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Bouncing scenarios

Bouncing scenarios: An alternative to inflation1

Bouncing models correspond to situations wherein the universe initially goes through
a period of contraction until the scale factor reaches a certain minimum value before
transiting to the expanding phase.

They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations at
early times during the contracting phase.
However, matter fields may have to violate the null energy condition near the bounce
in order to give rise to such a scale factor. Also, there exist (genuine) concerns
whether such an assumption about the scale factor is valid in a domain where general
relativity is expected to fail and quantum gravitational effects are supposed to take
over.

1See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios

The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by more than the
Hubble radius at the last scattering surface (which subtends an angle of about 1◦ today)
could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation helps in re-
solving the horizon problem2.

2Images from W. Kinney, astro-ph/0301448.
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Bouncing scenarios

Bringing the modes inside the Hubble radius
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A schematic diagram illustrating the behavior of the physical wavelength λP ∝ a (the
green lines) and the Hubble radius H−1 (the blue line) during inflation and the radiation
dominated epochs3.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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Bouncing scenarios

Overcoming the horizon problem in bouncing models
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ĤAS

|Ainii �! |Aki

�k

1

inflation
post
inflation

t

Hubble radius
horizon

=)

`Pl � / k�1
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The evolution of the physical wavelength and the Hubble radius in a typical bouncing
scenario4.

4Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).
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Bouncing scenarios

Violation of the null energy condition

Recall that, according to the Friedmann equations

Ḣ = − 4πG (ρ+ p) .

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses
zero at the bounce and is positive thereafter.

Evidently, Ḣ will be positive near the bounce, which implies that (ρ+ p) has to be negative
in this domain. In other words, the null energy condition needs to be violated in order to
achieve a bounce.
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Bouncing scenarios

Classical bounces and sources

Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η20

)q
= a0

(
1 + k20 η

2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0
denotes the time scale of the duration of the bounce and q > 0. We shall assume that the
scale k0 associated with the bounce is of the order of the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with constant equation
of state parameters w1 = (1−q)/(3 q) and w2 = (2−q)/(3 q). The energy densities of these
fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 = M2/a
2 (1+q)/q, where M1 = 12 k20M

2
Pl
a
1/q
0

and M2 = −M1 a
1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale factor behaves
as in a matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often
referred to as the matter bounce scenario. In such a case, ρ1 = 12 k20M

2
Pl
a0/a

3 and
ρ2 = −12 k20M

2
Pl
a20/a

4.

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 9 / 34



Bouncing scenarios

Classical bounces and sources

Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η20

)q
= a0

(
1 + k20 η

2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0
denotes the time scale of the duration of the bounce and q > 0. We shall assume that the
scale k0 associated with the bounce is of the order of the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with constant equation
of state parameters w1 = (1−q)/(3 q) and w2 = (2−q)/(3 q). The energy densities of these
fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 = M2/a
2 (1+q)/q, where M1 = 12 k20M

2
Pl
a
1/q
0

and M2 = −M1 a
1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale factor behaves
as in a matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often
referred to as the matter bounce scenario. In such a case, ρ1 = 12 k20M

2
Pl
a0/a

3 and
ρ2 = −12 k20M

2
Pl
a20/a

4.

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 9 / 34



Bouncing scenarios

Classical bounces and sources

Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η20

)q
= a0

(
1 + k20 η

2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0
denotes the time scale of the duration of the bounce and q > 0. We shall assume that the
scale k0 associated with the bounce is of the order of the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with constant equation
of state parameters w1 = (1−q)/(3 q) and w2 = (2−q)/(3 q). The energy densities of these
fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 = M2/a
2 (1+q)/q, where M1 = 12 k20M

2
Pl
a
1/q
0

and M2 = −M1 a
1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale factor behaves
as in a matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often
referred to as the matter bounce scenario. In such a case, ρ1 = 12 k20M

2
Pl
a0/a

3 and
ρ2 = −12 k20M

2
Pl
a20/a

4.
L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 9 / 34



Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

The non-minimal action and the equation of motion

We shall consider a case wherein the electromagnetic field is coupled non-minimally to a
scalar field φ and is described by the action

S[φ,Aµ] = − 1

16π

∫
d4x
√−g J2(φ)FµνF

µν ,

where Fµν denotes the electromagnetic field tensor which is given in terms of the vector
potential Aµ as follows:

Fµν = Aν;µ −Aµ;ν = Aν,µ −Aµ,ν .

