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Chapter 1

Introduction

Classical Mechanics not only is the oldest branch of physics but was and still
is the basis for all of theoretical physics. Even quantum mechanics can hardly
be understood (perhaps cannot even be formulated) without a good knowledge of
classical mechanics. The essential physics involved in the classical mechanics of
a particle is contained in Newton’s celebrated laws of motion. Therefore classical
mechanics is also called Newtonian mechanics.

Newtonian formulation of mechanics does not consider the presence of con-
straints in the systems. In presence of constraints, coordinates become function
of each other and therefore they are no more a set of independent coordinates.
In these cases we can define a set of independent coordinates, called generalized
coordinates, that take presence of constraints into account. Newton’s laws of mo-
tion are not valid in generalized coordinates. This is the most inconvenient part

of Newton’s formulation of mechanics.

1.1 Hamiltonian system

As a consequence, canonical formalism becomes a central part of the develop-
ments of classical mechanics in post-Newtonian era. In this formalism, one can
study the mechanics of a particle in a general abstract space of generalized co-
ordinates. Lagrange’s formulation of mechanics and later Hamilton’s formulation
of mechanics are important achievements in the developments of this canonical

formalism. The Hamiltonian function, simply called Hamiltonian, is central to the
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Hamilton’s formalism. Hamiltonian is defined in an abstract space called ‘phase
space’, which consists of generalized coordinates @ and its corresponding mo-
menta p. In the phase space, the dynamics of the system or time evolution of

(P, q) are determined by the following equations :

dp  0H(p, q,t)

i 9q (1.1a)
dq 0H(p, q,1)

— = - —— " 1.1b
dt op ’ ( )

where H(P, q,t) is the Hamiltonian of the system which describes the dynamical
flow and p, q are the N-component vectors p = {p; }, @ = {¢ } with N being the
number of degrees of freedom (DOF). The above equations are called Hamilton’s
canonical equations. If the dynamics of a system follows above set of equations,
the system is called Hamiltonian system. One of the fundamental property of the

Hamiltonian flow is that it preserves volume of the phase space.

1.1.1 Integrable systems

Let us consider time independent Hamiltonian system and in this case we can
identify the value of the Hamiltonian with the energy F, i.e., H(p,q) = E. If a
Hamiltonian system of N DOF, having N independent invariants f;(p, @) where
i = 1,..., N satisfying the condition { f;, f; } = 0 for all ¢ and j, is called integrable
system. Presence of N invariants implies that the motion of the system is in the

phase space restricted to lie on the N-dimensional surface

fz(ﬁa(_l) =c¢, 1= 15"',N

where ¢;’s are N-constants. According to the Liouville-Arnold theorem, this surface
must be an N-dimensional torus [1]. For example, in case of 2 DOF the phase
space is 2-torus which has the structure of a tyre tube. These are called the
invariant tori which are responsible for the regular dynamics of the integrable
system.

For simplicity, let us consider 2 DOF case. In this case torus is 2-dimensional
(tyre tube) and every tori can be characterized with frequencies w; and ws. If the

ratio of the frequencies o = w; /w9 are rational then the tori will be called resonant
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tori and if « are irrationals then the tori will be non-resonant tori. From the above
definition of rational and irrational tori, it is clear that the motion will be periodic
on the resonant tori and quasiperiodic on the non-resonant tori.

Note : Chapter 2 is completely devoted to the study of the time dependent integrable
Hamiltonian system. Therefore in this subsection we have restricted ourselves in
the discussion of the properties of the time independent integrable Hamiltonian sys-

tem.

1.1.2 Nonintegrable systems

Integrable systems are very rare. In most of the occasions, the Hamiltonian sys-
tems will not have sufficient number of invariants and thus these systems are
appropriately called nonintegrable system. In general, our understanding about
nonintegrable system is based on our knowledge about integrable systems. Typ-
ically we consider that a nonintegrable system arises as a perturbation to an
integrable system. Now the question is, what is the fate of an unperturbed tori

under perturbation ?

Fate of the “nonresonant” tori. KAM theorem [2] :

The question of fate of the “nonresonant” tori is answered by a celebrated theorem
of Kolmogorov (K), Arnold (A), and Moser (M), the so-called KAM theorem. Here we
just state the theorem for the very simple case of two DOF system. However,
this theorem holds for any arbitrary number of DOF. The theorem states that if,

among other technical conditions, the Jacobian of the frequencies is nonzero, i.e.

ow;
det 1 #£0
‘ 0I; 7
then those tori, whose frequency ratio w; /w9 is sufficiently irrational such that
K
L 9 for all my, ms (1.2)
w9 mq ml'

holds, are stable under the perturbation ¢ H; in the limit ¢ < 1. Not much is
known about K(e), other than K(¢) — 0 as ¢ — 0. The “destroyed” tori are the

complementary set satisfying

w1 mo K(E)
o = (1.3)
2 mq ml
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Figure 1.1: A Schematic action-angle diagram of the break-up of the rational tori, in-
dicated by solid lines, when an integrable system (on the left) becomes slightly noninte-
grable (on the right). These tori break up into elliptic points and hyperbolic points. The
irrational tori, indicated by dashed curves, survive.

The above condition is more restrictive than the strict commensurability condition
miw; + mewe = 0. However, it is important to note that the set of frequency ratios
for which Eq.(1.2) holds and for which the motion is therefore regular, even after
the perturbation, has a nonzero measure.

The KAM theorem also requires that the perturbation be “sufficiently small”.
However, there is no precise estimate of how small “sufficiently small” should be.
Early estimates were of the order of 1078, whereas for most of the Hamiltonian
systems studied so far the numerical evidence shows that tori are survived under
much higher value of e. Moreover the analyticity of the Hamiltonian is not strictly
necessary. Moser stated that only the first 333 derivatives should exist. The
underlying theme of this theorem is first to select a torus on which frequencies

are sufficiently irrational and then apply perturbation theory on it.

Fate of the “resonant” tori. Poincare-Birkchoff theorem [2] :

The ‘resonant’ tori, which satisfy the condition given in Eq.(1.3), are destroyed

under perturbation and this provides the ‘seeds’ of chaotic behavior observed
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in nonintegrable systems. Poincare-Birkchoff theorem deals with the fate of the
resonant tori. We know, if a system is integrable, each point on a tori correspond-
ing to a rational frequency ratio my/m; is part of a periodic orbit. According to
the Poincare-Birkhoff theorem, when the system becomes nonintegrable, the tori
breaks up into an alternating sequence of m; elliptic points and m; hyperbolic
points. Around each elliptic point will be a series of elliptic orbits. The event is
shown schematically in Fig.1.1. This figure shows that the tori with irrational
frequency ratios, indicated by dashed curves, survive, but the tori with rational
frequency ratios, indicated by solid lines, break up into elliptic points and hyper-

bolic points.

1.2 Chaos in Hamiltonian systems

In the previous section we have seen that under a very small perturbation, un-
perturbed resonant tori decompose into equal number of elliptic and hyperbolic
points, whereas nearby nonresonant tori survive (but may be slightly deformed).
These nonresonant tori, which survive under small perturbation, are called KAM
tori. The KAM tori are strong barriers for the development of chaos. If we in-
crease the perturbation strength ¢, the KAM tori destroy one by one with the last
survivor being the one with frequency ratios (w;/ws) equal to the Golden mean
[= (V5 — 1)/2], the “most irrational” of the irrational. In the absence of KAM
tori, a single trajectory wanders all possible regions of the phase space and the
system becomes fully ‘chaotic’. For the intermediate values of ¢, the phase space
of the system consists of many stable KAM tori, and in between two KAM tori
the motion is completely irregular. These kind of systems, whose phase space
consists of both regular and irregular structures, are called ‘mixed system’. The
‘mixed’ dynamical systems are more generic than the completely integrable and
completely chaotic systems.

It is now the proper time to present a formal definition of chaos. There are
several versions of definitions for chaos, but we will follow the definition given
in a popular textbook by Devaney [3]. This definition has three components and

they are formulated for a continuous map f : X — X on some metric space X.
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The three components of the definition are following :

(1) f is topologically transitive ; that is, for all non-empty open subsets U and V
of X there exists a natural number k such that f*(U) N V is non-empty. This
means that the points under iteration [f*(U)] move from any arbitrary small
neighborhood to another.

(2) The periodic points of f form a dense subset of X. This means that if we
choose a closed interval I arbitrarily close to any point, we can always find a
periodic point in that interval I. Devaney refers to this condition as an element of
regularity.

(3) The last component of the definition speaks about sensitive dependence on
initial condition. f satisfies this property if there is a positive real number § ( a
sensitivity constant ) such that for every point z in X and every neighborhood N of
z there exists a point y in N and a nonnegative integer » such that the nth iterates
f™"(z) and f™(y) of z and y respectively, are more than distance ¢ apart. In the
mathematical notation this condition can be expressed as | f" (z) — f™(y)| > ¢.

Later it has been shown that first two components of the above definition are
sufficient to show the sensitive to initial condition [4]. Moreover this is the only
redundancy in Devaney’s definition : (1) and (3) do not imply (2), and (2) and (3)
do not imply (1). See Ref. [5]. More later, it has been shown that, on an interval,
even transitivity is sufficient to imply sensitive to initial condition [6].

Sensitive dependence on initial conditions is the central idea of chaos and
moreover, it provides the practical definition of chaos. However, chaos requires
more stronger form of the condition (3) and according to that, two trajectories
whose initial condition differs only infinitesimally diverge exponentially. Accord-
ing to Chirikouv [7], this is a necessary condition. However, for any physical system,
the exponential divergence cannot go on forever. Therefore, the bounded phase
space is another requirement for chaos. The exponential sensitivity to initial con-
ditions together with the condition of the bounded phase space gives a working
definition of chaos.

Now we are going to present a popular measure of chaos, called Lyapunov
exponent. The Lyapunov exponent measures the mean rate of exponential sepa-

ration of neighboring trajectories. To define this quantity in proper mathematical
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way, let us consider a system governed by the differential equations

dx;
dt

For Hamiltonian systems, the above equations are just the Hamilton’s canonical
equations, where the components of the vector X are the phase space variables.
Let us consider a trajectory in the above N dimensional phase space and a nearby
trajectory with initial conditions Xp and AXp, respectively. These two trajectories
evolve with time yielding the tangent vector Ax(Xy, t) with its norm d(Xy, ¢t). The
time evolution for tangent vector Ax is found by linearizing above equation, and
we get

d?—f = M(AX(t)).Ax
where M = 0F/0x is the Jacobian matrix of F. Let us now introduce the mean
exponential rate of divergence of two initially closed trajectories
d(Xo, 1)

U(EQ,AE) = hm <%> lIl m,

a(0) 3o
where it can be shown that o exists and is finite. Moreover, there is an N di-
mensional basis {é;} of AX such that for any AX, o takes on one of the N values
0i(Xo) = oi(Xo, €;). These o;’s are called Lyapunov exponents. Due to the phase
space volume preservation property of Hamiltonian flow sum of the Lyapunov

exponents will be zero, i.e., ), 0; = 0.

1.3 Chaos in Higher-dimensional systems : Arnold Diffusion

So far we have only discussed about the dynamics of the Hamiltonian systems
having two degrees of freedom, i.e. N = 2. There exists an important topological
distinction between the systems having N = 2 degrees of freedom and the systems
having N > 2 degrees of freedom. For a time independent Hamiltonian system,
the energy is a constant of motion and therefore the dynamics effectively takes
place in the (2N — 1)-dimensional energy surface H(p,q) = E. We know, in order
for a closed surface to divide a (2N — 1)-dimensional space into two disjoint parts,

one inside the closed surface and another outside, the closed surface must have
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a dimension one less than the dimension of the space, i.e. the dimension of this
surface should be (2N —2). Since the KAM surfaces are N-dimensional tori, hence
they can satisfy the above condition for N = 2 case only. Because, for N = 2, the
energy surface has a dimension 3 and a 2-dimensional toroidal KAM surface in a
3-dimensional space has an inside and an outside. For N = 3, the dimension of
the energy surface is 5, and therefore a surface of dimension 5 — 1 = 4 can divide
the energy surface of dimension 5 into two disjoint parts. However, we know that
the dimension of the toroidal KAM surface for N = 3 case is 3 and therefore this
3-dimensional toroidal KAM surface can not divide the energy surface into two
disjoint parts. Consequently one single connected region forms.

Let us consider a perturbed integrable system of N = 2 degrees of freedom,
whose tori begin to break up and are replaced by chaotic orbits. In this case
the chaotic regions are trapped between surviving KAM tori. More precisely, if a
chaotic orbit is outside (inside) a particular KAM torus, it remains outside (inside)
that torus forever. Therefore, the chaotic orbit of a slightly perturbed integrable 2-
degrees of freedom system must lie close to the orbit on a torus of the unperturbed
integrable system for all time.

The situation is completely different for N > 2 cases. In these cases chaotic
orbits are not trapped by KAM tori and hence their motions are not restricted
like N = 2 case. Now the natural assumption is that, all the chaos created by
destroyed tori can form a single connected chaotic region which is dense in the
phase space. This assumption implies that if we wait for a long enough time then
a chaotic orbit can come arbitrarily close to any point in phase space. Arnold
first demonstrated this phenomenon for a particular example and therefore it is

known as Arnold’s diffusion [8].

1.4 Quantum manifestations of classical chaos : Quantum
chaos
Inadequacy of classical mechanics to describe the behaviors of microscopic par-

ticles was realized at the dawn of the last century. Quantum Mechanics is the

theory which not only replaced classical mechanics, but it also brought a rev-
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olutionary change in our understandings of different physical processes. The
concept of the ‘trajectory of a particle’ is completely absent in quantum mechan-
ical framework. Therefore we can not use the notion of exponential divergence
of trajectories to define chaos in quantum mechanical system. More precisely,
quantum systems are not chaotic in the sense that classical systems are. So the
natural question is “Can there be Quantum Chaos ?” If yes, then “What is the def-
inition of Quantum Chaos ?” or “What way classical chaos is reflected in the char-
acteristics of corresponding quantum systems ?” There is no satisfactory quantum
mechanical definition of Quantum Chaos. However we can give a semiclassical
definition of quantum chaos following Berry [9]. But before going into that we
want to discuss some experiments related to quantum chaos. Here experiments

mean traditional laboratory experiment and also numerical experiment.

1.4.1 Ionization of Rydberg states of the Hydrogen atom inside microwave

cavity : Dynamical localization

According to Bohr’s correspondence principle classical mechanics is contained
within quantum mechanics in appropriate limit. The limit of large quantum num-
bers is one such appropriate limit. The states with large principal quantum num-
bers are called Rydberg states. In 1974, Bayfield and Koch [10] performed an
experiment to measure the ionization of H-atoms of principal quantum number
n, ~ 66 placed inside a microwave cavity as a function of microwave field strength.
This experiment showed a sharp increase in the ionization signal at a certain
threshold value F' of the microwave field strength. Later in 1979, Leopold and
Percival [11] provided a surprising explanation for the above experimental results
by simply treating Rydberg states classically. This classical calculation showed
that when the microwave field strength is less than F, the electrons move un-
der the joint influence of the Coulomb attraction of the nucleus and the external
microwave radiation field with periodic absorption of energy in captured orbits
around the nucleus ; in contrary, when the field strength cross that threshold
value F, chaotic orbits appear that quickly remove the electron from the influ-
ence of the nucleus, which leads to premature ionization of the electron. The

absorption of energy in these orbits occur in a diffusion like manner.
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Systematic comparisons between the classical prediction for the onset of
chaotic ionization with the quantum ionization thresholds has shown remarkable
agreement for many different Rydberg states as long as the microwave frequency
is less than the orbital frequency of the electrons [12]. These results are actu-
ally pointing out that, even though quantum mechanics cannot satisfy the strict
definitions of classical chaos, but still the quantum dynamics may mimic the clas-
sical chaotic ionization at least on these limited experimental timescales. Now a
natural question is that “Are these experiments really illustrating Quantum Chaos
?” The answer is “They do not”. Because chaos is unpredictability that persists,
and in these experiments the atoms traverse only a short distance of microwave
field and so diffuse for only short time.

Surprising results came with quantum mechanical calculations for microwave
frequencies greater than the orbital frequency [13, 14]. These results show that,
for short times, the electrons in Rydberg states indeed absorb the energy in the
classical way (diffusively), after a certain ‘break-time’ there is a new regime in
which the electrons absorb energy more slowly.

Similar kind of behavior was also observed earlier in the study of a model sys-
tem in which a particle on a ring (a rotator) is kicked periodically with an impulse
that depends on the angular position of the particle [15], i.e. the Hamiltonian of
this system is given by

1

H(t) = 512 + kF(¢) Y 6(t — nT)).

For strong kicks (large k), the angular momentum I of the classical rotator shows
diffusion like behavior, and consequently the energy grows linearly with time. On
the other hand, in quantum mechanical treatment within the range of large quan-
tum numbers shows that the energy increases only for a certain period of time
and eventually it stops growing. This property has been experimentally verified
by atom-optics realization of the kicked rotator [16].

The above results are important because these illustrate a general phe-
nomenon : quantum suppression of classical chaos, which is also popularly called
‘dynamical localizatiort'. It has been shown that the dynamical localization can be

related to the mechanism of Anderson localization in solid state physics [17]. This
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suppression of chaos is quite expected, because classical chaos can be consid-
ered as the appearance of increasingly complicated structures on infinitely fine
scales in classical phase space. But quantum mechanically it is not possible to
go down to such infinitely fine scales, because in the phase-space, cells smaller
than Planck’s constant h, every structure is smoothed away.

