (4π)2
∫

d3k1
(2π)3

∫
d3k2
(2π)3

(−i)`−`′ ∆`(k1) ∆`′(k2)Y ∗`m(k̂1)Y`′m′(k̂2) 〈R~k1R
?
~k2
〉|R~q

,

Upon expanding fNL and R~q in terms of Legendre polynomials and spherical harmonics
respectively,

fNL(k1, q, µ) =
∑
L

GL(k1, q)
2L+ 1

2
PL(µ)

RG~q =
∑
L′M ′

RGL′M ′(q)YL′M ′(q̂),

one can write

〈a`ma∗`′m′〉 = C` δ``′δmm′ + (−1)m
′ ∑
LM

ALM``′ CLM`m`′−m′ .
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Modulated covariance

Modulated covariance matrix is

〈a`ma∗`′m′〉 = C` δ``′δmm′ + (−1)m
′ ∑
LM

ALM``′ CLM`m`′−m′ .

In the above, ALM``′ is the Bipolar Spherical Harmonic (BipoSH) coefficient and it is given
by

ALM``′ =
4

(2π)3

∫
dk1 k

2
1 dq q

2 (−i)`−`′ ∆`(k1) ∆`′(k1)PR(k1) GL(k1, q)RGLM (q)

× CL0`0`′0

√
(2`+ 1)(2`′ + 1)

4π (2L+ 1)
.
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Modulated covariance

Modulated covariance matrix is

〈a`ma∗`′m′〉 = C` δ``′δmm′ + (−1)m
′ ∑
LM

ALM``′ CLM`m`′−m′ .

In the above, ALM``′ is the Bipolar Spherical Harmonic (BipoSH) coefficient and it is given
by

ALM``′ =
4

(2π)3

∫
dk1 k

2
1 dq q

2 (−i)`−`′ ∆`(k1) ∆`′(k1)PR(k1) GL(k1, q)RGLM (q)

× CL0`0`′0

√
(2`+ 1)(2`′ + 1)

4π (2L+ 1)
.

Two Clebsch-Gordon coefficients impose the following properties on ALM``′ :

i. L = 0, then `1 = `2

ii. L = 1, then |`1 − `2| = 1

iii. L = 2, then |`1 − `2| = 0, 2, etc.

31



Modulated covariance

Modulated covariance matrix is

〈a`ma∗`′m′〉 = C` δ``′δmm′ + (−1)m
′ ∑
LM

ALM``′ CLM`m`′−m′ .

In the above, ALM``′ is the Bipolar Spherical Harmonic (BipoSH) coefficient and it is given
by

ALM``′ =
4

(2π)3

∫
dk1 k

2
1 dq q

2 (−i)`−`′ ∆`(k1) ∆`′(k1)PR(k1) GL(k1, q)RGLM (q)

× CL0`0`′0

√
(2`+ 1)(2`′ + 1)

4π (2L+ 1)
.

Two Clebsch-Gordon coefficients impose the following properties on ALM``′ :

i. L = 0, then `1 = `2 : Monopolar modulation

ii. L = 1, then |`1 − `2| = 1 : Dipolar modulation

iii. L = 2, then |`1 − `2| = 0, 2, etc. : Quadrupolar modulation
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Standard deviation of BipoSH coefficient

ALM``′ depend on the modeRG~q . Since,RG~q is a random variable, we cannot predict the exact
value of ALM``′ . We can only compute the standard deviation of the BipoSH coefficients, i.e

√
〈|ALM``′ |2〉 =

[
1

2π

∫
dq q2 PR(q) |CL``′(q)|2

]1/2
× CL0`0`′0

√
(2`+ 1)(2`′ + 1)

4π (2L+ 1)
,

where
CL``′(q) ≡

2

π

∫
dk1 k

2
1 (i)`−`

′
∆`(k1)∆`′(k1)PR(k1)GL(k1, q) .

These are the typical values that the BipoSH coefficients are expected to take in the sky.
If these values are large, the effects they entail should be expected in the CMB or, more
precisely, they would have a large p-value and should not be considered anomalous.
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The Model

Inspired from LQC, we consider a phenomenological model with a bounce preceding infla-
tion. More accurately, we model the scale factor around the bounce as

a(t) = aB(1 + b t2)n.

The Ricci curvature at the bounce is given by RB = 12n b. So, bounce in this family of
model can be described by two parameters RB and n.
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The scale factor near the bounce in LQC would correspond to n ≈ 1/6.
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Evolution of perturbations
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Power spectrum

An example power spectrum:
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Plot of P(k)/PSA(k) = |αk + βk|2.
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Analytical ansatz for the power spectrum
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Non-Gaussianity

We shall model12 the non-Gaussianity generated in this model as

fNL(k1, k2, k3) ' fNL e
−α (k1 + k2 + k3)/kLQC ,

where α depends on the curvature at the bounce. We will treat fNL as a free parameter.