The scalar field φ could be, for instance, the primary matter field that is driving the back-
ground evolution and J is an arbitrary function of the field.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Quantization of the electromagnetic field
In a spatially flat, FLRW universe, we can choose to work in the Coulomb gauge wherein
A0 = 0 and ∂iAi = 0. In such a gauge, upon quantization, the vector potential Âi can be
Fourier decomposed as follows5:

Âi(η,x) =
√

4π

∫
d3k

(2π)3/2

2∑

λ=1

ε̃λ i(k)
[
âλk Āk(η) eik·x + âλk

† Ā∗k(η) e−ik·x
]
,

where the modes Āk satisfy the differential equation

Ā′′k + 2
J ′

J
Ā′k + k2 Āk = 0.

If we define a new variable Ak = J Āk, then the above equation simplifies to

A′′k +

(
k2 − J ′′

J

)
Ak = 0,

and one can impose the standard Bunch-Davies initial conditions on the modes Ak at
suitably early times.

5See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra of the electric and magnetic fields
The energy densities associated with the electric and magnetic fields can be written in
terms of the vector potential Ai and its time and spatial derivatives as follows:

ρE =
J2

8π a2
gij A′iA

′
j ,

ρB =
J2

16π
gij glm (∂jAm − ∂mAj) (∂iAl − ∂lAi) ,

where gij = δij/a2 denotes the spatial components of the FLRW metric.

The expectation values of the corresponding operators, i.e. ρ̂E and ρ̂B , can be evaluated
in the vacuum state annihilated by the operator âλk.

It can be shown that the spectral energy densities of the magnetic and electric fields are
given by

PB(k) =
d〈0|ρ̂B |0〉

d ln k
=
J2(η)

2π2
k5

a4(η)
|Āk(η)|2,

PE(k) =
d〈0|ρ̂E |0〉

d ln k
=
J2(η)

2π2
k3

a4(η)
|Ā′k(η)|2.
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|Āk(η)|2,

PE(k) =
d〈0|ρ̂E |0〉

d ln k
=
J2(η)

2π2
k3

a4(η)
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation
For power law inflation described by the scale factor a(η) = a1 (−η/η1)β+1 and for coupling function
of the form J(η) = J0 a

n(η), one can show that the power spectrum of the magnetic field is given
by6

P
B

(k) = F(m)H4 (−k η)4+2m,

where m = (β + 1)n = α for α ≤ 1/2 and m = 1− α for α ≥ 1/2, while

F(m) =
[
(2π) 22m+1 Γ2(m+ 1/2) cos2(πm)

]−1
.

The corresponding spectrum for the electric field can be obtained to be

PE(k) =
G(m)

2π2
H4(−k η)4+2m,

where m = 1 + α if α ≤ −1/2 and m = −α for α ≥ −1/2, while

G(m) =
[
(2π) 22m+3 Γ2(m+ 3/2) cos2(πm)

]−1
.

It is evident that m = −2 leads to a scale invariant spectrum for the magnetic field which corre-
sponds to either α = 3 or α = −2.

6See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 13 / 34



Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation
For power law inflation described by the scale factor a(η) = a1 (−η/η1)β+1 and for coupling function
of the form J(η) = J0 a

n(η), one can show that the power spectrum of the magnetic field is given
by6

P
B

(k) = F(m)H4 (−k η)4+2m,

where m = (β + 1)n = α for α ≤ 1/2 and m = 1− α for α ≥ 1/2, while

F(m) =
[
(2π) 22m+1 Γ2(m+ 1/2) cos2(πm)

]−1
.