In the above studies we have not found any chaotic temporal evolution of
quantum systems. However we have observed a new quantum phenomenon, dy-
namical localization, that emerges in the semiclassical limit of the systems whose
classical dynamics are chaotic. Motivated with this fact, Berry defined quantum

chaos (quantum chaology, in Berry’'s terminology) as [9]:

“Quantum chaos is the study of semiclassical, but non-classical, behavior charac-

teristic of systems whose classical dynamics exhibits chaos”.

Dynamical localization is a temporal property of a quantum chaotic system.
For the time being we are leaving the temporal evolution, and will discuss some
stationary properties of quantum chaotic systems. We again come back to discuss
another temporal property of a quantum chaotic system, i.e. the entanglement
production by the time-evolution operator corresponding to coupled chaotic sys-

tem and this study is one of the major goal of this thesis.

1.4.2 Semiclassical Quantization

According to above definition of quantum chaos, in the semiclassical limit, we ex-
pect some signature of chaos can be seen in the eigenvalues and the eigenvectors
of the system. In quantum mechanics, following Heisenberg’s uncertainty princi-
ple, a general assumption is that any structure below the phase space cell of size
h (Planck cell) do not exist or at least they do not matter. Therefore, # — 0 is a
semiclassical limit. However, very recently it has been claimed that this common
assumption of quantum mechanics is false. The structure associated with sub-
Planck scale has some relevance for quantum decoherence [18]. In Sec.1.6, we
discuss about quantum decoherence.

The most popular semiclassical technique for the determination of the eigen-

values of 1 DOF quantum system is the Wentzel-Krammer-Brillouin (WKB)
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method which has been discussed in almost all textbooks of quantum mechan-
ics. Einstein-Brillouin-Keller (EBK) quantization is the semiclassical quantization
method for the systems having more than one DOF [19]. In this quantization pro-
cedure, for the N DOF case, classical action along N independent circuits of the
tori are expressed as integral multiples of 7.

WKB and its extended version EBK are the quantization procedures for the
integrable systems. However, if the underlying classical system is chaotic, the
WKB or EBK will not work. So a new type of quantization scheme would be
required . Nearly half a century later, Gutzwiller found a way to quantize chaotic

systems, and it is popularly known as Gutzwiller’s trace formula [20].

1.4.3 Statistical properties of the quantum chaotic spectra

In the preceding section we have discussed semiclassical (h — 0) quantization
procedure for classically regular as well as for classically chaotic systems. Here
we are now interested in to reveal the differences between the eigenvalues spectra
of regular and chaotic systems. In order to do that, according to Berry, we have to
examine the energy spectra on different scales of 4. On the fines scales, one can
identify individual eigenvalues. This is the regime in which we can use EBK rule
for regular states and Gutzwiller trace formula for the state having underlying
chaotic classical dynamics. In contrary, on the largest scales, we can only get the

average density of states p(F) given by Thomas-Fermi formula

p(E) = ﬁ/]aw—ﬂ(m»@d@

The above expression is the Liouville measure of classical phase-space at energy
E divided by the statistical volume (274)" “occupied” by a quantum state. At this
scale we can not expect to distinguish the effects of regular and chaotic classical
motion. So two extreme scales of 4 are not suitable for our purpose, and hence
we should look at the spectrum on the intermediate scales of resolution. In this
scale, the various clustering and distributions of the energy levels may reveal
much about the underlying motion.

The remarkable result is that, in this intermediate scale, the distribution of

energy eigenvalues shows universality. In order to produce comparable condi-
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tions, however, the spectra must be transformed in such a way that the density
of states becomes uniform. This method is called ‘unfolding’ of spectra. This is
accomplished as follows : the average level density p(E) is determined, average
number of levels upto energy E is calculated from it,
E
N(B) = [ p#)ap
—o0
and then we consider the spectrum z; = N(E;), which, by construction, has a
constant average level spacing that is chosen as the energy unit. The cumula-
tive level density n(z) [number of levels upto z] then is a staircase function that
fluctuates around a straight line with slope unity.
Universality is found in the statistics of the level sequences. One such statistic,
a short range one, is the probability distribution P(S) of the spacing between
neighboring energy levels, i.e. the distribution of §; = z;;1 — ;. Bohigas et al
[21] showed that the distribution P(S) calculated from the several hundred levels
of the stadium billiard and the Sinai billiard are the same, and they follow Wigner

distribution

P(S) = gS exp (— WTSQ) . (1.4)
The above expression is pointing out that the probability of finding the levels in
the same location tends to zero linearly with S. This distribution is satisfied by all
the chaotic systems having time reversal like any anti-unitary symmetry. This lin-
ear repulsion is also the property of Gaussian distributed real symmetric random
matrices. The probability distribution for the matrix elements of such random
matrices are invariant under orthogonal transformations and therefore the en-
semble of these random matrices is called Gaussian orthogonal ensemble (GOE).
If a chaotic system has no anti-unitary symmetry, then their nearest neighbor

levels will repel quadratically each other and their nearest neighbor spacing dis-

tribution (NNSD) will be
2 452
P(S) = 32 S? exp (— i) :
™ ™

Quadratic level repulsion is the property of the Gaussian distributed complex Her-

mitian matrices and the probability distribution for the matrix elements of such
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Figure 1.2: NNSD of the kicked top. (a) Nearly integrable case. NNSD satisfies Poisson
distribution. (b) Chaotic case. NNSD satisfies Wigner (GOE) distribution. See Eq.(1.4). (c)
Mixed case. NNSD is intermediate of Poisson and Wigner.

random matrices are invariant under unitary transformations and therefore the
ensemble of these random matrices is called Gaussian unitary ensemble (GUE).
On the other hand, if a given system is integrable, then the spacing distribution
of the nearest level will be Poisson type, i.e. P(S) = e~°. In Fig.1.2 we have pre-
sented the NNSD of kicked top, a well studied model of chaotic system, for both
(nearly) regular, chaotic and mixed cases. For (nearly) regular cases, shown in
Fig.1.2(a), its NNSD satisfies Poisson distribution. Since the kicked top, which we
have discussed in Chapter 3, has an antiunitary symmetry and hence its NNSD
follows Eq.(1.4) for completely chaotic cases. See Fig.1.2(b). In Fig.1.2(c), we
have shown NNSD for the mixed cases. In these cases, NNSD follow the statistics
which is intermediate of Poisson and Wigner distribution. The major difference
between the first two kind of spectrum is that quantum chaotic systems show
level repulsion and as a consequence of this, a maximum probable level spacing
comes different from zero, whereas the level distribution of regular systems show

level accumulation.
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1.4.4 Semiclassical properties of the eigenstates
Berry-Voros hypothesis :

In the preceding section we have discussed about the effect of underlying clas-
sical dynamics on the eigenvalues spectra. So it is very natural to expect some
signature of classical dynamics also on the eigenstates. Berry suggested that, in
semiclassical limit, the Wigner function of the eigenstates may show some dis-
tinct behaviors corresponding to underlying classical dynamics [22]. The Wigner
function is a quantum analogue of classical phase-space density, and it is defined

for a normalized state |¢) as

W) = oy [ dx @+ o) i - %) exp (<295).

Here is some important properties of the Wigner function :

(1) / W, @) dp = H@P; @) / W(p, @) da = [3()

) [ [ weadpda -1

The Wigner function is not positive definite, and therefore it is also referred as
“pseudo phase-space density”.
The semiclassical form of the eigenstates with quantum number @ correspond-

ing to regular system is given by

05,(q, )| [iS.(q Tn)
qQ = det ’ —
"/’n(Q) zr: € aqj 8.[]9 eXp h
where I represents the phase-space torus with actions Iy = (n + @/4) h. This

form of the eigenstates can be used to evaluate corresponding Wigner function
Wx(p,q). Berry has shown that, in the limit # — 0, the above Wigner function
Wx(p,q) reduces to [22]

Wa(,q) = ﬁ 5(1(p,q) — Tn).

The above expression shows that the Wigner function collapses onto the classical

N-dimensional torus associated with the mth state.
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Figure 1.3: (a) A scarred eigenstate of the kicked top corresponding to an unstable
period-4 orbit. (b) Another scarred eigenstate corresponding to an unstable fixed point.

Semiclassical form of the eigenstates corresponding to chaotic systems is not
known. However, we have observed that the Wigner function of the eigenstates
corresponding to regular systems is the phase-space manifold (torus) of the un-
derlying classical systems specified by the energy and/or the values of the con-
stants of motion. Now in the chaotic case, phase-space trajectories wander freely
on the energy surface or some parts of this surface. Observing this, Berry and
Voros [22, 23] suggested the microcanonical distribution as an approximation for

the Wigner function of the chaotic eigenstates, i.e. in this case

7d §(F — H(p,q))
WD = T aE - H, @ (1-5)

The exact form of W is not known for finite 4, but one can expect that a surface

of section of W would display a random splatter of phase-space density. This is
somewhat similar to the Poincare surface of section observed for chaotic trajecto-
ries. The Berry-Voros hypothesis on the behavior of eigenvectors has been verified
numerically for different model of chaotic systems like Henon-Heiles [24, 25], sta-

dium billiard [26], etc.

Violation of Berry-Voros hypothesis. Scarred eigenstates :

The above approximation to chaotic eigenstates is slightly crude. There at least
exists a semiclassical form for the eigenstates of regular systems, but the behavior
of the eigenstates of chaotic systems was suggested somewhat in ad hoc manner.
So it is not surprising to find that there exists some interesting structures which

are superimposed. Eventually, Heller's extensive numerical studies on chaotic
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stadium billiard have shown strikingly different behaviors of the eigenstates [27].
His study has shown that, in addition to typical eigenstates with highly complex
structure as predicted by Berry-Voros hypothesis, there are also eigenstates with
very regular structure. These kind of states are called ‘scarred states’. A formal
definition of the scarred states is : “A quantum eigenstate of a classically chaotic
system has a scar of a periodic orbit if its density on the classical invariant man-
ifolds near the (unstable) periodic orbit is enhanced over the statistically expected
density” [28]. Scars have been seen in a number of systems other than chaotic
stadium billiard. Most popular among these systems are quantum baker’s map
[28], coupled quartic oscillators [29], Hydrogen atom in strong magnetic field [30],
etc. But the important thing is that the scarring phenomena have been real-
ized experimentally in microwave cavities [31], and recently in electron motion in
semiconductor quantum well [32]. In Fig.1.3, we have shown two eigenstates of
the kicked top which are scarred respectively by an unstable period-4 orbit and

an unstable fixed point.

1.5 Chaos and Entanglement

In the last few sections we have discussed extensively about different properties
of quantum chaotic systems. We are now going to discuss a very new topic “chaos
and entanglement”. We have taken a crucial part in the study of this particular
topic. Therefore a major portion of this thesis is devoted to the study of chaos and
entanglement.

We know from our previous study on quantum chaos that, except some ob-
servations of quantum signature of classical chaos, there is no existence of exact
quantum analogue of classical chaos. So, for the time being, we can safely con-
sider chaos as the phenomenon which can only be observed in classical domain.
On the other hand, entanglement is an unique property of a composite quantum
system which consists of more than one interacting subsystems. Entanglement
is a nonclassical correlation among the subsystems which exists even between
spatially well separated subsystems [33, 34]. There is no classical analogue of

entanglement. Therefore it is interesting to study the connection between chaos
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and entanglement, two phenomena that are prima facie uniquely classical and
quantum respectively. This is one important reason to study the connection be-
tween chaos and entanglement. However, most of the recent works on this topic
are motivated due to the characterization of entanglement as quantum resource
for quantum information theory and quantum computation.

Since a quantum computer is a many particle system, entanglement is in-
evitable. In realistic situation, due to the presence of some imperfections, quan-
tum signatures of classical chaos or simply quantum chaos can be seen in the
quantum computers [35]. Therefore the study to enquire whether quantum chaos
will help or hinder in the operation of a quantum computer is important. At a
more basic level, it is very important to explore the connections between chaos
and quantum entanglement.

In the present section, first we will discuss about some basic facts related to
entanglement, e.g. definition, properties, its usefulness in quantum information
processing, example of entangled state, measure of entanglement, etc. Then we

will give a brief idea of the present status of this topic of research.

1.5.1 Entanglement
Once a paradox, now a useful resource :

We have already mentioned that entanglement is the property of a composite
quantum system which consists of more that one interacting subsystems. Let us
assume that a system consists of two subsystems A and B, and their associated
Hilbert spaces are #4 and #Hp respectively. A composite system which consists
of two subsystems is called bipartite system. Naturally the tensor product space
‘H 4 ®Hp will be the Hilbert space for the bipartite system A+ B. If a pure quantum
state |¢) of the bipartite system A + B can be decomposed into a tensor product
of two pure quantum states like |¢) = |¢4) ® |¢pp), Where |¢4) describing the
state of the subsystem A and |¢p) describing the subsystem B, then the state
|) is unentangled or product state. That means, the states |¢4) and |¢p) have
no quantum correlation. But this is not the generic case. In general, if the two

subsystems were not prepared independently in total isolation from each other,
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the above decomposition is impossible. Let us assume a state |¢) of the bipartite

system as

) = a1 169) ® 169) + 2 16?) ® |62,

where |c1|> + |c2|> = 1. In this case, it is not possible to assign any pure state
to any of the subsystems A or B. We call this state of the bipartite system as
an entangled state. The most celebrated example of an entangled state of two
particles is the Einstein-Podolsky-Rosen-Bohm state of two spin—% particles,

1

V2

where {| 1), | 1)} are the eigenstates of the angular momentum component o,

|%) (INeld) -1Helt)),

(Pauli matrix). | 1) ® | }) (| 1) ® | T)) means that particle 1 is in the spin-up
(spin-down) state and particle 2 is in the spin-down (spin-up) state. Let us now
assume that the particle 1 is with an observer A and the particle 2 is with another
observer B. Now if A measures o, of particle 1 and find spin-up (spin-down), then
A can immediately predict, even before B makes any measurement, the outcome
of B’s measurement with certainty : B must find o, to be down (up) for particle 2.
On the other hand, if A makes no measurement, B has a 50-50 chance of getting
o, up or down. These correlations between the outcomes of A and B are not so
unusual. This can be compared with a box containing one black ball and one
white ball. If we blindly pick one ball from the box, then there is a 50-50 chance
of getting black or white ball. But if the first ball we pick is black (white), then we
can predict with certainty that the second ball will be white (black).

Until now everything is fine, nothing against our intuition. But in actual quan-
tum mechanical situation, the observers are also allowed to measure o,. That
means, quantum mechanics allows to analyze the same pair of balls either in
terms of black and white or even in terms of say blue and red ! In terms of the
eigenstates of o, {| 1), | | ) }. the Einstein-Podolsky-Rosen-Bohm state is written
as

1
V2

Let us now assume that the observer A is allowed to measure o, or o, of particle

W)= —=(4) ) -1 e[)).
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1 by changing the orientation of his or her apparatus, while B is only restricted

to measure o, of particle 2. There are three possible outcomes :

(1) If Ameasures o, and B measures o;, there is completely random correlation
between the two measurements.

(2) If A measures o, and B also measures o, there is an exact correlation
between the two measurements.

(3) If A makes no measurement, B’s measurement shows random results.

The above considerations show that the outcomes of B’s measurement appear to
depend on what kind of measurement A decides to perform.

The above nonlocality was not acceptable to many physicists. Even Einstein re-
marked, which we called Einstein’s locality principle : “The real factual situation of
the system S, is independent of what is done with the system S, which is spatially
separated from the former” [34]. This locality principle, according to our comumon
sense, is quite reasonable. However, in 1964, J. S. Bell pointed out that Ein-
stein’s locality principle actually predicts a testable inequality relation among the
observables of spin-correlation experiments that disagrees with the prediction of
quantum mechanics [36]. Later, many experiments have conclusively established
the violation of Bell’s inequality. These experiments provided decisive evidence in
favor of quantum mechanics [37]. These results also show that nature does not
always follow our common sense.

Entanglement, once a paradox, appears today to be a potentially useful re-
source. The predicted capabilities of a quantum computer and also of quantum
information theory rely crucially on entanglement. As an example, if A and B
are sharing a pair of entangled state, then A can teleport an arbitrary quantum
state to B [38] and their shared entanglement can also be converted into a shared
secret key [39]. By quantum teleportation, it is also possible for A to send 2 bits
of classical information to B by just sending a single qubit. This is the process
called quantum superdense coding [40]. The efficiency of most of the proposed

quantum algorithms is based on the entanglement [41, 42].
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Density matrix :

As we have mentioned, it is not possible to assign any pure state to a subsys-
tem which has formed an entangled pair with another subsystem. Therefore the
quantum state of any of the subsystems has to be a mixed state. A mixed state
can be described only by a density matrix. So before going into further discussion
on the entanglement, let us first discuss some properties of density matrices. The
density matrix, in general denoted by p, is a linear operator in # such that

(a) p is Hermitian,

(b) p is positive semi-definite, that is (¢|p|$) > 0 for any |¢) € H,

(c) Trp = 1.

A mixed state can only be expressed in terms of density matrices, but a pure state
can also be represented by a density matrix as well. For a pure state, the density
matrix is the projection operator corresponding to the state |¢), i.e. p = |¢) (¢|.
Therefore, for the pure state p? = (%) (¥])(]%) (|) = [%) (| = p. So this property
of the density matrices can be used to check whether a given density matrix is
reportedly a mixed state or a pure state.

