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Motivation

There has been tremendous progress in providing a
microscopic counting of states that contribute to the
entropy of supersymmetric black holes.

More generally, one is interested in understanding the
number of BPS states in different contexts such as
chiral primaries in CFT’s, black hole entropy.

As the amount of supersymmetry is reduced, these
numbers can change as we vary the vevs of various
moduli. This change can be modeled like reactions in
chemistry:

A + B ←→ C .

The numbers thus vary as one crosses walls of
marginal stability.
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Motivation
The general idea is to ask whether we can combine all
BPS states into a single multiplet (‘module’) of some
algebra. Are walls of marginal stability related to walls
of Weyl chambers?

Clearly, this algebra should be such that its irreps are
infinite dimensional. [Harvey-Moore]

Charges of the BPS states then correspond to weight
vectors of the algebra.

Our motivation has been to make this idea more
precise.

The laboratory to test these ideas is given by 1/4-BPS
states in four-dimensional N = 4 supersymmetric
compactifications in string theory where there has been
some progress in recent times. [Sen,DVV,David,Jatkar,Dabholkar]
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Motivation

The main idea of our work is to explore the relation
between Generalized Kac-Moody (GKM) algebras and
BPS states in string theory.

It has been anticipated by Harvey and Moore that the
algebra of BPS states in toroidal compactification of
heterotic string is closely related to a GKM algebra.

We pursue an interesting relation between the square
root of modular form that counts BPS states with GKM
algebras. In the process, we construct a family of ‘new’
GKM algebras.

These GKM algebras play a role similar to the
spectrum-generating algebras such as so(4, 2) for the
Hydrogen spectrum or su(3, 1) for the isotropic 3D
harmonic oscillator. [Mukunda, O’Raifeartaigh, Sudarshan(1965)]
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Entropy of a black hole
Bekenstein has argued that a black hole must carry
entropy proportional to the area of its horizon

SBH =
1

4
AH .

Using semi-classical arguments, Hawking showed that
a black hole radiates like a blackbody at a temperature
called the Hawking temperature, TH .

In Einstein-Maxwell theory, there exist spherically
symmetric black holes that carry electric/magnetic
charge, the so-called Reissner-Nordstrom black holes.

These black holes have an inner and outer horizon that
coincide in the extremal limit. Extremal black holes are
stable and have TH = 0.
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Black Hole Entropy

Can we provide a microscopic description of black hole
entropy?

AH

4
?
= log

[

degeneracy of microstates
]

≡ Sstat

While the answer is negative, in general, there exist
situations where one does have a positive answer.

The first example is due to Strominger and Vafa(1996).
This is a 5D black hole solution in type II string theory
compactified on K3× S1.

The microscopic counting was done (in perturbative
string theory) using a system of D1-D5 D-branes,
which, in the limit of large charges matched the
macroscopic BH entropy.

CHEP@IISc on Sept. 9, 2008 – p.7/29



Black Hole Entropy
The success of Strominger and Vafa makes one to look
for more realistic examples, say, in four-dimensions?

In 1995, even before this result, Ashoke Sen noticed
that for a family of electrically charged black holes in
heterotic string compactified on T 6, the microscopic
counting gave a non-zero answer while the
corresponding blackhole had zero horizon area!

Sen argued that higher derivative corrections in string
theory would lead to a ‘stretched horizon’ with area of
order of `2

S. He showed that, modulo a multiplicative
constant, the microscopic entropy did match such a
picture! Thus, one has

Sstat = SBH + higher derivative corrections

How does on compute the corrections to SBH?
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Higher derivative corrections to SBH

An important contribution to the macroscopic
computation of entropy came from the work of Wald.

He proposed a method of computing blackhole entropy
in diffeomorphism invariant theories of gravity and not
just Einstein gravity.

This entropy, SBHW , has been shown to reduce to SBH

for Einstein gravity.

In 2005, Dabholkar revisited the Sen computation and
showed that SBHW exactly reproduced the
microcanonical entropy after incorporating R2

corrections.