The corresponding spectrum for the electric field can be obtained to be

PE(k) =
G(m)

2π2
H4(−k η)4+2m,

where m = 1 + α if α ≤ −1/2 and m = −α for α ≥ −1/2, while

G(m) =
[
(2π) 22m+3 Γ2(m+ 3/2) cos2(πm)

]−1
.

It is evident that m = −2 leads to a scale invariant spectrum for the magnetic field which corre-
sponds to either α = 3 or α = −2.

6See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 13 / 34



Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation
For power law inflation described by the scale factor a(η) = a1 (−η/η1)β+1 and for coupling function
of the form J(η) = J0 a

n(η), one can show that the power spectrum of the magnetic field is given
by6

P
B

(k) = F(m)H4 (−k η)4+2m,

where m = (β + 1)n = α for α ≤ 1/2 and m = 1− α for α ≥ 1/2, while

F(m) =
[
(2π) 22m+1 Γ2(m+ 1/2) cos2(πm)

]−1
.

The corresponding spectrum for the electric field can be obtained to be

PE(k) =
G(m)

2π2
H4(−k η)4+2m,

where m = 1 + α if α ≤ −1/2 and m = −α for α ≥ −1/2, while

G(m) =
[
(2π) 22m+3 Γ2(m+ 3/2) cos2(πm)

]−1
.

It is evident that m = −2 leads to a scale invariant spectrum for the magnetic field which corre-
sponds to either α = 3 or α = −2.

6See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 13 / 34



Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Modeling the bounce and the non-minimal coupling

We shall model the bounce by assuming that the scale factor a(η) behaves as follows:

a(η) = a0

(
1 +

η2

η20

)q
= a0

(
1 + k20 η

2
)q
,

which we had discussed earlier.

Note that the above scale factor reduces to the simple power law form with a(η) ∝ η2 q at
very early times (i.e. when −η � η0).

We shall assume that the coupling function can be expressed in terms of the scale factor
as

J(η) = J0 a
n(η).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

E-N -folds

The conventional e-fold N is defined N = log (a/a0) so that a(N) = a0 expN . However,
the function eN is a monotonically increasing function of N .

In a bouncing scenario, an obvious choice for the scale factor seems to be7

a(N ) = a0 exp (N 2/2),

with N being the new time variable that we shall consider for integrating the differential
equation governing Āk.

For want of a better name, we shall refer to the variable N as e-N -fold since the scale
factor grows roughly by the amount eN between N and (N + 1).

7L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

The behavior of J ′′/J

The behavior of the quantity J ′′/J has been plotted as a function of N for q = 1 and
n = 3/2 (on the left) and n = −1 (on the right). Note that the maximum value of J ′′/J is
roughly of the order of k20.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times

At very early times (i.e. for −η � η0), the scale factor simplifies to the power law form
a(η) ∝ η2 q. During such times, the non-minimal coupling function J also behaves as
J(η) ∝ ηγ , where we have set γ = 2n q.

In such a case, we have J ′′/J ' γ (γ − 1)/η2 and it is easy to show that the solutions to
the modes of the electromagnetic vector potential Ak can be expressed as

Ak(η) =
√
−k η

[
C1(k) Jγ−1/2(−k η) + C2(k) J−γ+1/2(−k η)

]
.

One finds that, for the Bunch-Davies initial conditions, C1(k) and C2(k) are given by

C1(k) =

√
π

4 k

e−i π γ/2

cos (π γ)
and C2(k) =

√
π

4 k

ei π (γ+1)/2

cos (π γ)
.