Let us now back to our discussion on the bipartite system A + B. Suppose
{la;)} and {|b;} form an orthonormal basis for subsystems A and B respectively.
Any state |¢) € H, which is a state of the bipartite system A + B, can be written in
terms of the above basis as

%) = Z cijlai) ® [bj).

0.
Therefore the density matrix corresponding to this pure state |¢) is
p=1) Wl = Y ek (ai) {arl) @ (1bj) (Bil)-
3,5,k

Suppose we are only permitted to observe one of the subsystem and we want
to describe the properties of that subsystem regardless of the state of the other
unobserved subsystem. Then we can assign reduced density matrices (RDMs)
p4 (pB) to the subsystem A (B) by taking partial trace over B (A) subsystem of the
density matrix p corresponding to A + B. Therefore

pa =Trgp =Y (bilplb;) =Y cijchslai) {ax] = CCT

J 1,5,k
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and

pp = Trap = Y cjchlb) (bl = C'C,
0.5,
where ¢;; = [C];;. The RDMs permit us to calculate all the physical prediction
about the subsystem under consideration. For example, the expectation value of
any observable O4 pertaining to the subsystem A being in the state specified by
the RDM p4 is given by

(O4) = Tra(ps0.,).

Therefore the RDMs p4 and pp are the effective density matrices corresponding to

the subsystems A and B respectively. This can be easily shown by proving

(Oa) = Tra(paOa) = Traiplp(Oa ® IB)],

where p is the density matrix of the total bipartite system A+ B and I is the unit
matrix corresponding to B subsystem. The above expression shows that it is not
necessary to use full density matrix p to calculate the expectation value of any

observable which solely belongs to a particular subsystem.

Schmidt decomposition :

Let us consider a pure state corresponding to the bipartite system A + B as

) =) cijlai)|by), (1.6)
)

where {|a; )} and {|b; )} are arbitrary orthonormal bases for the subsystems A and
B respectively. We will now prove that for any pure state of a bipartite system can
be represented by a sum of bi-orthonormal bases called Schmidt bases and this
method is called Schmidt decomposition.
Proof : We know, ¢;;’s can be considered as the elements of a matrix C. If the di-
mension of two subsystems A and B are different, say N and M respectively, then
C will be a N x M rectangular complex (in general) matrix. Without loss of any

generality we can assume N < M. According to singular value decomposition,
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the matrix C can be written as C = UAV where U and V are unitary matrices and

A is a rectangular matrix of the form [Al],,, = VAm 0mn. Therefore we can write

N M
Cij = Z Z [U]zk [A]kl [V]U

k=l =1

Substituting this in Eq.(1.6), we get

Z Z Wik [Alkt [V]ij lai) ® |b;).

i,k=1 j,l=1
Let us now define
N ~ M
@) = > Wiklai), o) = > [V lb;)- (1.7)
i=1 j=1

Hence we get

N M
) = D> Aklar) ® [br)
k=1 =1
N
i.e., |’(ﬁ> = Z vV )\k\ak ® |bk since [A]kl = v/ Ak Okls (1.8)
k=1
where 21]::1 Ar = 1, which is coming from the normalization condition of |¢ ).

From Eq.(1.7), it can be easily shown that {[@; )} and {|b; )} are the orthonormal

bases, i.e.
(agla) = 0 = (bilbr)-

If only one ) is nonzero in Eq.(1.8), then that )\ will be definitely unity and there-

fore
) = |ar) ® |bg)- (1.9)

The above state is clearly a product (unentangled) state. And if more than one
X's are nonzero in Eq.(1.8), then the state |¢) is an entangled state. Therefore,
by expanding a pure state in Schmidt bases, we can very easily tell whether that
given state is entangled or product state.

The Schmidt decomposition pertains to a specific bipartite pure state. For ev-

ery bipartite pure state there exists Schmidt decomposition. But for two different



Introduction 24

pure states there will be two different Schmidt decompositions. Now the question
is how can one determine the Schmidt decomposed form or Schmidt bases for a
given pure state.

In the Schmidt bases, the density matrix p corresponding to the state |4 ) is

N
p=1Y) (¢l = D VX (@) (@) ® (|bx)(bl).

k=1

If we now construct RDMs p4 and pg, we will get
N
pa = Y Alar) (@

N
ande = ZA]C|EI€><BI€| (1.10)

The above expressions show that the RDMs are diagonal in Schmidt basis. There-
fore the Schmidt bases { |a; ) } and { |b; ) } are the eigenstates of the RDMs p4 and
pp respectively and { \; }'s are the nonzero eigenvalues of RDMs. So one can

determine the Schmidt bases of a given bipartite pure state |9 ) in following steps:

¢ Construct the density matrix p = |9 ) (¢| corresponding to the state |¢/ ). Here
) is represented in any arbitrary basis, i.e. [¢) = 37, ; cijla;) ® [b;).

e Determine the RDMs p4 = CCtand pp = CtC.

¢ Diagonalize p4 and pp to determine their nonzero eigenvalues { A\; } and the
corresponding eigenstates {|a; )} and {|b; }. Using these, we can write the

Schmidt decomposed form of |¢) as given in Eq.(1.8).

Few important points about Schmidt decomposition

(a) Two interacting quantum subsystems usually lose their individual identities
and form a correlated system which is represented by an entangled state. The
Schmidt bases illustrate the nature of this entangled state.

(b) The summation over the single index in the Schmidt decomposed form of |¢)
goes to the smaller of the dimensionalities of the two Hilbert spaces H4 and #Hp.
Like here, we have assumed dimH4 = N < dimHg = M and therefore the

summation index in the Schmidt decomposed form of the state |¢) varies from
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1 to N. That means, the smaller subsystem forces the bigger one to behave like
smaller one.

(c) Except in some special cases [43], the Schmidt decomposition cannot be ex-
tended to more than two subsystems. Presence of third subsystem breaks the
tight pairwise correlation of the states. And this happens because the presence of
third subsystem destroys the purity of the bipartite system and also the one-to-

one correspondence which makes the Schmidt bases so useful.

Measures of entanglement :

In the present thesis, we are mainly interested in the entanglement of the pure
states of bipartite systems. The von Neumann entropy of the RDM is a natu-
ral measure of quantum entanglement. We have already assumed that the state
space of the bipartite system is H = Ha4 ® Hp, where dimH4 = N < dim#Hp =
M, and therefore dimH = d = NM. If p = ", p;|¢;i) (¢i| is an ensemble repre-
sentation of an arbitrary state in #, the entanglement of formation is found by
minimizing )", p; E(|¢; )) over all possible ensemble realizations. Here E is the von
Neumann entropy of the RDM of the state |¢; ) belonging to the ensemble. It has
been shown that the von Neumann entropy is a good measure of entanglement
[44]. Moreover, from thermodynamical arguments, it has also been shown that
the von Neumann entropy is the unique measure of entanglement [45]. For a pure
state |¢ ) there is only one unique term in the ensemble representation and the
entanglement of formation is simply the von Neumann entropy of the RDM.

The two RDMs of the bipartite state |¢) are p4 and pp. In Eq.(1.10), we have
already presented these RDMs in the Schmidt bases. The von Neumann entropy

Sy is the entanglement E(|¢)) given by

N
Sy = —Tr(p;In p) = — Z Niln(x); =12 (1.11)
i=1

where );’s are the eigenvalues of the RDMs. Due to the presence of logarithmic
function in the von Neumann entropy, it can only be calculated in the eigenbasis
of the RDMs. Therefore this measure is analytically not easily tractable, unless

one has some information about the eigenvalues of the RDMs. Hence another
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measure of the entanglement Linear entropy of the RDMs, denoted by Sg, has
been studied in different publications. This measure of entanglement is defined

as

N
Sp=1-Trp, =1-Y XN; l=12 (1.12)

i=1
The above measure can also be determined without any knowledge of the eigen-
values of the RDMs. Because, Tr; p? can be expressed as the summation of the

square of the absolute values of all elements of the RDMs, i.e.,
2
Trlpl2 = Z|(pl)ij| . (1.13)
2

Here we want to mention that Sr is not a true measure of entanglement, it is
rather a measure of the mixedness of the RDMs. Since the mixedness of the RDMs
increases with entanglement, hence Sr can be considered as an approximate
measure of entanglement.

In case of product or unentangled state, only one eigenvalue of RDMs will be
nonzero with unit value. For this case Sy = —1Inl1l = 0, where 0In0 = 0
has been assumed. Similarly, for product state, Sg = 1 — 12 = 0. Therefore
for product state, both the measures of entanglement are equal to zero. This is
actually minimum value of these two measures. For the maximally entangled |4 ),

all the eigenvalues of the RDMs are equal to 1/N, and therefore

SPAX = InN; Sp =1 —(1/N).

1.5.2 Chaos-Entanglement : Present scenario

First paper on ‘chaos and entanglement’ was published in 1998. In this paper,
the entanglement production in an N-atom Jaynes-Cummings model was studied
[46]. Their motivation was to establish the entanglement as one of the indicator
of the presence of chaos in the system. They found that the entanglement rate
was considerably enhanced if the initial wavepacket was placed in a chaotic re-
gion. They also argued that their results support an earlier conjecture which pre-
dicted that the entanglement production rate would be higher for a chaotic system

coupled to an environment [47]. For the N-atom Jaynes-Cummings model, each
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atomic subsystem plays the role of an environment for the other. Later, it has been
shown that large entanglement production rate is not the hallmark of a chaotic
system [48]. Even in the integrable N-atom Jaynes-Cummings model some spe-
cial initial coherent states exhibit strikingly similar entanglement production as
corresponding to the chaotic case [49]. In another paper, the entanglement pro-
duction rate has been related to the classical Lyapunov exponents with the help
of a coupled kicked tops model [50]. They also justified their findings on the basis
of the above mentioned conjecture [47]. However, the classical limit of the coupled
kicked tops derived in this rather well-quoted paper is incorrect, in fact it is not
even canonical. Even though this coupled map is not correct, but they consider
very weakly coupled tops and therefore their conclusions turn out to be quali-
tatively valid. Later we derived correct classical map corresponding to coupled
kicked tops. This derivation is presented in Chapter 3 of this thesis.

A major motivation of all the above mentioned works were to establish entan-
glement as one indicator of chaos. However, it has been shown that quantum
chaos can also emerge in the quantum computer and the presence of chaos can
spoil the operation of the quantum computer [35]. The authors consider a stan-
dard generic quantum computer (SGQC) model which describes a system of n
qubits. A qubit is a quantum two level system. Imperfections are very common
in any physical systems. These imperfections in » qubit system generate a resid-
ual interqubit coupling J and the spacing between the two levels of each qubit
fluctuates in some finite detuning interval §. Quantum chaos and ergodicity can
emerge in SGQC model when the interaction strength between the qubits crosses
a critical limit J = J, determined by the detuning parameter ¢ and the total num-
ber of qubits n in the system. In this regime, qubits of a quantum computer loose
their ideal structure and that can spoil the operation of a quantum computer.
To prevent this spoiling one needs to introduce an efficient error correcting codes.
Later, it has been shown that the error due to the presence of chaos in a quantum
computer can really be corrected by proper error correcting codes, but the pres-
ence of chaos enhances the complexity of the errors and hence much more error
correction is needed [51]. Therefore, the knowledge of the presence and effects of

chaos in a quantum computer is necessary to implement proper error correcting



Introduction 28

codes.

In another work, entanglement in coupled standard maps has been studied
[52]. One important observation of this work is that the entanglement increases
with coupling strength, but after a certain magnitude of coupling strength corre-
sponding to the emergence of complete chaos the entanglement saturates. This
saturation value depends on the Hilbert space dimension of the participating sub-
systems and it is less than the maximum possible value. We derived this satura-
tion value of entanglement using random matrix theory. Moreover we presented
a universal distribution of the eigenvalues of the reduced density matrices, and
demonstrated that this distribution is realized in quantized chaotic systems by
using the model of coupled kicked tops. In Chapter 4, we have discussed this
piece of work in a more elaborate way.

Later, an analytical explanation for the entanglement production, based on
perturbation theory, has been given for two weakly coupled strongly chaotic sys-
tems [53]. The authors also found that increase in the strength of chaos does
not enhance the entanglement production rate for the case of weakly coupled,
strongly chaotic subsystems. In a recent work, entropy production in subsystem
has been examined as a dynamical criterion for quantum chaos [54]. It has been
observed that the power spectrum of the entropy production gets progressively
broad banded with a progressive transition from regular to chaotic dynamics. A
recent study on entanglement production in a class of baker’s map has shown
that in general quantum baker’s map is a good dynamical system to generate
entanglement [55].

We have derived the saturation value of entanglement using RMT, but this en-
tanglement saturation is a property of the strongly chaotic interacting subsystems
which are coupled very strongly. Very recently, we have studied extensively the
entanglement production in coupled kicked tops corresponding to different un-
derlying classical dynamics and different coupling strengths. We have presented
this work in Chapter 5 of this thesis.

In another line of investigations, due to the possibilities of using the spin
systems as quantum computers, the entanglement has been studied in the well

known spin models, like the Heisenberg model [56], Ising model in a transverse
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field [57], Hubbard and lattice fermionic model [58], etc. Recently, entanglement
has been studied in a chain of particles whose classical limit is kicked Harper
Hamiltonian (a well studied model of nonintegrable system ) [59]. It has been
observed that, when the underlying classical Hamiltonian is (nearly) regular, the
pairwise entanglement between two particles falls as a function of the distance
between them. That means, the entanglement between two nearest neighbor par-
ticles is larger than the two next nearest neighbor particles, again the entangle-
ment between two next nearest neighbor particles is larger than the two next to
next nearest neighbor particles, and so on. But when the underlying classical dy-
namics is chaotic, an equal share of entanglement between any pair of particles
has been observed. More explicitly, the entanglement between a particle and its
r-th neighbor is now independent of r. This equal share of entanglement has been
modeled by RMT. Another important observation of this work is that, in contrast
to the pure state entanglement in the coupled chaotic systems, the presence and
the absence of time-reversal (TR) symmetry affect significantly the pairwise entan-
glement. The absence of TR symmetry leads to significantly larger entanglement

sharing. Similar pairwise entanglement has also been studied in Refs.[60, 61].

1.6 Decoherence : A consequence of entanglement

In the previous section we have extensively discussed the entanglement and also
the role of the chaos in the production of the entanglement. Decoherence, a con-
sequence of entanglement, is an irreversible process in which a quantum system
looses its phase coherence due to the entanglement with its surrounding or en-
vironment. More precisely, decoherence is the mechanism by which a quantum
system looses its quantumness and behave like a classical system. For a detail
discussion on decoherence and its different aspects, see Refs. [62, 63] and ref-
erences there in. As a concrete example, let us again consider a spin—% particle
as our system which is interacting with environment. Since we are interested in
to compare the state of the spin—% particle with and without any interaction with

environment, hence density matrix formalism of the quantum states is useful. Let
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us assume the spin—% particle is in a most general superposition state

[ps) = el ) + Bl{)

The density matrix corresponding to this state is

ps = s) (s = la? [ 1) (P + IBPIL) (L] + aB*[ 1) (L] + o™ Bl L) (1.

In the above expression, the last two terms are called quantum interference terms
which have no classical analogue.

Let us now consider the case when the spin—% particle is not an isolated sys-
tem, rather it is interacting with the environment. We assume that the initial joint

state of the system and the environment is a product state,

[Ys+e) = [¥s)|Eo) = (| 1) + B 1)) [Eo) (1.14)

where |Ej ) is the initial state of the environment. After the interaction, following

Ref.[18], the state |45, ) Will evolve into an entangled state,

[951) = | 1) [Er) + BIL)[E). (1.15)

The two conditional states of the environment {|E;),|E, ) } evolve under the uni-
tary operator induced by the system in a state {| 1),| .)}. Now the effective
density matrix corresponding to the spin—% particle will be the RDM which can
be obtained from the above state by tracing over the environment subspace and

that is given by

€

ps = Tre|vsis) (¥5iel

= [a [ t)(T ]+ BPIL LT+ zaf' [ 1) (L] + 2%epl L) (1], (1.16)
where z = (E;|E| ) determines the degree of suppression of the off-diagonal terms
in p%. If the environment contains many degrees of freedom, these two conditional

states of the environment will almost be orthogonal, ( E;|E;) ~ 0 and therefore

the RDM of the system will be

p% = [a? | 1) (1] + 1821 L) (L] (1.17)
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If we now compare the above state with pg, we can clearly observe that the spin—%
particle has lost quantum interference terms due to its interaction with environ-
ment. Now the correlation between the states | 1) and | |) of the spin—3 particle
is like classical correlation which can be compared with the correlation between

‘head’ and ‘tail’ of a classical coin. A quantum correlations, like | 1) (| | or | ) (T

cannot be related with any state of a classical coin. Hence decoherence can also
be considered as a process by which a quantum system looses its quantum cor-

relations.

1.6.1 Decoherence in chaotic systems

We have observed that decoherence induces a transition from quantum to clas-
sical and therefore, decoherent approach can be utilized in a more straightfor-
ward way to restore quantum-classical correspondence. We all know that there
is no consensus about the quantum analogue of classical chaos, therefore Zurek,
one of the proponents of decoherent approach, and some others have exten-
sively studied decoherence of chaotic systems that are coupled to an environment
[64, 65, 66, 67, 68, 69, 70, 71]. Irreversibility is the price of the decoherent model
for the restoration of quantum-classical correspondence in a quantum system.
This irreversibility causes entropy production in the system. In our previous ex-
ample, the von Neumann entropy of pg is Sy = —Trpgsln ps = 0, since pg is
representing a pure state ; whereas the von Neumann entropy of the reduced
density matrix p% is Sy = —Trp¢ Inp§ = — (|o> In|e® + |8]*> In|B/>) > 0. This
non-zero value of the entropy is due to the loss of information by the system into
the environment. It has been conjectured that this entropy grows linearly in time
with a fixed rate determined by the positive Lyapunov exponents [47].