For large blackholes with non-zero area, the R2

corrections are sub-leading to the BH entropy.
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Counting microstates
From a microscopic viewpoint, one thus wishes to count
the number of ‘microstates’ corresponding to a given
‘macrostate’.

The addition to supersymmetry to the story makes it
possible to find weak coupling regimes where this
counting can be carried out and ‘safely’ extrapolated to
strong coupling regimes.

BPS states(solutions) are special states(solutions) that
preserve some fraction of supersymmetry.

Typically, there exist indices analogous to the Witten
index that count configurations corresponding to a
specific macrostate.
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Some counting problems

We list a few such examples that appear in the context of
string theory/M-theory/field theory:

Chiral primaries in four-dimensional superconformal
field theories.

Counting of (dual) giant gravitons in type IIB on
AdS5 ×X5.

The counting of instanton configurations in 4D N = 2
supersymmetric gauge theories.

The Gopakumar-Vafa Schwinger computation in
M-theory on CY 3× S1 – this counts the D0-D2
configurations.

Dyonic (1
4 BPS) states in 4D string theories with N = 4

supersymmetry – related to Sen black hole. [Focus of this talk]
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Organising the counting

Using ideas from statistical mechanics, one sees that it
is simpler to construct generating functions for the
counting problems.

Recall that the canonical partition function in statistical
mechanics is the weighted sum over configurations of a
fixed energy with weight exp(−βE). For fixed E, the
coefficient of exp(−βE) gives the number of states with
energy E.

The counting of BPS states is done in a similar manner.
Introduce a fugacity (qi) for every charge (ni). One then
defines

Z(q) =
∑

n∈L

d(n) qn

where d(n) is the number of BPS states (microstates) in
a macrostate with charge vector n. The charge vector n

is valued in a lattice, L, due to charge quantization.
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Our example

For the heterotic string theory on T 6, electrically
charged states get mapped to the states of the heterotic
string. This is given by (with q = e2πiτ and 2n = q2

e)

Z(q) =
∑

n

d(n) qn =
1

η(τ)24
,

where η(τ) = q
1
24

∏

m>0(1− qm) is the Dedekind eta fn.

These black holes preserve 1
2 the supersymmetry.

η(τ)24 is a modular form of SL(2, Z) of weight 12.

η(−1/τ)24 = (−τ)12 η(τ)24 .

The behaviour of d(n) at large n can be obtained using
the modular property.
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Our example
Dyonic blackholes, ie., black holes carrying both electric
and magnetic charge, preserve 1

4 of the supersymmetry.

No simple description of such states exist. However,
Dijkgraaf, Verlinde and Verlinde proposed that their
degeneracy formula is generated by a Siegel modular
form of weight 10 under Sp(2,Z): Φ10(Z). [hep-th/9607026]

Z =
∑

n,`,m

d(n, `,m) qnr`sm =
1

Φ10(Z)
.

where q = exp(2πiz1), r = exp(2πiz2), s = exp(2πiz3) and
Z = ( z1 z2

z2 z3 ) ∈ H2. Further 2n = q2
e, ` = qe · qm, 2m = q2

m.

The formula is S-duality invariant i.e., the modular form
is invariant under a SL(2, Z) subgroup of Sp(2, Z).

It reproduces the entropy of (large) dyonic black holes.
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Our example

There exist a family of string theories, the CHL
compactifications, with N = 4 supersymmetry that are
obtained as ZN orbifolds of the heterotic string on T 6

that we just considered.

Jatkar and Sen constructed a family of genus-two
modular forms, Φk, of weight k, that play a role
analogous to Φ10, for N = 2, 3, 5, 7 and (k + 2) = 24

N+1 .
[hep-th/0510147]

The orbifolding breaks the S-duality group to the
subgroup Γ1(N) of SL(2, Z) and hence the modular
group is a subgroup of Sp(2, Z).