It can also be shown that

A′k(η)− J ′

J
Ak(η) = k

√
−k η

[
C1(k) Jγ+1/2(−k η)− C2(k) J−γ−1/2(−k η)

]
.

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 17 / 34



Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times

At very early times (i.e. for −η � η0), the scale factor simplifies to the power law form
a(η) ∝ η2 q. During such times, the non-minimal coupling function J also behaves as
J(η) ∝ ηγ , where we have set γ = 2n q.

In such a case, we have J ′′/J ' γ (γ − 1)/η2 and it is easy to show that the solutions to
the modes of the electromagnetic vector potential Ak can be expressed as

Ak(η) =
√
−k η

[
C1(k) Jγ−1/2(−k η) + C2(k) J−γ+1/2(−k η)

]
.

One finds that, for the Bunch-Davies initial conditions, C1(k) and C2(k) are given by

C1(k) =

√
π

4 k

e−i π γ/2

cos (π γ)
and C2(k) =

√
π

4 k

ei π (γ+1)/2

cos (π γ)
.

It can also be shown that

A′k(η)− J ′

J
Ak(η) = k

√
−k η

[
C1(k) Jγ+1/2(−k η)− C2(k) J−γ−1/2(−k η)

]
.

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 17 / 34



Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times

At very early times (i.e. for −η � η0), the scale factor simplifies to the power law form
a(η) ∝ η2 q. During such times, the non-minimal coupling function J also behaves as
J(η) ∝ ηγ , where we have set γ = 2n q.

In such a case, we have J ′′/J ' γ (γ − 1)/η2 and it is easy to show that the solutions to
the modes of the electromagnetic vector potential Ak can be expressed as

Ak(η) =
√
−k η

[
C1(k) Jγ−1/2(−k η) + C2(k) J−γ+1/2(−k η)

]
.

One finds that, for the Bunch-Davies initial conditions, C1(k) and C2(k) are given by

C1(k) =

√
π

4 k

e−i π γ/2

cos (π γ)
and C2(k) =

√
π

4 k

ei π (γ+1)/2

cos (π γ)
.

It can also be shown that

A′k(η)− J ′

J
Ak(η) = k

√
−k η

[
C1(k) Jγ+1/2(−k η)− C2(k) J−γ−1/2(−k η)

]
.

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 17 / 34



Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions near the bounce
Note that, when n > 0, J ′′/J has a maximum at the bounce. In such a case, for k � k0, k2 � J ′′/J
around the bounce. Hence, upon ignoring the k2 in the equation governing Āk, we can integrate
the equation to yield

Ā′k(η) ' Ā′k(η∗)
J2(η∗)

J2(η)
,

where η∗ is a time when k2 � J ′′/J before the bounce. The above equation can be integrated to
arrive at

Āk(η) ' Āk(η∗) + Ā′k(η∗)

η∫

η∗

dη
J2(η∗)

J2(η)
= Āk(η∗) + Ā′k(η∗) a

2n(η∗)

η∫

η∗

dη

a2n(η)
,

where we have set the constant of integration to be Āk(η∗).

When γ = 3, we can evaluate the above integral to obtain that

Āk(η) ' Āk(η∗) + Ā′k(η∗)
a2n(η∗)

a2n0

η0
8

{
η

η0

5 + 3 (η/η0)2

[1 + (η/η0)2]
2 + 3 tan−1

(
η

η0

)

− η∗
η0

5 + 3 (η∗/η0)2

[1 + (η∗/η0)2]
2 − 3 tan−1

(
η∗
η0

)}
.
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Comparison of the numerical and analytical results
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The behavior of the absolute values of Āk (on the left) and its derivative Ā′k (on the right)
has been plotted for the mode k = 10−10 k0 with k0/MPl

= e−25 = 1.389 × 10−11 for the
case wherein n = 3/2, q = 1, a0 = 10−10 and J0 = 104. The dashed red curves represent
the analytical approximation around the bounce that can be arrived at for modes such that
k � k0.
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Generation of scale invariant magnetic fields in bouncing universes Results