This conjecture has been tested for several model open quantum chaotic sys-
tems. It has been shown that the entropy production rate, as a function of time,
in a quartic double well with harmonic driving coupled to a sea of harmonic oscil-
lators has at least two distinct regimes [64]. For short times this rate is propor-
tional to the system-environment coupling strength, and for longer times there
is a regime where this rate is determined by the Lyapunov exponent. In another

work, the entropy production in the baker’s map and Harper’'s map coupled to
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a diffusive environment is studied [65]. A regime was found to exist where the
entropy production rate is determined by the system’s dynamical properties like
Lyapunov exponents, folding rates, etc., and moreover, in this regime the en-
tropy production rate becomes independent of the system-environment coupling
strength. Similar results are also reported in Refs.[66, 67]. In other work, evi-
dence has been presented that the decoherence rate (or entropy production rate)
of a quantum system coupled to an environment is governed by a quantity which
is a measure of both the increasingly detailed structure of the quantum distribu-
tions (Wigner function) and classical phase space distributions [68].

Very recently, it has been reported that in open quantum systems, there exists
a universal scaling among the parameters (effective Planck’s constant, measure of
the coupling strength between system and environment, classical Lyapunov ex-
ponents) on which the quantum-classical transition of that system depends [69].
In another direction, decoherence has been discussed in an open system coupled
to a nonlinear environment with finite degrees of freedom [70]. It was found that
even though the environment is finite dimensional, the strong nonlinearity of it
can destroy the quantum coherence. Hence there is a possibility to utilize this
finite dimensional chaotic system as a model of environment, instead of infinite
dimensional heat bath. The above possibility has also been discussed in a recent
work. Naturally this approach is closely linked to studies like the coupled chaotic

systems [71].

1.6.2 Decoherence in quantum computation and quantum information

processing

Superposition principle of quantum mechanics has made a quantum system fun-
damentally different from a classical system. For example, as mentioned earlier, a
spin—% particle can be in a superposition of ‘up’ and ‘down’ state, whereas it is not
possible for a classical coin to be in a superposition of ‘head’ and ‘tail’. Similarly,
unlike classical bit, a quantum bit or qubit can be in a superposition of [0) and
|1) state. Due to this superposition of a single qubit, a quantum register, consists
of N qubits, can be in a superposition of 2¥ number of states. On the other hand,

a classical register, consists of NV classical bits, can only be in one single state at a
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particular moment. That means, superposition principle of quantum mechanics
automatically provides a kind of parallelism by which a quantum computer can
solve certain hard problems more efficiently and sometime in a much less amount
of operations. For example, Grover’s quantum search algorithm needs on average
~ /N operations to search an entity from a given unsorted database of size N. In
contrary, a classical search algorithm needs on average N/2 operations to perform
the identical task [42].

However there is a very big problem. The above mentioned efficiency of a
quantum computer over its classical counterpart is valid only when the quan-
tum computer is completely isolated from its surrounding. If it is not, then the
decoherence invalidates the quantum superposition and thus turns a quantum
computer into a classical computer. Therefore, due to the decoherence, a quan-
tum computer can loose its potential power. So decoherence is really a very big
threat to the operation of quantum computer.

Let us now see how decoherence can affect quantum computers. Assume a
very simple situation in which a qubit in the state |0) undergoes successively and

without decoherence two Hadamard operations Hd:

mi, 1

In terms of density matrix, the above sequence can be written as

(10) + 1)) 2% 10) = [ in)- (1.18)

10\ x4 1 1\ g4 (1 0
Pin = — —
0 0

= Pfin- (1.19)
11 0

N =

If we perform a measurement on the final state, we will get |0) state with prob-
ability one. Let us now assume that decoherence occurs in between the two
Hadamard operations and wipes out completely the off-diagonal terms. In this

case, the sequence of operations will be

1 0\ gy 10

Pin = —

11 1 1
— _>_
11 210 1 2

Deco.

= ppin- (1.20)

N —

Now p,, is not represents a qubit in |0) state, but rather a statistical mixture of
|0) and |1) states. If we now perform a measurement on the qubit, we will get

either |0) or |1) with equal probabilities.
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The above example of decoherence in a quantum computer is definitely an
oversimplification. Actually decoherence is a continuous process that progres-
sively eliminates the off-diagonal elements. In a more realistic situation, a quan-
tum computer consists of S qubits which interacts with an environment in ther-
mal equilibrium, the off-diagonal elements of the density matrix decay exponen-

tially fast at a rate vS [72], i.e.
pij(t) ~ pij(0)e"", (1.21)

where v = 1/74.¢ 1S a constant which is determine by the coupling of a single
qubit and the environment. The stronger the coupling, the higher v and conse-
quently the smaller the decoherence time 7y¢¢,-

Even though the decoherence establishes an important limit, it is impor-
tant to note that its effects vary from one problem to another. For example, in
Shor’s factoring algorithm the goal is to determine the period of the function
f(x) = a®*mod N where this period is hidden in the quantum superposition of
the computer [41]. Definitely the decoherence irreversibly transfers some infor-
mation from the quantum computer to the environment, but as long as the single
desired piece of information is retained, it is useful. Thus decoherence should
be taken into account both by the quantum hardware engineers and quantum
software designers.

Decoherence is a major obstacle to the realization of quantum computer. How-
ever some error correction codes exist which may be utilize to mitigate errors due
to decoherence. Until now, in the experimental front, we have only realized 5
qubits [73]. That means, Grover’s search algorithm [42] can be experimentally

implemented for a database of only N = 2°

= 32 entries. Experimentalists are
working hard to improve the present scenario, but still they have to march a very

long distance.

1.7 Motivation for the thesis

The title of the present thesis suggests that a major portion of the thesis is devoted

into the study of quantum chaos. As we have mentioned earlier, the most accepted
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definition of quantum chaos is that, a quantum chaotic system is a system whose
underlying classical dynamics is chaotic. That means quantum mechanical study
of classically chaotic systems is the subject matter of quantum chaos. Therefore,
a very good understanding of classical chaotic dynamics is prerequisite for the
understanding of quantum chaos.

A system which does not have sufficient number of invariants is called nonin-
tegrable system. Chaos is the property shown by these kind of systems. On the
other hand, the systems having sufficient number of invariants are called inte-
grable system. In many of the cases one can consider a nonintegrable system as
a perturbed integrable system. Therefore, to understand the nonintegrable sys-
tems, we should have thorough understanding of the integrable systems. In the
first part of the thesis we have presented our study on time-depended nonlinear
integrable systems.

We have already discussed about the importance of the study of the effect
of chaos on entanglement. Most of the results have emphasized that in general
chaos produces more entanglement than any regular systems. However its oppo-
site phenomenon has also been observed in the weakly coupled chaotic systems.
Therefore, more studies are required to safely make any general statement.

Let us now return back to the discussion of a recent work which has moti-
vated a major portion of my thesis [52]. In this work, the author has studied
entanglement in coupled standard map. Following is the stepwise summary of

this work:

- constructed unitary operator U of the form U = [Ui(k1) ® Uz(k2)]U(b) corre-
sponding to coupled standard map, where U;(k;)’s are the time evolution operators
corresponding to individual standard maps and U(b) is the interaction between
two standard maps. k;’s are the parameters of each standard map which deter-
mines chaos in the system. The parameter b is the coupling strength between two
standard maps. If the Hilbert space dimension of the each standard map is N,
then U is a N? x N? matrix.

- determined the eigenvectors {|e; ) } of U, wherei = 1, ... N2,

- constructed reduced density matrix for each {le; )}, i.e. p% = Tro1 (lei) (el

where 1 and 2 represent different subsystems.
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- determined the von Neumann entropy S‘(f)

for each |e; ).
- determined the average von Neumann entropy Sy = ﬁ Efg S‘(/i).

- studied Sy versus coupling strength b, for different Hilbert space dimensions N.

This study shows that entanglement increased with coupling strength, but after
a certain magnitude of coupling strength corresponding to the emergence of com-
plete chaos, the entanglement saturated. At this saturation the von Neumann
entropy Sy ~ In0.59N where N is the Hilbert space dimension of the participat-
ing subsystems. This saturation value is clearly less than the maximum possible
value Sy = InN. Similar saturation was also observed for a time evolving state
which was initially unentangled.

Since these results indicate that the Hilbert space dimension and chaos have
roles in the saturation of entanglement, hence coupled large spins are attrac-
tive models. A coupled kicked tops model has already been used in chaos-
entanglement context and we generalize it to include the case of unequal spins.
Moreover kicked top is a very well studied model of both classical and quantum
chaos. Using this model, we study entanglement production for strongly chaotic
and strongly coupled cases and we observe the saturation of entanglement with
magnitude Sy = In(yN), where N is the Hilbert space dimension of the smaller
subsystem and v is the parameter depends on the subsystems Hilbert space di-
mensions. For equal dimensional case v ~ 0.6, this is very close to the saturation
value observed in case of coupled standard maps. So our results indicate that the
entanglement saturation is an universal phenomenon.

Random matrix theory (RMT) has explained many universal phenomena of
chaotic systems. Therefore, it is very natural to expect that RMT will able to
explain the entanglement saturation. Later our expectation turns out to be correct
and using RMT we indeed able to estimate the entanglement saturation for both
equal and unequal Hilbert space dimensions of the participating subsystems.

As we have mentioned that the entanglement saturation is a property of two
strongly chaotic subsystems which are very strongly coupled. We have also stud-
ied entanglement for different underlying classical dynamics, like (nearly) regular,

mixed and chaotic cases ; and also for different coupling strengths. Our study
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shows that the coupling strength between two subsystems is a very crucial pa-
rameter for the entanglement production. As an example, for the weakly coupled
cases, the entanglement production corresponding to regular systems is signifi-
cantly more than the chaotic systems. However, for the strongly coupled cases,
we observe completely opposite behavior of the entanglement production.

Until now, we have discussed the effect of underlying classical dynamics on
the entanglement production for the initially pure state. However, we are also
interested to investigate the effect of underlying classical dynamics on the entan-
glement production corresponding to the initially mixed state. Absence of any
unique measure is a major obstacle to study the mixed state entanglement. Re-
cently, Werner and Vidal have proposed a computable measure of entanglement
called Log-negativity [74]. However, this measure also has a restriction which we
mention in Chapter 6. Nevertheless, we use the log-negativity measure to study
the effect of different underlying classical dynamics on the entanglement produc-
tion of the initially unentangled mixed state which is evolving under the coupled
tops time evolution operator. We find that the presence of chaos, in general,
enhances the mixed state entanglement production. In case of pure state, the
subsystem entropies (like the von Neumann entropy and the linear entropy) are
the measures entanglement. But these are no more the measures for the mixed
state entanglement. However, the subsystem entropies are still very important
quantities to investigate. Moreover, our studies show that the production of the
subsystem entropies and the entanglement production have some similar qualita-
tive properties. Existence of a statistical upper bound is one such property which
is common in both the above mentioned quantities. We use RMT to estimate the
statistical upper bounds (or the saturation value) of the subsystem linear entropy.

Beside the above study of the state entanglement, we also study the opera-
tor entanglement as a measure of the entangling power of a given operator. We
basically study the entangling power of a unitary time-evolution operator corre-
sponding to the coupled kicked tops, for different underlying classical dynamics
of the individual top and for different coupling strengths between the tops. The
operator entanglement production shows some properties which are similar to the

state entanglement production.
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1.7.1 Outline of the thesis

Including this present introductory chapter, the thesis is divided into six more
chapters. In Chapter 2, we discuss about our study on time dependent integrable
system. In the remaining chapters we discuss about entanglement and decoher-
ence in coupled chaotic systems where coupled kicked tops is used extensively
as a model system. Therefore, in Chapter 3, we discuss about coupled and sin-
gle kicked top. We also present the derivation of the correct classical map of the
coupled kicked tops. Chapter 4 is devoted to the study of the entanglement sat-
uration. In this chapter we give a detail RMT calculations of the entanglement
saturation. In Chapter 5, we present our detail study of entanglement production
in coupled kicked tops. We also make an attempt to relate complexity of a state
with its entanglement. In Chapter 6, we discuss the mixed state entanglement

and the operator entanglement. Finally we summarize the thesis.



Chapter 2

Time dependent nonlinear integrable

systems

The classical as well as quantum mechanical study of time dependent Hamilto-
nian systems which are generic is important. We know that for time independent
Hamiltonian systems the Hamiltonian itself is an invariant. However, when the
Hamiltonian is an explicit function of time, it is no more an invariant, and this
of course a reflection of the nonconservation of energy. Then a natural ques-
tion arises if any invariant exists or not. If it does, then the system becomes
integrable for 1-degrees of freedom systems and if not, there is a possibility of
more complicated behavior like chaos. Various methods have been used to obtain
approximate invariants for time dependent problems, e.g., the adiabatic approxi-
mation, the sudden approximation, time dependent perturbation techniques, etc.
But here we are interested in the determination of exact invariants.

The most widely studied time dependent integrable Hamiltonian is the time
dependent harmonic oscillator (TDHO). It has long been a problem of consider-
able interest because of its varied applications in different areas of physics. The
Hamiltonian of this system is given by

H() = 30 + 5 w*(0) .1

where p and ¢ are canonical conjugate variables. The adiabatic invariant for this
system was originally given at the first Solvay Congress in 1911 when the Hamil-
tonian of this system was used as an approximate Hamiltonian for the slowly

lengthening pendulum [75].

39
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The study of this 1-dimensional TDHO was greatly advanced due to the work
of Lewis [76, 77] and Lewis and Riesenfeld [78]. Lewis [76] determined the ex-
act invariant by applying Kruskal’s asymptotic method [79] and showed that a
previously known adiabatic invariant was in fact an exact invariant. Later Lewis
and Riesenfeld [78] determined that same invariant by starting with the assump-
tion of the existence of an explicitly time dependent, homogeneous and quadratic

invariant of the form given by

1

I(t) = 5 [a®)p® + B(t) ¢* + 27() P, (2.2)

where the coefficients «(t),3(t), and 7(t) are time dependent real functions and

I(t) satisfies the condition

dI _ oI B
=5 HILHWB}=0. (2.3)

Here {, } denotes the usual Poisson bracket. From Eq.(2.2), we have

%?:%kd‘2“@ﬂf+(5+Mnf+ﬂﬁ+a—ﬁwﬁmq, (2.4)

where the dots denote time derivative of the variables. In order to satisfy Eq.(2.3),

the coefficients of the dynamical variables should be individually equal to zero.

Therefore,
& = 20(t)y
B = —24 (2.5)
o= —a+ ()

It is convenient to define 8(t) = o%(t), where o2(t) is a real function of time. Sub-

stituting this in the above set of equations, we get,

v = —06 (2.6)

and @ = &° + 05 + Wi(t) o> (2.7)
From the first of Eq.(2.5) and from last two equations we get,

% (6% + 06 + W (t)0?) + 2w (t)o5 = 0

;»a%(&+w2(t)a)+3¢(&+w2(t)a) = 0. (2.8)
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After Integrating the above expression with respect to time ¢, we get,

. 2 _C
d+w(t)o = pt (2.9)

where c is an arbitrary real constant of integration. From Eq.(2.7) and Eq.(2.9),

we get

0= 4 (2.10)

C
o2
We have expressed all the time dependent functions («, 3,7) in terms of a single

time dependent function o(¢) and its derivatives. Substituting these in Eq.(2.2),

we get,
1

) c ;
I:§[<o2+ﬁ)q2+02p2+2UGPCI]a (2.11)

with Eq.(2.9) as a subsidiary condition. The absence of a time subscript on I

indicates that it is a constant over time. If we again define,

1

o(t) = cip(t) (2.12)

where p(t) is a new auxiliary function of time. In terms of p(¢), time dependent

functions (a, 8,7) become

1 . 1
alt) = c2 p2+?)
B(t) = c2p (2.13)
¥(t) = —2¢%pp.

Substituting above expressions in Eq.(2.2) and discarding the constant multi-

plicative factor c?, we get
1

. 1 :
I=; [p2p2+ (phﬁ) q2—2pppq], (2.14)

with p(t) satisfying the subsidiary condition

1
p+w(t)p— — =0. (2.15)
p

This more complicated, nonlinear, differential equation represented an advance

due to the reason that any particular solution p(t) of the above equation would give
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the exact invariant I for all initial conditions of p and ¢. The above is the method
followed by Lewis and Riesenfeld [78] to get the expression of the invariant I and
the corresponding subsidiary condition for the 1-dimensional TDHO.

Lewis [76] attempted to give an interpretation of I(¢) as the most general ho-
mogeneous quadratic invariant possible for the Hamiltonian of the 1-dimensional
TDHO. A more natural and physical interpretation has been suggested by Eliezer
and Gray [80] in terms of a 2-dimensional auxiliary motion, i.e., in terms of a 2-
dimensional uncoupled TDHO. They showed that the above subsidiary condition
Eq.(2.15) is the radial equation of motion for this 2-dimensional system and the
invariant I(t) is proportional to the conserved angular momentum of this auxiliary
motion. Glinther and Leach [81] interpreted I(¢) in terms of canonical transforma-
tions and under their transformation the invariant I(¢) became the Hamiltonian
of the 1-dimensional time independent harmonic oscillator of unit frequency.