David, Jatkar and Sen showed that these modular
forms have a product representation similar (in spirit) to
the one for the Dedekind eta function. [hep-th/0602254]
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The Weyl Denominator Formula
We will see that the square root of the modular forms
Φk(Z) appear as the Weyl denominator formulae for a
family of GKM algebras, GN .

We will discuss this through a series of examples
starting with the Lie algebra su(3), then we discuss the
affine Kac-Moody algebra before considering GN .

Consider a representation Vλ with highest weight λ of
some Lie algebra. The character of the representation
is given by

χλ(q) =
∑

µ

d(µ) qµ ,

where µ is a weight vector and d(µ) its multiplicity. Note
the formal similarity with our definition of Z.

For example, in the spin-j irrep (multiplet) of su(2)

χj(q) = qj + qj−1 + · · · + q1−j + q−j =
qj+1 − q−j−1

q − q−1
.

Here the weight is the J3 eigenvalue.

The character can be rewritten as

χλ =

∑

w∈W (−1)w exp[w(ρ + λ)]
∑

w∈W (−1)w exp[w(ρ)]
.
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su(3): a toy example
The Lie algebra of su(3) can be decomposed as

su(3) = L+ ⊕H ⊕ L− .

where H is the Cartan sub-algebra, L+ = (e1, e2, e3) are
the positive roots (‘raising operators’), and
L− = (−e1,−e2,−e3) = −L+ are the negative
roots(‘lowering operators’).

It is useful to picture the roots as (weight) vectors in a
two-dimensional space as su(3) is a rank-two Lie
algebra.

The Weyl group,W, is generated by elementary
reflections of the simple positive roots. It is isomorphic
to S3 the permutation group in three elements.

The Weyl vector, ρ, is defined as the half the sum of all
positive roots. One has ρ = e3 for su(3).

CHEP@IISc on Sept. 9, 2008 – p.17/29



Weyl group and chamber for su(3)

1

e2 e3

e
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The Weyl denominator formula

Recall the denominator of the character formula

Σ ≡
∑

w∈W

(−1)w exp[w(ρ)]

For su(3), this reads

Σ = ee3 − ee2 + e−e1 − e−e3 + e−e2 − ee1

Writing x = e−e1 and y = e−e2 and xy = e−e3, we get

Σ = (xy)−1−x−1+x−xy+y−y−1 =
(1− x)(1− y)(1− xy)

xy

Note that the appearance of a product running over
positive/negative roots.
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The Weyl denominator formula

The appearance of the product is a general feature of
(most) Lie algebras.

Let

Π =
∏

α∈L+

(

1− exp [−α]
)mult(α)

,

where we allow for roots with multiplicity unlike su(3)
where all roots appear with multiplicity one.

Re-defining Σ by multiplying by e−ρ, we write

Σ =
∑

w∈W

(−1)w exp[w(ρ)−ρ]

One then has the identity: Σ = Π
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The affine denominator formula

Several subtleties arise as the algebra is infinite
dimensional.

For the product side, defining the Weyl vector as the
sum of all positive roots, needs regulation. However,
[w(ρ)− ρ] behaves well. So the sum part of the identity
goes through.

The product part doesn’t quite work. This is due to the
appearance of roots with zero norm. Recall that every
root in the finite Lie algebra gives rise to an su(2)
sub-algebra. These imaginary roots give rise to a
Heisenberg-Weyl Lie algebra (as in the harmonic
oscillator).

These roots need to be added to the L+ with multiplicity
and then the identity Σ = Π holds. [MacDonald]
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The simplest affine algebra: ˆsu(2)1

This is an extension of the Lie algebra su(2) with root
α1. Add to it a new root α0 with length two and inner
product −2 with α1.

One has

L+ =
(

n(α1 + α0), nα1+(n−1)α0, (n−1)α1+nα0

∣

∣

∣
n ∈ Z+

)

.