12I. Agullo I, B. Bolliet and V. Sreenath, Phys. Rev. D 97, 066021 (2018).
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Modulated covariance

Modulated covariance matrix is

〈a`ma∗`′m′〉 = C` δ``′δmm′ + (−1)m
′ ∑
LM

ALM``′ CLM`m`′−m′ .

In the above, ALM``′ is the Bipolar Spherical Harmonic (BipoSH) coefficient and it is given
by

ALM``′ =
4

(2π)3

∫
dk1 k

2
1 dq q

2 (−i)`−`′ ∆`(k1) ∆`′(k1)PR(k1) GL(k1, q)RGLM (q)

× CL0`0`′0

√
(2`+ 1)(2`′ + 1)

4π (2L+ 1)
.

Two Clebsch-Gordon coefficients impose the following properties on ALM``′ :

i. L = 0, then `1 = `2 : Monopolar modulation

ii. L = 1, then |`1 − `2| = 1 : Dipolar modulation

iii. L = 2, then |`1 − `2| = 0, 2, etc. : Quadrupolar modulation
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Monopolar modulation (L = 0)

The modulated power spectrum is given by

Cmod` = C`

(
1 − (−1)`

C`

A00
` `√

2 ` + 1

)
.

Note that A00
` ` can be either positive or negative, leading to an enhancement or suppression

of Cmod` with respect to C`. As explained before, we cannot predict the exact value of A00
` `.

The interesting quantity is rather the root-mean-square value of the modulation:

σ2
0(`) =

1

C2
`

〈|A00
` `|2〉

2 ` + 1
=

1

C2
`

1

8π2

∫
dq q2 PR(q) |C0``(q)|2 .

where
CL``′(q) ≡

2

π

∫
dk1 k

2
1 (i)`−`

′
∆`(k1)∆`′(k1)PR(k1)GL(k1, q) .
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Power Suppression

We fix fNL by demanding that the probability of measuring S1/2 . 1500 is approximately
20%. This ensures that, observed value of S1/2 is within 1σ away from the mean, making
the observed value of S1/2 less anomalous.

In the rest of this analysis, we work with the above values of fNL.
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Scale dependent σ0(`)
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Modulated CMB power spectrum
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Dipolar Modulation (L = 1)

The Planck team quantifies the dipolar modulation in terms of a scale-dependent amplitude
A1(`)13

A1(`) ≡ 3

2

√
1

3π

(
|m1−1|2 + |m1 0|2 + |m1 1|2

)
,

where

A1M
``+1 ≡ m1M G1

``+1, with G1
``+1 ≡ (C` + C`+1)

√
(2`+ 1)(2`+ 3)

4π 3
C10
`,0,`+1,0 .

Comparing with root mean square of A1(`), we obtain

A1(`) =
3

2

1√
π

1

Cmod
` + Cmod

`+1

√
1

2π

∫
dq q2 PR(q) |C1``+1(q)|2 , (1)

13P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A16 (2016)
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Dipolar modulation from non-Gaussian modulation

The amplitude and scale dependence of A1(`) is in consonance with observations. Recall
that Planck observed a A1 ≈ 0.07 in the multipole bin [2 − 64].

We have verified that the quadrupole is smaller than the dipole and respects the constraints
arrived at by Planck.
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Lensing anomaly

0.90 1.05 1.20 1.35 1.50

AL

CDM
n = 0.21
n = 1/6

For the modulation considered above the value of AL becomes closer to one than in the
standard model. 47



Preference for odd parity

Power suppression leads to a preference for odd parity.
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Summary

The possibility that CMB anomalies could be smoking signals of preinflationary physics is
exciting.

Motivated by this outlook, we considered two approaches:

• In one approach, we studied LQC in which we require the horizon size to be equal to
the smallest possible area at the bounce and the initial conditions for quantum per-
turbations were chosen by Penrose’s Weyl curvature hypothesis. We saw that power
suppression and anomaly with lensing parameter gets alleviated.

• In the second approach, we considered phenomenological models motivated by LQC
in which a bounce precedes inflation. We showed that non-Gaussianity generated
in this model could lead to coupling between the long superhorizon scales and the
long observable wavelengths. This coupling leads to a modulation of the CMB which
makes multiple anomalies more likely to occur in the observed universe. In particular,
this approach leads to both power suppression and dipolar modulation with amplitude
and shape similar to the observations.

Thank you!
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