We have interpreted the form of I(¢) chosen by LR [78] from the Lie-algebraic
point of view. The Hamiltonian of the 1-dimensional TDHO is formed by the
dynamical variables %pZ and %qQ. These two dynamical variables together with pq
are generators of the closed su(l,1) algebra under the Poisson bracket operation
and I(t) was chosen in [78] as the linear combination of the generators of that
closed algebra with time dependent coefficients.

The integrability of the 1-dimensional TDHO is not surprising, because this is a
linear system. We know, 1-dimensional time dependent Hamiltonians usually lead
to nonintegrability, e.g., a simple pendulum whose length varies in time. Except
for the adiabatic or small oscillation approximations, this was the problem posed
by Lorentz at the above mentioned Solvay congress and the solutions have the
possibility of displaying chaos.

Now a natural question is if there exist 1-dimensional time dependent nonlin-
ear Hamiltonians which are also integrable ? In fact, the singular oscillator with
a centrifugal force potential provides an important example whose kinematics is
still within the su(1,1) algebra. In Sec. 2.1, first, we describe the general Hamilto-
nian of the singular oscillator and then an important special case constitutes the
rest of the section. Sec. 2.2 is devoted to the quantum dynamical study of this

special case of the singular oscillator.
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2.1 The classical singular oscillator

For the determination of an invariant for the 1-dimensional TDHO, the subsidiary
condition Eq. (2.15) has to be integrated with some initial conditions, that is
we should be able to determine a particular solution. The subsidiary condition,
derived in Eq.(2.15), is a nonlinear, time dependent, equation and its integrability
is not immediately obvious. Let us assume p as a position variable, say ¢, then
Eq. (2.15) is the equation of motion corresponding to the Hamiltonian given by,

H(t) = % ( 24 %) + %wQ(t) 7, (2.16)

with ¥ = 1. This is another time dependent Hamiltonian which has also been
studied for long [82, 83]. The new nonlinear force in the system is a ‘Centrifu-
gal force’ and it appears in many integrable systems, including the celebrated
Calogero-Sutherland-Moser [84] many-body Hamiltonian.

The above Hamiltonian is formed by the dynamical variables 3 (p? + k/¢?) and
%qZ. These two dynamical variables together with p g, also form su(1,1) closed al-
gebra. Now from our algebraic interpretation of I(¢), we can assume the invariant
of this nonlinear Hamiltonian to be of the form

k
e

I(t) = %a(t) <p2 + ) + %ﬁ(t) 7 + 27(t)pa. (2.17)

Again by the same substitutions and identical procedure we get

1 k 1 (., 1 .
I=2p’ (p2+—2>+—<92+—2) @ — pppq, (2.18)
q 2 p

with the same subsidiary condition given in Eq.(2.15). But now the equation of
motion and the subsidiary condition are the same nonlinear equation. However
the fact that we need only one particular solution of this equation to determine
the invariant shows the power of this methodology and also the integrability of
the above Hamiltonian in Eq.(2.16). In Fig. 2.1 we have shown a special case
corresponding to w?(t) = 1 + cos(v/2t) where the existence of the invariant is

reflected in the regular structure.



Time dependent nonlinear integrable systems 44

Figure 2.1: Stroboscopic picture of the time dependent harmonic oscillator with a sin-
gular perturbation ; the integrable behavior is evident. All quantities shown are dimen-
sionless.

2.1.1 The kicked singular oscillator

Let us now consider a special form of the time dependent frequency
W () =w’T Y §(t — nT).
n

This form of w?(t), in case of the singular oscillator, allows us to construct a
nonlinear integrable map by integrating the Hamilton’s equations of motion in
between two consecutive kicks. Study of integrable maps are important for the
following reason. First, the dynamics of a mapping is more simple than the dy-
namics of a continuous system since it involves direct iterations. Second, if one
want to study numerically any integrable continuous system, it is absurd to use
nonintegrable numerical schemes that destroy the basic properties of the system.
Therefore, for a numerical studies of any integrable system, one has to find a
discrete integrable version of the system. The discrete map we discuss below,
or extensions thereof, for instance, may be used in the numerical studies of the

Calogero-Sutherland-Moser model. Lastly, we may argue that the discrete sys-
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tems are more fundamental ones since they contain continuous ones as special
limits.
Now we are interested in the Hamiltonian,
H(t):1 p2+£ +1w2Tq225(t—nT) (2.19)
2 q? 2 ~ '
and the corresponding Hamilton’s equations of motion are

k

- 2
po= 5w qunzé(t—nT) (2.20a)

qg=rp (2.20Db)
The equation of motion of the system is given by

. k
q+w2TqZ<5(t—nT)—q—3:0. (2.21)

n

This equation is the same as that of the subsidiary condition given in Eq.(2.15),
except for the constant k. If we integrate Hamilton’s equations of motion from just

after the nth kick to just after the (n + 1)th kick and define new scaled variables
p— k1/4T_1/2p and g — k1/4T1/2q,

the phase space map of the system will be

n

1
Qny1 = \/p% + po + @2 + 2qnpn (2.22a)

prt gt
Pn+1 = - Q%qny1, (2.22b)
dn+1

where ) = wT'. Here we want to point out that if we would have considered TDHO
with this special form of w?(t) and have followed the above procedure then we
would have got the well known linear map. The linear map can also be obtained
from the above nonlinear map by simply removing 1/¢? term, or equivalently by
substituting £ = 0 in Eq. (2.20a). After integrating the corresponding Hamilton’s

equations of motion in between two consecutive kicks, we get,

Gnt1 = Pn t+ @n (2.23a)

Pn+1 = Pn — 0? dn+1- (2.23b)
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-10 -

Yn

Figure 2.2: (a) Period-9 orbit of the nonlinear map for the case Q2 = 2[1 — cos(27/9)] =
0.4679, (b) quasiperiodic orbit for the case Q? = 2.43. All quantities shown are dimension-
less.

The linear map is very simple classically.

Let us now return back to the discussion of nonlinear map. We have plotted
the above nonlinear phase space map in Fig. 2.2. The phase space map clearly
shows regular behavior of the nonlinear map. This rather complicated looking
discrete map has a very simple behavior, reflecting the fact that this and a linear
map have common algebraic antecedents. Moreover, the property of the linear
map that exclusively quasiperiodic or entirely periodic behavior exists for different
values of the parameter has also been observed for the nonlinear map. For 0 <
Q? < 4 the motion is bounded and stable and for all other values the motion is
unbounded and unstable, in both the maps. The invariant in the case of the linear
map describes either an ellipse or a hyperbola. We now determine the invariant
of the nonlinear map using the method of LR.

According to Eq.(2.18) the invariant of this map would be of the form,

I= p2< n” + q%) + (/32 + %) an”> — 20 pPnn, (2.24)

n

where p satisfies the same subsidiary condition as given in Eq. (2.15), but now
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w?(t) = w?T Y, 6(t — nT). Now we have to determine any particular solution of
the subsidiary condition, and using that solution we will get the invariant of the
nonlinear map Eq. (2.22). As we know, the equation of motion of this nonlinear
kicked system is the same as that of the subsidiary condition for p, as shown in
Eq. (2.21), therefore if we are able to determine any solution of the nonlinear
map Eq. (2.22), that solution should also be the solution for p. Since Eq.(2.22)
is a nonlinear equation, hence there are infinitely many solutions exist. But the
most simple solution corresponds to the fixed point. Therefore the problem of
determining the invariant has been reduced to determining the fixed point of the
nonlinear mapping. That means, we have to solve the equations ¢,11 = ¢, and

pn+1 = pn. The solutions of these equations give the fixed point at,

. 2
T T - o (2.:252)
i Q3/2

= (2.25b)

This is a particular solution of p and p. Note that unlike the linear map whose
fixed point at the origin is independent of the system parameters, the fixed points
here move with the parameter and as the system approaches instability (22 — 4),
they approach infinity. Using the above solutions, we get the invariant of the
mapping within an arbitrary multiplicative constant as,
1
I=p;+ 2T 0* (¢2 + qnpn) - (2.26)
n
The lack of a time subscript on I indicates its constancy. This invariant is valid

even when the motion is classically unstable.

2.1.2 The classical evolution operator of the kicked singular oscillator

In this section, we study the nonlinear map from a point of view that simulta-
neously explains its dynamics as well as sets the stage for quantum mechanical
work. First we introduce the classical time evolution operator for studying the dy-
namics of the system. For a given dynamical variable, say V, the corresponding
Liouville operator is denoted by Ly and it is defined as Ly = {V,x}, where {x,}

denotes the usual Poisson bracket.
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We know the dynamical equation for any dynamical variable, say f, is given

by,

af _

where H is the Hamiltonian of the system and Ly is the Liouville operator corre-
sponding to H. Let us now define A = 1(p®+ q%), B=3;¢?and {4,B} = —pg= —2C,
i.e., C = —3pg. We also know, the triad (4, B,C) form the closed su(l, 1) algebra.

Then we can write,
Lp=|La+w’TLg) 6(t—nT)|, (2.28)
n

where L4 and Lp are the Liouville operators corresponding to A and B respec-
tively. These Liouville operators together with L¢, the Liouville operator corre-
sponding to C, forms the same su(l,1) algebra as that of (4, B, C) but now under
the Lie bracket operation, i.e., [La,Lg] = -2 L¢,|[L¢,Lal = La and [L¢, Lg] = —Lp.

In terms of these Liouville operators, Eq. (2.27) will become,

Z—J; = —Lyf=—|Ls+ w2TLB;6(t—'rLT) f- (2.29)

Integrating the above equation Eq. (2.29) in between the time ¢t =0 tot =T, we
get the classical time evolution operator from just after zero time to just after the
first kick. We write f(q(t =T),p(t=T)) =F f (¢ (t =0), p(t = 0)) where

F = exp (—w?T L) exp(—LaT) (2.30)

is called Perron-Frobenius operator. The Perron-Frobenius operator can also be
regarded as the classical Flouquet operator. To understand the dynamics for
time n, we have to determine the power F". The one parameter Abelian group
of the powers completely specifies the dynamics at all time. However, F is itself
a product of the exponential of two noncommuting operators which do not even
commute with their commutator L¢.

We now apply a recent operator method, following Rau [85], to derive the clas-
sical time evolution operator at any time. The general procedure of this method

is straight forward. Suppose we have any general time dependent Hamiltonian of
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the form,
H(t) =D ai(t)H, (2.31)
i=1
where (a;(t),7 = 1,...,n) are a set of linearly independent general complex
function of time and the dynamical variables (H;,7 = 1,...,n) are the genera-

tors of any n—dimensional closed Lie algebra. Corresponding Liouville operators
(Lg;,+ = 1,...,n), as we have already mentioned, would also form that same alge-
bra under Lie bracket operation. Then the corresponding classical time evolution

operator F'(t) can be expressed in the product form :
n
P(t) = ] explb;(t) Lu;]- (2.32)
j=1

Therefore, for the singular oscillator case, we can start with the time evolution

operator of the form :
F(t) = exp[X(t) L] exp[Y (t) Lc] exp|Z(t) Lal, (2.33)

where X (t),Y (t) and Z(t) are real functions of time. From the initial condition
F(0) = 1, we have X(0) = Y(0) = Z(0) = 0. Substituting this product form of
F(t) in Eq. (2.29), and repeatedly applying the Campbell-Baker-Hausdorff (CBH)
formula we can cast it into a form such that F(¢) is pushed to the extreme right
in the LHS of the equation Eq. (2.29). This yields a set of first order differential

equations for the introduced functions of time :
X = —X?-u’T ) 4(t—nl),
n

v = 2x, (2.34)
Z

= —e Y.

In the equation Eq. (2.33) we can choose the exponential operators in different
orders, but we find that this leads to sets of differential equations whose solutions
may not even exist for such kicked systems.

Integrating the above equations in between two consecutive kicks and rescal-

ing

Z
zr=TX, y=Y, and 2=
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we get a nonlinear mapping, a “coefficient” mapping for the new dimensionless

variables (z,y, z):

Tn
Tntl = o 02 (2.35a)
Yni1 = yn—log [(1+2,)?], (2.35b)
1
Zn+l = 2n + m(xn—kl - xn) (235C)

To be explicit the n-th power of the operator F is
F" = exp|z, T Lp| exp|yn Lc] exp|zn La/T). (2.36)

From the initial condition F® = 1, we have zy = yy = 2z = 0. The time develop-
ment is now entirely buried in the scalar functions z,, y,, and z,.

The most important of the recursion equations in Eq. (2.35) is the first one.
We have solved this nonlinear map by constructing an auxiliary two dimensional
linear map. This is not entirely surprising as lurking behind the one dimensional
nonlinear singular oscillator is a two dimensional linear one. This gives a new
insight into the often stated close relationship between the harmonic oscillator
and the singular oscillator.

Let us first define s, =1 + z,,, and in terms of s,,, Eq. (2.35a) becomes

1
gl = 7 — —, (2.37)

Sn
where n = 2 — Q2?, and from the initial condition zy = 0, we have sy = 1. Construct

the auxiliary linear map:

an+1 _ n —1 Qn (2.38)

bp+1 1 0 b,
with initial conditions ay = by = 1. We identify s, = a, /by
To get the general form of s,, we have to diagonalize the matrix
M= ((777 _1)7 (13 0))

The eigenvalues of M are,

Ay = % (n + /= 4) . (2.39)

Whether ). is real or complex is dependent on 7. Therefore just as for the linear
map we have to study separately three different regions for the parameter 7, these

are :
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Case 1: 72 <4,ie, 0<0%<4

In this case the eigenvalues of M are complex-conjugate of each other, i.e., we can

write

2—Q?
A+ = exp(+io), where o =cos™'(5/2) = cos™? ( 5 ) .

The dynamics is stable and bounded. After diagonalizing the matrix M, we deter-

mine a, and b, to finally get:
Zn, = coso — sino tan [(Qn — 1)%] —1. (2.40)

In terms of z we can obtain the solution for y and z as :

n—1
yn = —2) log|l 4z, (2.41)
k=0
Z
PARES Q—”Q (2.42)

When o = 2mm/N, where m and N are coprime integers, one sees, after some

algebra, that

In = Tpn+Ny Yn = Ynt+N, 2n = Zpn+N-

Therefore for these particular values of ¢ (or of the corresponding value of ), the
above three-dimensional map for the coefficients is exactly periodic. To be explicit

at these values of the parameter

FN =1, (2.43)

the Perron-Frobenius operator becomes unity at time N. The quantum equiva-
lence to be discussed below will be complete and the Flouquet unitary operator
will become unity at the same time. Fig. 2.3 shows the coefficients for a periodic
case. Since the coefficient z is proportional to z, it would follow the same behavior
as z. This map in Eq. (2.22) would also be periodic with the same period, and
corresponds to the phase space shown in Fig. 2.2(a). For other values of 2, this
map is quasi-periodic. Equivalently, the phase space map Eq. (2.22) also displays

the above behavior for corresponding values of Q. This shows that our operator
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Figure 2.3: The coefficients of the time-evolution operator showing the period-9 behavior
for the same Q2 as in Fig. 2.2(a). Shown are the z (a) and y (b) coefficients. All quantities
shown are dimensionless.

approach for studying the classical map is in one-to-one correspondence with the
phase space dynamics. Fig. 2.4 shows the coefficients for a quasi-periodic case,
corresponding to the phase space in Fig. 2.2(b). Again the behavior of z is same
as z.

Case 2: 72 >4,ie,Q?>40r0%2<0

We can divide this case into two parts. They are :

(@ n>2ie, 02<0:

In this part the eigenvalues of M are real and positive. Therefore we can take

2 -2
A+ = exp(+0), where o = cosh™'(n/2) = cosh™ ( 5 )

In this part the dynamics is unstable and unbounded (hyperbolic). Again following
procedures as outlined above, we get

g

T, = cosho + sinho tanh [(2n -1) 2] - 1. (2.44)
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0 50 100

Figure 2.4: The coefficients of the time-evolution operator showing the quasi-periodic
behavior for the same 9? as in Fig. 2.2(b). Shown are the z (a) and y (b) coefficients. All
quantities shown are dimensionless.

In this case the solution for y and z would also be the same as that given in
Eq. (2.41). However, the basic properties of z,y and z would change due to the
unstable and unbounded dynamics, and this is evident from the above equations.
For large n, both z and z asymptotically reach a constant value that depends on

the magnitude of 2.
Too = Ay — 1, 200 = iL‘oo/Q2.

However, y would increase linearly with n, when n is large.
(b) n < —2, i.e., Q2 > 4.

Here both the eigenvalues of M are real and negative. Thus we can take

2 — 02
A+ = —exp(+o) where o = cosh_1(|77\/2) = cosh™! (|27|> .

In this part the dynamics is still unstable and unbounded; it corresponds, in

the linear map, to hyperbolic fixed point with reflections. On following the above
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procedures, we get

g

T, = —cosho — sinho coth [(Zn — 1)2] - 1. (2.45)

The solutions for y and z still remain the same, and their behavior for large values

of n are qualitatively same as that of the previous part.

Case 3: )’ =4,ie., > =00r O’ =4

These cases correspond to the marginal ones separating the stable and unstable

motions. We can divide this case also into two parts. They are :
(@) n=2ie., Q2=0.