The identity Σ = Π becomes the Jacobi triple
identity [Weyl-Kac]

−iϑ1(τ, z) = q1/8r−1/2
∞
∏

n=1

(1− qn)
(

1− qn−1r
) (

1− qnr−1
)

=
∑

n∈Z

(−1)n q
(n−1/2)2

2 rn−1/2 .
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The denominatory identity for GKM algebras

Borcherds generalised the identity for GKM algebras.
∏

α∈L+

(1− e−α)mult(α) = e−ρ
∑

w∈W

(−1)w w(eρ
∑

α∈L+

ε(α)eα) ,

The key modification appears in the Σ side of the story.

There are imaginary simple roots, ie., those with zero or
negative norm.

Such terms lead to a correction to the summation side.
In the absence of such roots, ε(α) vanishes except for
one term and we recover the earlier formula.

ε(α) is defined to be (−1)n if α is the sum of n pairwise
independent, orthogonal imaginary simple roots, and 0
otherwise.
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The GKM superalgebra G1

The modular form Φ10(Z) is a well-studied object
mathematically. Gritsenko shows that its square-root,
∆5(Z) has a sum representation using a method due to
Maaß.

Gritsenko and Nikulin showed that ∆5(Z) appears as
the denominator of a GKM algebra, G1 and provided a
product representation for it as a consequence.

The algebra G1 is a rank-three hyperbolic Kac-Moody
algebra. Hyperbolic Kac-Moody algebras have been
well classified and they exist only a finite number with
rank between 3 and 10 and none at higher rank. At rank
two, there are infinite hyperbolic Kac-Moody algebras.

G1 has a Weyl vector, a nice presentation for its Weyl
group.
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The GKM superalgebras GN

Following Gritsenko and Nikulin, we defined ∆k(Z) via

Φk(Z) =
[

∆k/2(Z)
]2

.

The product representations given by David, Jatkar and
Sen enabled us to read out the positive roots along with
their multiplicities.

Negative multiplicities do occur – they correspond to
fermionic roots and hence it is a Lie superalgebra.

The sum side enabled us to obtain the multiplicities of
imaginary roots.

This works only for N = 2, 3, 5. For N = 7, we got
fractional multiplicities and hence the GKM algebra
interpretation doesn’t work.
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Properties of the GKM algebras: GN

The GKM algebras, GN , constructed for the modular
forms ∆k for (k + 2) = 24

N+1 , and N = 2, 3, 5 are found to
have identical real roots to the G1 GKM algebra.

The Weyl group and Weyl vector do not change upon
orbifolding.

For a root of the form ta0 where a0 is a primitive
imaginary root with zero norm the multiplicity is
generated by a generating function of the form

1−
∑

t∈N

m(ta0) qn =
∏

n∈N

(1− qn)
k−4
2 (1− qNn)

k+2
2

This correctly reproduces the multiplicity obtained by
Gritsenko and Nikulin for G1.
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Conclusions

The precise connection between the GKM algebras and
the algebra of BPS states has not yet been addressed.
We would like to understand the sense in which the
various roots, real and imaginary, are the building
blocks of 1/4-BPS states.

A deeper understanding of the representation theory of
the GKM algebras, and their relation to the BPS states
will shed valuable light in the understanding of the
whole idea, and help extend it to other string theories.

The implication of the appearance of imaginary simple
roots for the the dyon spectrum is not very clear to us.

Cheng and Verlinde have recently shown that Weyl
transformations of the GKM algebra are related to
wall-crossing formulae.
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Conclusions and future directions

Since the modular form Φk is the square of ∆k/2, we
anticipate that there are two copies of the GKM algebra
GN that naturally appear. Can we provide a physical
interpretation for this?

The Gopakumar-Vafa counting of BPS states in
M-theory is closely related to counting of ‘colored’ plane
partitions. It is known that there is a product
representation for these objects. Is there an algebraic
interpretation for this?

Recent work of Moore and Gaiotto on wall-crossing
may have bearing on our pursuit in relating walls of
marginal stability to walls of Weyl chambers.

It would be of interest to extend our considerations to
N = 2 string theories.
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Thank you
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