Power spectra of magnetic and electric fields

The power spectra of the magnetic (in blue) and the electric (in red) fields for the cases
wherein (q, n) = (1, 3/2) (corresponding to γ = 3, on the left) and (q, n) = (1,−1) (corre-
sponding to γ = −2, on the right). We have worked with the same values of η0, a0 and J0
as in the previous figure. The power spectra of the electric field are along expected lines,
behaving as k4−2 γ = k−2 when γ = 3 and k6+2 γ = k2 when γ = −2 (indicated by the
dotted green lines).
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Generation of scale invariant magnetic fields in bouncing universes Results

Spectrum of observable strengths

The power spectra with q = 1 and n = −1, corresponding to γ = −2 has been plotted for
a wide range of wavenumbers. We have set k0/MPl

= 1, a0 = 4 × 10−29 and J0 = 104,
which lead to magnetic fields in the early universe that correspond to observable strengths
today8.

8L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Results

The issue of backreaction

The behavior of the energy density in the electric and magnetic fields for the mode k =
10−20 k0 has been plotted (in blue) along with the energy density of the background (in
red). We have worked with the same values of the various parameters as in the last
figure.
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

The behavior of J ′′/J
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The behavior of η20 J
′′/J , which depends only on η/η0, has been plotted for γ = 3 (in blue)

and γ = 5 (in red). The figure has been plotted over a very narrow range of η/η0 in order to
illustrate the presence of a single maximum for γ = 3 and two maxima and one minimum
for γ = 5.

L. Sriramkumar (IIT Madras, Chennai) Magnetogenesis in bouncing universes September 1, 2017 23 / 34



Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Analytical solutions near the bounce for arbitrary γ
Recall that, near the bounce, when n > 0, for scales of cosmological interest such that
k � k0, we had obtained that

Āk(η) ' Āk(η∗) + Ā′k(η∗)

η∫

η∗

dη̃
J2(η∗)
J2(η̃)

= Āk(η∗) + Ā′k(η∗) a
2n(η∗)

η∫

η∗

dη̃

a2n(η̃)
,

where η∗ is a time when k2 � J ′′/J before the bounce and we have set the constant of
integration to be Āk(η∗).

The above integral can, in fact, be carried out for an arbitrary γ to arrive at

Āk(η) ' Āk(η∗) + Ā′k(η∗)
a2n(η∗)
a2n0

×
[
η 2F1

(
1

2
, γ;

3

2
;−η

2

η20

)
− η∗ 2F1

(
1

2
, γ;

3

2
;−η

2
∗
η20

)]
,

where 2F1(a, b, c, z) denotes the hypergeometric function9.

9D. Chowdhury, L. Sriramkumar and R. K. Jain, Phys. Rev. D 94, 083512 (2016) [arXiv:1604.02143 [gr-qc]].
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Power spectra before and after the bounce
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Left: The dimensionless power spectra of the magnetic (in blue) and electric (in red) fields,
evaluated before the bounce at η = −αη0 have been plotted as a function of k/k0 for
γ = 3, q = 1, a0 = 8.73× 1010 and α = 105.

Right: The corresponding power spectra evaluated after the bounce at η = β η0, with
β = 102. We should mention that the values of the parameters we have worked with lead
to magnetic fields of observed strengths today corresponding to a few femto gauss10.

10D. Chowdhury, L. Sriramkumar and R. K. Jain, Phys. Rev. D 94, 083512 (2016) [arXiv:1604.02143 [gr-qc]].
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Duality and scale invariant magnetic fields Duality invariance

Duality transformations

It is known that the solutions to the equations of motion governing the scalar and tensor
perturbations are invariant under a certain transformation referred to as the duality trans-
formation11. For instance, it can be shown that the dual solution to the de Sitter case
corresponds to the matter bounce. Both these cases lead to scale invariant spectra.