Here the eigenvalues of M are equal, AL = 1 . The kick is not operating on the
system. This implies that in the expression of the time-evolution operator F,
z =y = 0. Therefore F' contains only one exponential and hence the coefficient
z would increase linearly with time. This can also be seen as a limiting case; as

from Eq. (2.35a), (2,41 — z,,) — —Q? and the Eq. (2.35c¢) gives z, = —n.
(b) n = -2, i.e., Q% =4.

Again, the eigenvalues of M are equal, but now Ay = —1. We can get the solution

for the coefficients quite easily and these are given by,

2n+1
= — -1 2.46
Tn m—1 ; ( a)
yn = —2log|2n —1|, (2.46Db)
T
2y = Q—g (2.460¢)

For large n, the coefficients z and z asymptotically reach constant values (—2 and
—1/2), while the magnitude of y increases logarithmically. Thus this marginal
case straddling the stable and the reflective hyperbolic cases would have power

law behaviors in time for phase space variables.

2.2 Quantum dynamics of the kicked singular oscillator

Quantum mechanical studies of the time-dependent singular oscillator have been

carried out for some time now, for instance in [83] where complete analytical
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solutions were given. We have exploited our algebraic method to the special case
of the kicked oscillator to lay bare properties such as exact periodicity and quasi-
periodicity. In fact, except for a change of terminology, the mathematics is already
complete in the previous section.

During the study of the classical nonlinear map, we introduced the classi-
cal time evolution operator to show the one-to-one correspondence between the
nonlinear and the linear map. While classically this is not the usual approach to
dynamics, in the case of quantum dynamics, the most natural and popular way is
to study the quantum time evolution operator U(t). Thus our classical approach
generalizes most easily to the quantum. Previous work [86] that points out ex-
act quantume-classical correspondence in the case of the su(1,1) algebra for the
coefficients of the invariant is easily understood in our approach.

We define the operators as in the classical case:
~ 1 1 .
A= (p®P+ = B =
2 (p ' (12) |

where (4,B,C) form the closed SU(1,1) algebra which is given by [4,B] =
2hC, [C,A] = hA and [C,B] = —hB. Among these operators C is anti-hermitian

@, and [4,B] = —Zh(pq + ip) = 2kC,

and the other two are hermitian. In terms of these operators our Hamiltonian

would be,

H(t) = A+ w’TBY 6(t—nT), (2.47)
n
The time-evolution operator U (t) satisfies the equation,

ih——— = H(t) U(t), (2.48)

where U(0) = 1 and U(¢) is unitary.
The quantum Flouquet operator [)’(t = T), which we denote simply as U, is

given by
U= exp (—% w? TB) exp (—%TA) . (2.49)

For the complete dynamics, as usual, we have to determine the powers U”. Again

we apply Rau’s [85] method for the derivation of the time evolution operator at
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any arbitrary time. We start with the time evolution operator of the form,

O(t) = exp [%X(t)B] exp [% Y(#) c“] exp [% Z(t)fi], (2.50)

where X (t),Y (t) and Z(t) are real functions of time, so that U(t) remains unitary.
From the initial condition U(0) = 1, we have X(0) = Y (0) = Z(0) = 0. Substitut-
ing the above U(t) in Eq. (2.48), following identical procedures as given for the

classical dynamics, we get

X = —-X?-u’T ) 4(t—nl),
= 2X, (2.51)
Z = —e Y.

These set of equations for the quantum coefficients are identical to the equations
for the classical coefficients as given in Eq. (2.34). Therefore we would get an
identical map for the quantum coefficients as for the classical coefficients Eq.
(2.35). Since these two maps are identical, their stability properties are identi-
cal, i.e., quantum dynamics exactly follows its classical counterpart. Thus when
the classical Perron-Frobenius operator becomes identity as in Eq. (2.43) the
Flouquet operator also becomes identity. The various cases discussed classically,
including the marginal and the reflective hyperbolic cases have exact quantum
counterparts. Thus as far as time evolution is concerned the quantal problem is

already solved.



Chapter 3

Coupled Kicked Tops

In the previous chapter, we have discussed about our work on the integrable sys-
tems. Now, from this chapter onwards, we will discuss about the nonintegrable
systems. The principal goal of our study of nonintegrable systems, especially of
the chaotic systems, is to observe the effect of classical dynamics on the quantum
entanglement. It has been observed that, in general, entanglement production is
higher for the stronger chaotic cases. However, an earlier work [52] showed that
though there exists a maximum kinematical limit for the entanglement, dynam-
ically it is not possible to create it by using chaotic dynamics. There exists a
statistical upper bound on entanglement, which depends on the Hilbert space
dimension of the system. Since the Hilbert space dimension is the crucial pa-
rameter for the above mentioned saturation of the entanglement, a nonintegrable
large spin system is an ideal model for our study.

A kicked top is one such system which has been studied extensively as a model
for both classical and quantum chaotic system [87]. If we fix the spin size of this
system, say at j, then we are also fixing its Hilbert space dimension N = 25 + 1.
Moreover, due to the finite dimensional Hilbert space, we need not to artificially
truncate the corresponding time evolution operator during any numerical study.
We know, for the entanglement production, the system should have at least two
interacting subsystems. Therefore we consider the coupled kicked tops as the
model system for our study. Moreover, this system has already been used in
the context of ‘chaos and entanglement’ in Ref.[50], but in this reference the cor-

responding classical map presented was unfortunately incorrect. Moreover, the

57



Coupled Kicked Tops 58

map was not even canonical, a fundamental property of a Hamiltonian system.
Hence we derive the correct classical map corresponding to the coupled kicked
tops which satisfy canonical properties. We devote this chapter to present our
derivation of the classical map and to discuss the dynamical properties of both
coupled kicked tops and single kicked top. The classical map of the single kicked
top can be derived simply from the coupled kicked tops map by putting the cou-
pling strength between two tops equal to zero.

We divide this chapter into three sections. In Section 3.1, we present Hamil-
tonian of the single kicked top and of the coupled kicked tops. We derive the
classical map of this system in the large spin limit by defining the quantum time
evolution corresponding to the coupled kicked tops. In Section 3.2, we discuss
about the classical dynamical behaviors of the single top for different parameter
values. Finally, in Section 3.3, we discuss how the stability of some of the fixed
points and the short periodic orbits of the single top change with the system pa-
rameter and how these changes lead to regular — chaos transition. We only
discuss the stability of some of those fixed points and periodic orbits which are

clearly visible by naked eyes.

3.1 Derivation of the classical map corresponding to coupled

kicked tops

The single kicked top is a spin system, characterized by an angular momentum
vector J = (J, Jy, J,), where these components obey the usual SU(3) angular
momentum algebra, i.e. [J;, J;] = igy,Jy. Here we set Planck’s constant to

unity. The dynamics of the top is governed by the Hamiltonian [87] :

+oo
H(t) :pr+2%J§ S 6t —mn). (3.1)

n=—00
The first term describes free precession of the top around y-axis with angular
frequency p, and the second term is due to periodic §-function kicks. Each such
kick results in a torsion about z-axis by an angle proportional to J,, and the
proportionality constant is a dimensionless constant k/2j. Now, to study the en-

tanglement between two tops, we consider the Hamiltonian of the coupled kicked
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tops which can be written, following Ref. [50], as :

H(t) = Hi(t)+ Ha(t) + Hio(t) (3.2)

k;
where H;(t) = pz-in+2—sz2i%:(5(t—n), (3.3)
Hip(t) = §J21J22Z(5(t—n), (3.4)

where ¢ = 1,2. Here H;(t)’s are the Hamiltonians of the individual tops, and H;2(t)
is the coupling between the tops using spin-spin interaction term with a coupling
strength of ¢/j. All these angular momentum operators obey standard commu-
tation relations. For the rest of the thesis we will only concentrate to the case
p1 = p2 = w/2. This special choice of the angular frequencies will simplify both
the quantum and classical maps. Since J? and J,,’s are four mutually commut-
ing operators, the simultaneous eigenvectors of these operators we take as our
basis. In general, this basis is denoted by |ji, m1; j2, m2) = |j1,m1) ® |j2, m2), Where
J2|ji,mi) = §i(Gi + 1)|ji,ms) and Jy,|j;, m;) = m4|ji,m;). The individual top angular
momentums, j; and js, could in general be different.

The time evolution operator, defined in between two consecutive kicks, corre-

sponding to this coupled Hamiltonian is given by,
Ur = US(UL @ Us) = US, [(U{“Ulf ® (UfU{)] , (3.5)
where the different terms are given by,
T kK
Uif = exp (_15‘]%’) ; UZ-’C = exp (—22—ij1,) ,
U1€2 = ¢exp (_ZEle‘Im) ’ (36)

and as usual 1 = 1,2.
The corresponding classical map of the coupled kicked tops discussed above
can be obtained from the quantum description with the Heisenberg picture in

which the angular momentum operators evolve as:
I(n +1) = ULI(n)Ur. (3.7)

Let us now determine the explicit form of the angular momentum evolution equa-

tion for each component of the angular momentum. Here we present the time-
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evolution of different components of the angular momentum vector J; correspond-

ing to first subsystem are (see Appendix):

1 . k 1
J;l = U}leUT = E(le +1Jy, ) exp [z; (—Jw1 + 5) ®exp( z;Ju)
1 k 1 ) €
+ 5 Xp [—7,; (—Jxl + 5)] (Jy, — 4 y1) exp (Zij) (3.8a)
1 k 1
Jél = U}JleT = 5 —(Jz +idy, ) ex [z; (—le + 2)] ®exp( ;Jw2>
1 k 1 €
-9 €Xp [—13 (_le + 5)] (Joy —idy,) @ exp (Zij) (3.8b)

J. = UbJ,Ur = —Jp,. (3.8¢)

The time-evolution of the components of J2 can be obtained by interchanging
the index 1 and 2 in the above expressions. We proceed by rescaling the angular
momentum operator as (X;,Y;, Z;) = (Jy;, Jy;, J2;) /7, for i = 1,2. Components of this
rescaled angular momentum vector satisfy the commutation relations, [X;,Y;] =
iZ;/3,Y:, Z;) = iX;/j and [Z;, X;] = 1Y;/j. Therefore, in j — oo limit, components
of this rescaled angular momentum vector will commute and become classical
c-number variables. Consequently, in this large-j limit, we obtain the classical

map corresponding to coupled kicked tops as,

X] = ZycosAjp+YisinAj, (3.9a)
Yll = —Z1 sin A12 + Yl COS A12 (39b)
Z{ = —X1 (39C]
Xé = Zycos Ay + Yosin Agg (3.94)
Yv2’ = —Z2 sin A21 + Y2 COS Agl (396)
Zy = —Xo (3.9
where
Ao =kX1+eXq; and Ag; = kXo +€Xy. (3.10)

The difference between the map presented above and which was derived in [50]

lies in the form of the angles Ajs and Ay;. However, these minute differences
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are very important. The above map is canonical. It satisfies all Poisson bracket
relations like {X!, Y/} = Z!, {Y/}, Z!} = X! and {Z], X|} = Y/, where i = 1,2; and
Poisson brackets of any two dynamical variables corresponding to different tops
are equal to zero. In contrast the classical map presented in [50], satisfies the first
three Poisson bracket relations, but the Poisson brackets of any two dynamical
variables corresponding to different tops are nonzero and they are proportional to
the coupling strength e, implying that the map is canonical only in the uncoupled

limit.

3.2 Dynamical properties of the single kicked top

We have already mentioned that the classical map corresponding to the single
kicked top can trivially be obtained from the expressions of the classical map
corresponding to the coupled kicked tops by substituting the coupling strength
e equal to zero. Therefore, from Eq.(3.9) and Eq.(3.10), we get the classical map
corresponding to the single kicked top, whose Hamiltonian is given in Eq.(3.1)

(where p = 7/2), and that map is given by

X' = ZcoskX +YsinkX (3.11a)
Y' = —ZsinkX +YcoskX (3.11b)
7' = _X. (3.11c)

We shall sometime use the shorthand X = F (X) for the above map. From the
above expressions, it is clear that the variables (X, Y, Z) lie on the sphere of radius
unity, i.e., X? + Y2 + Z? = 1. This constraint on the dynamical variables restricted
the classical motion to the two-dimensional surface of a unit sphere. Following
the usual procedure, we can parameterize the dynamical variables in terms of the
polar angle # and the azimuthal angle ¢ as X = sinf cos¢, ¥ = sinf sin¢ and
Z = cosf. In Fig.3.1, we show a schematic diagram of a unit sphere and also
show the relation between the Cartesian coordinates ( X, Y, Z) and the spherical
coordinates (¢, #). In terms of this new (¢, ) variables, the above map looks
very complicated, and therefore we do not display that map. Moreover, during

our numerical iterations we use the above three-dimensional form of the map,
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Figure 3.1: Schematic diagram of a sphere. This show the relation between the spherical
coordinates (¢, §) with the Cartesian coordinates (X, Y, Z). Atz = £1,6 = 0 and «, but
¢ is undefined.

and after every iteration we get back the corresponding (¢, #) from the relations
¢ = tan 1 (Y/X) and cos® = Z, where ¢ and cos § are the canonical coordinates on
the sphere.

In Fig.3.2, we present the phase space diagrams of the single top for different
values of the parameter k. For k£ = 1.0, as shown in Fig.3.2(a), the phase space
is mostly covered by regular orbits, without any visible stochastic region. As
we further increase the parameter, regular region becomes smaller. Fig.3.2(b) is
showing the phase space for £ = 2.0. Still the phase space is mostly covered by the
regular region, but now we can observe a thin stochastic layer at the separatrix.
For the change in the parameter value from k£ = 2.0 to k¥ = 3.0, there is significant
change in the phase space. At k = 3.0, shown in Fig.3.2(c), the phase space is of a
truly mixed type. The size of the chaotic region is now very large with few regular
islands. Fig.3.2(d) is showing the phase space for £ = 6.0. Now the phase space is

mostly covered by the chaotic region, with very tiny regular islands.

3.3 The transition from regular to chaotic dynamics: A de-

tailed study

In Fig.3.2, we show the transition of the dynamics of the single (uncoupled) top

from highly regular to highly chaotic with the increment of the parameter k. We
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Figure 3.2: Phase space pictures of the single top, corresponding to different parameter
values, are presented. (a) k¥ = 1. Phase space is mostly covered by the regular region.
(b) ¥ = 2. The phase space is still very much regular, but now a thin stochastic layer
can be observed at the separatrix. (c) & = 3. The phase space is truly mixed type. Few
regular elliptic islands are visible inside the chaotic region. (d) ¥ = 6. The phase space is
almost covered by the chaotic region with few tiny elliptic islands. The solid circle (e) is
the point at which we will construct the initial wavepacket during our study of the pure
state entanglement production (Chapters 4 and 5).

now elaborately study the changes in the stability properties of some of the fixed
points and the short periodic orbits as a function of the parameter k. A stable
to unstable transition of the periodic points leads to chaos. Therefore, this study
will give us better understanding of the classical dynamics of the kicked top. Let
us first look at the fixed points of the map F. There are two trivial fixed points at
X = (0, +1, 0) which exist for any arbitrary values of k. On (¢, §) surface these
points are at (:|:7r /2, m/ 2). The non-trivial fixed points appear at sufficiently larger
value of k. We determine the non-trivial fixed points by substituting X = F(X) =
X in Eq.(3.11) and we get

z=—x, Yy = xcot (kg) . (3.12a)

Substituting the above expressions in the constraint z2 + y? + 22 = 1, we get an
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Figure 3.3: Phase space pictures of the single top, corresponding to two different pa-
rameter values, are presented. (a) k¥ = 1.5. The phase space is predominantly regu-
lar. Solid circles (e) are representing the trivial fixed points. (b) ¥ = 2.1. The phase
space is still regular, but now a thin stochastic layer can be observed at the separa-
trix. Two trivial fixed points (e) have become unstable. One of the trivial fixed point
bifurcates into a pair of new fixed points (M), which we call non-trivial fixed points.
The other trivial fixed point bifurcates into a period-2 orbit (A). The trivial period-4
[(¢;0 =0,7), (¢ =0, mor —m; § = 7/2)] orbit is also clearly visible in both the cases.
Note that the points at ¢ = 7 and at ¢ = — 7, are basically same points on the surface of
the sphere.

algebraic equation for the z-coordinate as

sin? kz
f(.'L') = 0, Where f(.Z') = m —_ .’L'2. (3.12b)

2
We get the non-trivial fixed points at different values of k by substituting the
numerical solutions of Eq.(3.12b) in Eq.(3.12a).

To understand the stability properties of these fixed points we need to linearize
the map X = F (X) around those fixed points. The constraint 22 + y2 + 22 = 1
fixes one eigenvalue of the linearized map F'(X) at unity and hence this is irrele-
vant for stability. This implies that the motion is restricted on a two-dimensional

space (surface of the sphere z2 + 32 + 22 = 1). From the other two eigenvalues,
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Figure 3.4: Phase space pictures of the single top are presented for the following param-
eter values. (a) £ = 4.4. The non-trivial fixed points (M) and the period-2 orbit (A) are
stable. (b) & = 4.5. The non-trivial fixed points and the period-2 orbit have become unsta-
ble, and they bifurcate into new periodic points. (c¢) ¥ = 4.6. Remnant of the non-trivial
fixed points and the period-2 orbit are still visible due to the presence of the new stable
periodic points. (d) £ = 4.8. The new periodic points have also become unstable, and
there are no sign of any remnant of the non-trivial fixed points and the period-2 orbit.
The trivial period-4 orbit is unstable for all the above parameter values and therefore we
do not see it.

we get the stability condition
|Tr F'(X) — 1| = |kz + coskz — 1| < 2. (3.13)

The above stability condition shows, that the trivial fixed points are stable only
for £ < 2. In Fig.3.3, we show these trivial fixed points for the parameter values
k = 15and k = 2.1. At £ = 1.5 these fixed points are stable, shown in Fig.3.3(a)
and at £ = 2.0 these fixed points are marginally stable, shown in Fig.3.2(b). But
at £ = 2.1, we can see in Fig.3.3(b) that these fixed points have become unstable
and each point has bifurcated into a pair of new stable points. However, the peri-
odicity of these two pairs of new stable points are different. A pair of points which
appears due to the bifurcation of the trivial fixed point at (7r /2, w/ 2) are two new

fixed points. We mark these fixed points by the solid squares in Fig.3.3(b). These
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two fixed points are actually the first set of non-trivial fixed points which satisfy
Eq.(3.12) and we can go from the one fixed point to the other fixed point by a ro-
tation of m about y-axis. Using MATHEMATICA 4, we solve the nonlinear algebraic
equation given in Eq.(3.12b) and get the solution z = +0.263550. Substituting this
solution in Eq.(3.12a), we get y = 0.927945, z = F0.263550. In spherical coordi-
nates (¢, #), location of the non-trivial fixed points are (1.294069, 1.837497) and
(1.847524, 1.304096 ). On the other hand, the trivial fixed point at (—=/2, 7/2) bi-
furcates into a period-2 orbit which is marked by the solid triangles in Fig.3.3(b).
The period-2 points can be obtained from the non-trivial fixed points by a
rotation of —7 about z-axis, where negative sign implies anti-clockwise rota-
tion. Therefore the period-2 points exist at (0.263550, —0.927945, 0.263550) and
(—0.263550, —0.927945, —0.263550). In terms of the spherical coordinates, the
period-2 points are located at ( —1.847524, 1.837497 ) and ( —1.294069, 1.304096 ). Sta-
bility analysis shows that the above mentioned non-trivial fixed points and the
period-2 orbit become unstable when k£ > V27 ~ 4.442883 [87]. For k = 3.0,
shown in Fig.3.2(c), we can clearly observe the stable non-trivial fixed points and
the period-2 orbit. In Fig.3.4, we present four phase space diagrams for the pa-
rameter values k = 4.4, 4.5, 46and4.8. At k = 4.4(< +/27), shown in Fig.3.4(a),
we observe the stable non-trivial fixed points (marked by solid squares) and the
period-2 orbit (marked by solid triangles). But at & = 4.5(> +/2r), shown in
Fig.3.4(b), we now see that each above mentioned stable point has become un-
stable (marked as usual by solid squares and solid triangles) and has bifurcated
into a pair of new stable periodic points. Now at k£ = 4.6, presented in Fig.3.4(c),
due to the presence of the new stable points, we at least identify the unstable
non-trivial fixed points and the unstable period-2 orbit. However, at £ = 4.8, we
do not see any remnant of those fixed points and the period-2 orbit by the naked
eye. That means, with an increment of the parameter k£ from 4.6 to 4.8, all the new

periodic points have also become unstable.

Let us now discuss the stability of a trivial period-4 orbit (0,0, 1) L
(1,0,0) RN (0,0, 1) RN (-1,0,0) RN (0,0,1). In terms of spherical coordi-

nates, these points are located at (¢, 0 = 0) RN (¢ = 0,0 = 7/2) R (¢,0 =

) R (¢p = 7,0 = w/2) RN (4,606 = 0). When § = 0 and § = 7, ¢ can take
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any arbitrary values in between (—m, 7). These points are actually two poles on
the z-axis (See Fig.3.1 for clarification). A comparison between Fig.3.1 and all the
other figures [ Fig.3.2 - Fig.3.4 | shows that the two poles at z + 1 have become
two lines at # = 0 and § = « where ¢ € [—7r, 7r]. In Figs. 3.2 and 3.3, we clearly
observe the presence of the above mentioned period-4 orbit. From the stability
analysis, it can be shown that this period-4 orbit exists for all values of k, but it
is stable only for (2 cos k + k sin k)?> < 4 [87]. In Fig. 3.4, we are not observing
the period-4 orbit. Because, in the parameter range k € [4.4, 4.8], this period-4
orbit is not stable. However, at £k = 6.0, the period-4 orbit has again become sta-
ble and we observe its reappearance in Fig.3.2(d). These disappearances and the
reappearances of the period-4 orbit will go on with the increment of the parameter
k.

Appendix

Derivation of the classical map corresponding to coupled
kicked tops :

Let us define ladder operators,

JH: = Jxl + Jy1 ; J1_|_ = J1_
J1+|m1) = le |m1 + 1) and J1_|m1) = Dm1|m1 — 1> (3.14a)
where C,,, and D,,, are known functions of j and m; and |m;) are the standard

angular momentum basis states. We can write J,, = (Ji+ + Ji—)/2 and J,, =
(Ji+ — J1—)/2i. Therefore,

1 1

Jo®L, = 5U}(JI+ ® L)Ur + EU}(Jl_ ® L)Ur, (3.14b)
1 1

JoelL = 2—Z,U}(J1+ ® L)Ur — 2—Z,U}(J1, ® L)Ur, (3.14¢)

where the terms present at the right hand side are the Hermitian conjugate of

each other. Therefore, it is sufficient to determine only one term. Here we will
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calculate the first term explicitly. We have
Ul(Jip ® L) = (Uy © U2)TUS (J14 ® L)US(Ur @ Ua). (3.14d)
In |mq, me) basis, Uf;(JlJr ® 1)Uy, is,
(ma, ma|UF (14 ® I2)Ufy|ma, o)

€
= exp |i-(m1 — nl)mg] (m1|J14|11)0mynsy

L J
= exp z§(m1 — n1)m2] Chni0mi ni+10mans
= exp z§m2] Crar sy +10mms- (3.14e)
The above expression can also be written as,
(m1, ma| Uy (Jis ® B)Ufp|ni,m) = (ma,ma|Jiy ®exp (iEJn) 1, m2)
= US (e @ L)YUS, = Jiy ®exp (éJ) . (3.141)
Therefore,

U}(JH— @ L)Ur = (U1 eU)! [J1+ ® exp (1§Jzz>] (UL @ Uy)

L€
= Uln,th) e [Ug exp (sz@) UQ] (3.14g)
Now,

.
vin,v, = vl'vr g, vru!
- U{TJ{’JFU{, where {’+EU{”J1+U{“_ (3.14h)

In {|m1)} basis, Ji', can be written as,

i
(malJiIn1) = (ma|UF Ji Uf|na),
C
= exp 22_]' (m% — n%)} (m1|J14|n1),
= ex ﬁ 2_n?) | C, b
= P 22]- (m1 nl) n19%my,ni+1,
[k 1
= exp -13 (’nl + §>:| Cn15m1,n1+1’
k 1
= (mi|J11 exp Z; Jz1+§ |n1)

1

k
= J. = Jipexp [z‘; (le + 5)] (3.141)
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Therefore,

k 1
Ul g, U = Uf" Ty exp [i; (le + 5)] ul. (3.14j)

The operator Ulf is the rotation operator about y—axis with angle n/2, therefore

UlfT(le, Jys le)Ulf = (Jz, Jy1, —Jz, ). Hence we have

. k 1
Ul UL = (J,, +iJy,) exp ['z; (—Jm + 5)] . (3.14K)

Now we will calculate the other term of Eq.(3.14g), i.e.,

UJ exp (z’?J@) U, = UJ'UF exp (¢§Jz2> vkud

= U2fT exp (i;JzQ) U2f [ since [Uf, JZQ] = 0]
= exp (—z‘ ?sz) [ since UQf is rotation matrix] .(3.14])
Substituting all the above results in Eq. (3.14g), we get,
Ul(Jiy ® L)Ur = (s, +iJ,) exp [z? (—le + %)] ® exp (—z’?sz) . (3.14m)
By taking Hermitian conjugate of the above expression, we determine
Ub(Ji— ® L)Ur = exp [—% (—le + %)] (Joy —idy,) ® exp (Z§J$> . (3.14n)

Substituting, last two expressions in Eq.(3.14b) and in Eq.(3.14c), we will get
Eq.(3.8a) and Eq.(3.8b).
Let us now derive the time evolution of J;,.
J.®L = Uh(J, ®L)Ur
= (U1 ®@ U)'UG(], ® L)US (U @ Up)
= (Ul @U)(J., @ L)(U1 @ Uy) [since [Ufy, J., @ L] = 0]
= vl
= vf'vt' s, vtu!
= U{'J,U/ [since [UF,],,] = 0]
= exp (igJyl) J,, exp (—iEJyl)

2
Therefore, J,, = —Jy,. (3.140)

Thus we get Eq.(3.8¢).



Chapter 4

Quantum Entanglement and Random
Matrix Theory (RMT)

In the introductory chapter we have discussed extensively about chaos, entan-
glement and the effects of the former on the later. Saturation of entanglement
among the participating subsystems is one interesting property shown by the
coupled chaotic systems. This was first observed during a study of entangle-
ment in coupled standard map [52]. The saturation of entanglement is observed
in the eigenstates of the coupled chaotic systems and also in the time evolving
states evolving under coupled chaotic dynamics. The saturation value depends
on the Hilbert space dimensions of the participating subsystems and is less than
its maximum possible value. This result also implies that, though there exists
a maximum kinematical limit for entanglement, dynamically it is not possible to
create it by using generic Hamiltonian evolutions on unentangled states. We want
to emphasize that these upper bounds are statistical and are more unlikely to be
violated the larger the Hilbert space dimension.

Since the Hilbert space dimension and chaos have roles in this bound for en-
tanglement, a coupled kicked tops is an attractive model. The single and coupled
kicked top has already been discussed in the previous chapter ; we generalize

it here to include the case of unequal spins and symmetry breaking terms. The

70
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Hamiltonian of the coupled top system used is :

k
HEt) = ~J,+ —(Js + o)’ Z 5(t —n)

2 21
n—=——od
s k
+ EJy2+2j (T + a2)? Z 5(t —n)
n—=——od
+ T, Z 5(t —n). 4.1)

J1J2

n=—oo
The J,, terms describe free precession of each top and the remaining terms are
due to periodic §-function kicks. The first two such terms are torsion about z—axis
and the final term describes the spin-spin coupling. When either of the constants,
@1 Or s, is not zero the parity symmetry RH(t)R™' = H(t), where R = exp(inJy, ) ®
exp(imJy,), is broken. The dimensionality of the Hilbert spaces are N = 2j; +
1 and M = 2j5 + 1. The unitary time evolution operator corresponding to this

Hamiltonian is given by :
Ur = (U, @ Up) Ufy = [(U{U{“) ® (U{Uf)] Us,, 4.2)
where the different terms are given by

i ik 2 i€
Ul = -=J, ), UF= J U, = — T,
i €xXp ( 2 yl> 9 €xp ( 2]2 ( % + al) ) 3 12 exXp ( j1j2 21 22)

and 7 = 1,2. There exists an antiunitary generalized time reversal symmetry,

[exp(inwl) exp(iﬂJy1/2)] ® [exp(iﬂJm) exp(iny2/2)]K

where K is complex conjugation operator, from which we can expect the applica-

bility of results concerning the Gaussian orthogonal ensemble (GOE).

4.1 Initial States

Entanglement production of time evolving states under Ur has been studied for
two different initial states.
(1) The initial state is a product of a generalized SU(2) coherent state or the di-

rected angular momentum states placed in the chaotic sea of phase space. This is
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completely unentangled state, i.e., Sy = 0 and Sg = 0. This state corresponding
to individual tops is given in |j;, m; ) basis as :
(o 05, 44) = (14 ) P J(L30 ) @.4)
Ji + my
where v = exp(i¢g ) tan(6/2). Now on we will write |j;, m; ) as |m;) for notational
simplification. Explicitly in |m; ) basis the initial product state can be written as

+71 +72

$©0) = > D {(m1, ma|9(0))|m1, my)

mi=—j1 ma2=—7j2
+J1 +J2

- Z Z m1 05, ¢g) (m2 |05, ¢5) (4.5)

mi1=—J1 M2=—j2
where (m; |6}, ¢4 ) can be obtained from Eq.(4.4).
(2) The initial state is maximally entangled state, i.e., Sy = InN and Sg = 1 —
(1/N). In |m1, my) basis, this state can be written as

1
<m15 ma |¢(O)> = ﬁ 5m1,m2' (4.6)

4.2 Numerical Scheme

We now evolve the above initial states |1(0)) by the coupled top time evolution
operator Ur as |#(n)) = Url|p(n — 1)) = UZlyp(n —2)) = ... = UZ}%(0)). The
numerical iteration scheme for the above evolutions, following [50], is

+J1 +7j2

<51,32|¢(n)> = exp (—z 3132) Z Z sl‘Ul‘m1> <32‘U2‘m2><m1,m2‘¢(n - 1))

mi1=—j1 ma=—j2

4.7)
where
k - T
(51|U1|m1) = exp (—12]—,13%> din) (5) . 4.8)
dg% (Z) is the Wigner rotation matrix [89] :

dli) (ﬁ) — (=)™ (25 2 251 e Z(_l)k J1— 81 1t
A2 271 J1— 81 J1+m p k k+si—my)
4.9)



Quantum Entanglement and Random Matrix Theory (RMT) 73

@)l
TO=pT
-

I

50 100

—
(o)l
(o]

Figure 4.1: Entanglement saturation of a completely unentangled initial state (solid line)
and a maximally entangled initial state (dotted line) under time evolution operator Ur.
Here k = 3,e = 0.1 and the phases a; = ay; = 0.47. Inset shows similar behavior of linear
entropy.

The main problem in calculating the Wigner rotation matrix lies in the calculation
of the above sum. Defining that sum as V;,,, and starting from V_; = 1 and
V_j+1 = 251, we can get the other V,,, recursively by using the following relation
[90]

(] —-—mi+ 1)Vm1_1 — 231Vm1 + (j +m1 + 1)Vm1+1 = 0.

Besides Wigner rotation matrix can be expressed in terms of Jacobi polynomials
and of different Hypergeometric functions [91]. However, we have followed the

above recursive scheme.

4.3 Numerical Results

These initial states are evolved under Uz, and the results are displayed in Fig. 4.1.
Here we have taken stronger coupling strength, compared to the value taken in

[50]. Because, our goal is to study entanglement saturation and strong coupling
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Figure 4.2: The spectral average of the entanglement present in eigenstates of Ur (k =
9,e = 10) as a function of Q = M/N, where N = 2j; + 1 = 33. Solid triangles are kicked top
results with parity symmetry (a; = a; = 0) and solid circles are the corresponding results
without symmetry (o = a2 = 0.47). Solid squares are the result of corresponding RMT
Monte Carlo simulations and solid line is the theoretical curve Eq. (4.12a). Horizontal
line is the maximum possible entanglement (In(V)). Inset shows the behavior of the linear
entropy.

will help us achieve entanglement saturation within a short time. In the first
case, initially both the von Neumann entropy and the linearized entropy (Sg =
1 — Try(p?)), are zero, but with time evolution both entropies start increasing and
saturate, apart from small fluctuations, at values less than the maximum possible
(ln N ) .

For the von Neumann entropy the saturation value is ~ In(0.6/N) and for the
linear entropy it is approximately 1 — 2/N, where N is the dimension of each sub-
systems. This is the dynamical bound for entanglement of a system consists of
two equal dimensional subsystems, while the maximum kinematical limits are
InN and 1 — 1/N respectively. The saturation value of von Neumann entropy of
this time evolved state is same as that obtained for stationary states of completely
chaotic coupled standard maps [52]. In the second case, the initial state is max-

imally entangled and time evolution forces this state to partially disentangle till
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the entropy reaches the above mentioned values.

This study shows that the saturation of entanglement is a universal phe-
nomenon, it depends only on the Hilbert space dimensions, and not on dynamical
characteristics of the system, apart from the presence of complete chaos. The ef-
fect of dimension on entanglement saturation has been studied by keeping the
dimension of the first subsystem constant at N and increasing the dimension M
of the second subspace from M = N to some large value. Thus we may think of
the second system as tending towards a complex bath with a quasi-continuous
spectrum. It is observed that the entanglement saturation increases with M and
finally gets saturated at the maximum possible kinematical limit, as shown in
Fig. 4.2. For example the von Neumann entropy starting from In(0.6/N) increases
asymptotically to In N, while the linear entropy starting from 1 — 2/N tends to
1-1/N.