In the case of electromagnetic fields of our interest here, given a coupling function J , its
dual function, say, J̃ , which leads to the same J̃ ′′/J̃ is found to be

J(η)→ J̃(η) = C J(η)

η∫

η∗

dη̄

J2(η̄)
,

where C and η∗ are constants. These constants can be suitably chosen to arrive at a
physically reasonable form for J̃

It can be shown that the cases corresponding to γ = 3 and γ = −2 in the bouncing models
which had led to scale invariant spectra are dual to each other.

11D. Wands, Phys. Rev. D 60, 023507 (1999).
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Duality and scale invariant magnetic fields Duality invariance

A symmetric coupling function and its asymmetric dual
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The coupling function J (in blue) and its dual J̃ (in red) have been plotted as a function of
η/η0 for γ = 3 and η∗ → −∞. Also, we have chosen the constant C to be C/k0 = 5.7×1032

so that the dual function J̃ matches the original coupling function J after the bounce12.
12D. Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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Generation of helical fields

The non-minimal action

We shall consider an action of the form13

Sem[Aµ, φ] = − 1

16π

∫
d4x
√−g

[
J2(φ)Fµν F

µν − δ

2
I2(φ)Fµν F̃

µν

]
,

where the dual of the electromagnetic tensor F̃µν is defined as

F̃µν = εµναβ Fαβ,

with εµναβ = (1/
√−g) Aµναβ , Aµναβ is the totally antisymmetric Levi-Civita tensor and

A0123 = 1.

13See, for instance, C. Caprini and L. Sorbo, JCAP 1410, 056 (2014).
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Generation of helical fields

Quantization and the equation of motion
For each comoving wave vector k, we can define the right-handed orthonormal basis
(εk1 , ε

k
2 , k̂), where

|εki |2 = 1, εk1 × εk2 = k̂, εk1 · εk2 = k̂ · εk1 = k̂ · εk2 = 0.

We can combine the two transverse directions to form the helicity basis as follows:

εk± =
1√
2

(
εk1 ± i εk2

)
.

On quantization, the vector potential Ai can be Fourier decomposed as

Ai(η,x) =
√

4π

∫
d3 k

(2π)3/2

∑

σ=±

[
εkσi b̂

σ
k Ā

σ
k(η) eik·x + εk ∗σi b̂

σ†
k Āσk(η) e−ik·x

]
,

where the Fourier modes Āσk satisfy the differential equation

Āσ ′′k + 2
J ′

J
Āσ ′k +

(
k2 +

σ γ k

J2

dI 2

d η

)
Āσk = 0,

with σ = ±1 denoting the positive and negative helicity modes respectively.
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Generation of helical fields Evolution of the modes and power spectra

Evolution of the modes
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Comparison of the numerical results (in blue) with the analytical results (in red) for the
amplitude of the positive and negative helicity modes corresponding to the wavenumber
k/k0 = 10−20 for a case wherein J = I. We have set δ = 10. Note that, as in inflationary
scenario, the positive helicity mode is amplified relative to the negative helicity mode.
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Generation of helical fields Evolution of the modes and power spectra

Power spectrum before and after the bounce
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The power spectra of the magnetic field, evaluated before the bounce (in blue), and after
the bounce (in red), have been plotted as a function of k/k0 for q = 1 and n = 3/2. The
power spectra are evidently scale invariant for the modes of our interest.
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Summary

Summary

Scale invariant magnetic fields of observable strengths can be generated in a class
of bouncing models.

As in the case of the scalar and tensor perturbations, the power spectrum of the mag-
netic field remains invariant under a two parameter family of transformations (called
the duality transformations) of the non-minimal coupling function.
Preliminary investigating suggest that scale invariant helical magnetic fields can also
be generated in bouncing scenarios.
However, as in the inflationary context, the generation of magnetic fields are also
plagued by the problem of backreaction.
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Thank you for your attention
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