4.4 Analytical formulation using RMT

RMT has been successful in calculating many important universal statistical
properties of quantum chaotic systems. Here we can also develop a complete
analytical understanding of these limits via RMT modeling. A typical stationary
state of a quantum chaotic system shares properties of the eigenvectors of ran-
dom matrices. Let us assume that some product basis { |¢7(zl) ) |¢£V2L) ) } has been

used to write any state |¢) as

N M
) =33 anm o)) [62).

n=1 m=1
The components a,,, are real for stationary states of time reversal symmetric
systems. Now the reduced density matrix (RDM) corresponding to first subsystem
is
N M

pr="Tr ) (B = Y D anmam |67 ) (0] = AAT, (4.10)

n,l=1 m=1
where a,,;, = [4] wm and Ais a N x M rectangular matrix. Similarly we can show,
the RDM corresponding to second subsystem p; = AT A. Obviously p; is a N-

dimensional matrix, whereas p2 is a M-dimensional matrix. The assumptions of
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quantum chaos imply that A can be taken to have random independent entries,
a member of the Laguerre ensemble. The RDMs then have the structure of corre-
lation matrices [92], from where we directly use results for the density of states.
Such matrices have also been studied since the early days of RMT as they have a
non-negative spectrum [93]. The distribution of the eigenvalues of such matrices
is known and thus this is the distribution of the eigenvalues of RDMs. The density
of the eigenvalues of the RDM p; is given by

NQ \/(Amaz - >\)(>\ - )\mm)

fO) = 2w A
1 1 2
P — 1 + 2 4.11
men ( + Q / ) ( )

where X € [A\in, Amaz), @ = M/N and N f(A\)dA is the number of eigenvalues within
A to A+ d)\. This has been derived under the assumption that both M and N
are large. Note that this predicts a range of eigenvalues for the RDMs that are
of the order of 1/N. For @ # 1, the eigenvalues of the RDMs are bounded away
from the origin, while for @ = 1 there is a divergence at the origin. All of these
predictions are seen to be borne out in numerical work with coupled tops. Fig.
4.3 shows how well the above formula fits the eigenvalue distribution of actual
reduced density matrices. This figure also shows that the probability of getting
an eigenvalue outside the range [Ayin, Amag) is indeed very small. The sum in Sy

can be replaced by an integral over the density f()):

Amaw
Sy ~ —/ F)AInAd\ = In(yN) (4.12a)
A

The integral in v can be evaluated to a generalized hypergeometric function and

the final result is :

. Q Q 3., .  4Q
T Q™ [2(Q+1)2 3F2{1’1’5’2’3’ (Q+1)2H

(4.12b)

When the two subsystems are of equal dimension, that is ¢ = 1, then above
expression gives v = exp(—0.5) ~ 0.6 and so the corresponding von Neumann en-
tropy is In(0.6 N). This is also the saturation value obtained in previous numerical

work for the stationary states and time evolving states of a coupled standard map
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Figure 4.3: Distribution of the eigenvalues of the RDMs of coupled kicked tops, averaged
over all the eigenstates (N = 2j; + 1 = 33). Solid curves corresponds to the theoretical
distribution function Eq. (4.11).

[52], reflecting universality. In another extreme case, when the Hilbert space
dimension of the second subsystem is very large compared to that of the first,
that is @ > 1, then vy ~ 1 and hence the corresponding von Neumann entropy is
In(N). Therefore, the analytical formulation based on RMT is able to explain the
saturation behavior of the von Neumann entropy or quantum entanglement very
accurately.

Fig. 4.3 also compares the Eq. (4.12a) to both RMT simulations and kicked
top results. We expect that the deviations of the quantum calculations are due
to finite size effects. The presence of parity symmetry results in a somewhat
smaller entanglement, as seen in this figure, a fact that needs further study.
For time evolving states and stationary states of system without time reversal
symmetry the RDMs are complex Hermitian matrices. The entanglement bounds
discussed here are also valid for these cases as the entanglement depends only
on the density of states of the RDMs. However, spectral fluctuations of the RDMs

(such as their NNSD) corresponding to these states can be distinct. Indeed, in
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the correlation matrix approach to atmospheric data, such a difference has been
recently noted [94].

The linear entropy can also be derived as above, but using direct RMT results,
without taking recourse to the distribution above, is also possible in this case.

Thus we may write:

N M
Trp? = Z Z AjaOkatrpa;8 (4.13)
Jk=1a,p=1

Substituting RMT ensemble average values [95] of

1 3
(acls) = (Gaohe) = yvaan vz () = HN@INT2)

and <aja Qka QLB ajﬂ> = 0,

where j # k and a # 8 in the above expressions, we find that:

M+N+1
Sp=1-Trp?=1- M‘FT;; (4.14)

When the dimension of the two subsystems are equal, that is M = N, then in
the large N limit Sp ~ 1 —2/N. This is the saturation value of the linear entropy
approximately obtained in case of time evolving states of coupled kicked tops.
Similarly, when the Hilbert space dimension of the second subsystem is very
large compared to the dimension of first subsystem, thatis M > N, Sp ~1—1/N.

This is the maximum possible value of linear entropy.

4.5 Discussion on some Related Works

e A recent related work calculates the mean entanglement of pure states for
the case M = N by using a RMT model that allows specification of the joint
probability distribution of the eigenvalues of the reduced density matrices

[96].

e There is also an early work that studies the subsystem entropy for random

pure states [97]. In this work, the author conjecture that the exact general
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formula for the von Neumann entropy is

NM
sv= Yy N1 (4.15)
k=M+1

where N < M are the Hilbert space dimensions of the participating subsys-
tems. The above formula is valid for any arbitrary values of N and M. Later,

three different proof have been given for the above conjecture [98].

In our derivation, we have used eigenvalue distribution of the reduced den-
sity matrices that is valid for large N and M limit. We have to take large
N and M limit in Eq.(4.15) to compare it with our derivation. Let us first

substitute | = £ — M. In terms of this new discrete variable, Eq.(4.15) will

become
5 _M%—D 1 N-1
YT &= i+ M 2M
M(N-—1

~1)
1 1 N -1
_ - . (4.16)
M ; 1+ (L) 2M

Now we define z = [/M and § = 1/M, where § — 0 in large M limit. We

can now convert the above sum approximately into an integral in the large

M limit as,
N-1
dz N 1
~ i - — |taking — =~
Svo~ ) Txs M [angzM O]
1 M
= InN — @ [WhereQ = ﬁ]
= IlnyN where vy = exp(—i>. (4.17)
2Q
For M = N case, when @ = 1, the above result exactly coincides with

our result Sy = InyN where v = exp(—0.5) ~ 0.6 and for any arbitrary
values of @), the above result is very good approximation of Eq.(4.12b). In the

asymptotic limit  — oo, two results coincide at v = 1.

¢ In Eq.(4.14), we have presented the saturation value of the linear entropy
Sr corresponding to GOE case using RMT. Random matrix calculation of the

purity P (Where Sg =1 — P) for Gaussian unitary ensemble (GUE) case
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has already been derived in [99] and also very recently in [96]. According to

these calculations, for GUE case,

M+ N
=1-P=1- ———. 4.18
Sk P N T 1 (4.18)
However for large M and N limit, GOE and GUE results coincide at
M+ N
~1— ; 4.1
Sr YN (4.19)

The above value of Sp can also be obtained using the universal distribution
of the eigenvalues of the RDM. This implies that the universal distributions
of the eigenvalues of the RDM, which is valid for large M and N, are same
for both GOE and GUE cases.

e We have seen that, for any arbitrary initial state, the strongly chaotic systems
produce a large amount of entanglement, which is less than the maximum
possible value. Here we show that a very simple system can produce maxi-
mally entangled state, but it is so for a very special initial unentangled state.
We consider a pair of spin particles which are interacting with each other via

spin-spin interaction operator
et
U(t) = exp (—z 5 ® JzQ) : (4.20)

and they have no individual dynamics. The above interaction operator is
same as that we consider for the coupled kicked top case. Consider an
initial product state of the form

+J

[%(0)) = % 11 > Ima, ma). (4.21)

mi,ma=—j
Now we evolve this state by the above evolution operator. At any arbitrary
time ¢, we get

+j
BO) = TOBO) = 5 Y e (i mima ) b, ma). @22

mi1,ma=—j
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Now we determine the entanglement of the above state. The RDM corre-

sponding to the first subsystem at time ¢ is

p(t) = Try ([¥() ($(1)])
+j

= 3 (maly(t)) ((t)lma)

ma=—j

1 el el €t
= W Z Z-exp[z7mz(m1—n1)] |m1 ) (n1).

mi,mi=—j ma=—j

(4.23)
Any element of the RDM p; (t) is
(O s~ s 3o o[ ma (o — )
P1 ming (2j T 1)2 > Xp jm2 ni mi
ma2=-—)
L 1+2Rezj:e {ietm (n m)}
= — X — — .
(27 + 1)2 = p ; 211 1

(4.24)

The diagonal elements of p;(t) are constants (they will not change with the
time evolution) and they are all equal the inverse of the dimension of the

Hilbert space of the first subsystem, i.e.,

1
2+ 1

[P1(8) ] ome (4.25)

After performing the sum present in Eq.(4.24), we get the off-diagonal ele-

ments of p;(¢) as

o sin[ 52+ 1) (m - )]

(01O ] ins = 57100 (4.26)
ming (27 + 1) sin [;—; (my — nl)]
We find from the above expression that, when
(23 ki 1) et =k (4.27)
23

and k is any integer, the off-diagonal elements of p;(¢) are all zero. That
means, for any coupling strength ¢, the RDM p;(¢) is diagonal at the time

25 km
= - 4,28
t (2]' + 1) € ( )
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We know that the diagonal elements of p;(¢) are all constants and they are
equal to 1/(2j + 1). Therefore, the corresponding von Neumann entropy of
the RDM (p1(t)) is equal to In(2j + 1). This is the maximum possible value
of the entanglement. Let us now consider the time ¢ is such that

i =Ir (4.29)

23

where [ is any integer. For these time, the numerator and the denominator

of Eq.(4.26) are both zero. Using L'Hospital’s rule, we find the off-diagonal
elements of p;(t) are all equal to 1/(25 + 1), when

t=2j <l§> (4.30)

Only one eigenvalue of this RDM is nonzero, which is equal to unity, and the

remaining all the eigenvalues are zero, and therefore the corresponding von

Neumann entropy is also zero. This implies complete disentanglement.

So we observe that the above mentioned very simple system can create max-
imally entangled state starting from a special unentangled (product) initial
state. However, the entanglement of this state does not remain fix at this
maximum possible value for all the time, rather the entanglement comes
down from that value and becomes completely unentangled state. This
changes of the entanglement property goes on periodically with the time

evolution.

Appendix
Derivation of the parameter v

The density of the eigenvalues of the reduced density matrix (RDM) is given by

_ NQ\/()\max - )‘)()\ - Amin)

f) o 3
1 1 2
)\E?r’f:ﬁ<l+éiﬁ)
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where A € [Apin, Amax] and @ = M/N. N is the Hilbert space dimension of the
first subsystem and M is the same of the second subsystem. N f()\)d\ is the
number of eigenvalues within A to A + dA.

The von Neumann entropy Sy of the RDM is given by
Sy =-Trp; In py = —Trps In po,

where p; and ps are the RDM corresponding to first and second subsystem re-
spectively. The nonzero eigenvalues { \; } are same for both RDMs. Here we have
assumed N > M. Therefore in the eigenbasis of the RDM, the von Neumann

entropy is

N
Sy =—> Al

i=1
For large value of N, we can replace the above sum by an integral over the density

OV
)\max
Sy ~ —N FO) A In AdA

Amin
N2 Q Amax
27

vV (dmax — A) (A = Ain ) InAdA. (4.31a)

~

Amin
Let us now define z = N A, and therefore dA\ = dz/N. We have also defined

Tmax = N dmax and zqin = N Apin. Substituting these in the above integral, we

get
Q Tmax T
Sy~ o /wmin V(zmax — =) (z — 2min) ln(ﬁ) dz,
_Q, QN (4.31b)
27 27
where
Tmax
L = / V(tmax — z) (2 — Tqin) Inzdz (4.31c¢)
Zmin
Tmax
I, = / V(zmax — z) (z — Zmin ) dz (4.31d)
Zmin

The integral I, is equal to 27/Q. Hence we get
Sy ~ InN — 2211 =lnyN (4.31€)
™

where v = exp(—%h). (4.311)
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The integral I; in v can be evaluated to a generalized hypergeometric function
and the final result is

__Q Q 3.5 5. 4Q
'y—Q+1exp[Q(Q_I_1)23F2(1,1,§,2,3,(Q+1)2)]. (4.31g)

Now we are going to derive the above expression. For the notational simplification,
we define i, = a, and rmax = b. Therefore,

b
L E/ Inz+\/(b—z)(z —a)dz

We can write

(b—z)(z —a) =p° — (z —q)°

where

1
o
Let us substitute

z = x — q, therefore dz = dzx.

Moreover, when

Therefore

+p
Il—/ In(z + q)p? — 22 dz.

P

Again substitute

z = py, therefore dz = pdy,
then

z=-p=>y=-1land z=p = y = 1.
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Hence we get,

+1
I =/ In(py + q) Vp? — p?y?pdy

-1
+1 +1 q

= p21np/ \/l—yzdy—}—pQ/ In (y—}—;) V1 — y?dy
—1 -1

= ;7P Inp +p In{y+ =) +/1—y?dy. (4.31h)

-1 p

First term of the above expression, without the factor Inp, is actually same as I.

The value of this term is 7 p?/2, and in terms of Q this is equal to 27/Q. Therefore

this expression also verify our earlier statement that I, = 27/Q. Let us now

determine the integral of the above expression.
+1 q
/ In (y+—> V1 — yidy
p

o +1 +1 y
= hna \/1—y2dy-|-/ ln(l-l-a) V1 —y2dy
-1

-1

+1
- flna+/ 1n(1+y>\/1—y2dy (4.31i)
2 -1 (07
where
q b+ a ( 1 )
a= == = - 14+ —
p b- Vo Q
Therefore
+1
L = EpZInap+p2/ ln(l-l—g) V1 —y2dy
2 -1 [0
= ng Ing + p*J (4.31j)
where

JE/+lln<1+%)\/l—y2dy.

-1

Let us now expand the above logarithm :

w(1+2) = (-3 1 - E) s

= S (-t (4.31K)
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Therefore

]
NE

kak

1 +1
(—1Ft — /1 yF /1 — 2 dy

B
Il
—

1 1
(_1)2l—|—lla2l /0 y2l /1 _ y2 dy

I
NE

N
Il
—

[ee] 1
1
3 (—1)2i+ 2+2 T o
1) (l+1)a21+2/0 Y -y

~
Il
)

Hence we have

where

J =

I
<
[
+
[\
—_
|
<
N
U
<

Now substitute
y = sin¢; therefore dy = cos ¢ do,

so when

y=0; ¢=0, and y = 1; ¢=g-

Therefore we have

2
7 :/ sin?!+2 ¢ cos® ¢ dep.
0

We know

s

%,B(m,n) = /2 sin?™ 1 ¢ cos?™ L ¢ dop,
0

where 3 (m, n) is the Euler g-function. In our case

21+ 3

2m — 1 =21+2 = m= 5

2n —1 =2 = n =

86

(4.31])

(4.31m)
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Hence

ol (2043 3\ _ J+3)]3)
”l—iﬂ( 2 ’5)‘ 2T(1 + 3)

where [() is the Euler I'-function. So now we have

;oo s [+ (G
202 & 2a2l(l +1)[( +3)
62 K[+ a1y 1y
BT R (N (e >( )
e &[0+ 1) [(2) [+ [(3/2) (i)l
202 r<3/2> r(z+3) f(r+2) 1) 1)) \a?

_ 3/2 ]2 S [(3) [(2) [u+nf@+1)1 (1Y
- Z 3/2 [@+3)e+2) (1) (1) l( )

1
[0
Substituting above expression in Eq.(4.31j) we get,

2 2
TP TP 3 1
L =—1 - ——3F [1,1,=-:2,3; —= ). 4.31
1 2 ngq 160{23 2(5 727 ) ’052) ( O)

Now substituting the values of p,q and «, in terms of @), in the above expression,

we obtain
27 1 1 3 4Q
L = — 1n(1+—)——3F2 (1,1,—;2,3; )
27 Q+1 Q 3 ) 4Q
] _1“( Q ) e (1’ by (Q+1)2)]‘4'31p’
Therefore

Y = exp (— %11)

= exp [ID(Q?- 1) + 2 @ 2 3Fy (1, 1, 2;2,3; 16 2)] (4.31q)

Finally we get,

Q €exX
0+12(Q0 +1

y = 70 (1, 1,2:2,3; ﬁ)] (4.311)



Chapter 5

Entanglement Production in Coupled

Chaotic Systems

In Chapter 4 we discussed about the saturation of entanglement. This is a prop-
erty of the coupled chaotic systems, whose participating subsystems are strongly
chaotic and they are also coupled very strongly to each other. We have already
explained this property from random matrix theory (RMT) in the Chapter 4. In
the present chapter, we are interested to study the entanglement production for
different underlying classical dynamics, like (nearly) regular, mixed and chaotic
; and also for different coupling strengths. For this we would like to observe the
possible behaviors of a time evolving wavepacket on the phase space. The phase
space of the coupled kicked tops is four dimensional (5? x S$?), therefore it is not
possible to visualize the wavepacket dynamics on such a phase space. Hence we
use reduced Husimi function, the Husimi function of the reduced density matrix
(RDM), to visualize the possible behaviors of a wavepacket. Using the reduced
Husimi function, we study a phase space based measure of the complexity of
a state [100]. We find that, in general, the complexity of a time evolving state
increases with the entanglement. We also study the same measure for a state
evolving under the single (uncoupled) top time evolution operator. We find that
a state of a kicked top, coupled to another top, has more access of the phase
space than a state corresponding to a single top. Using RMT, we explain the be-
haviors of this measure for the strongly chaotic cases. As we have emphasized

several times that we are mainly interested in understanding the effect of chaos

88



Entanglement Production in Coupled Chaotic Systems 89

on the entanglement. Therefore, as a special case, we separately study the entan-
glement production in coupled strongly chaotic systems. Using RMT, we derive
an analytical formula for the entanglement production for this special case. We
apply this formula for the entanglement production in coupled kicked tops. This
formula is applicable to large coupling strengths and is also valid for sufficiently
long time, while a recently reported perturbative derivation deals only with the
weak coupling strength.

We organize the present chapter in the following way. We begin with the dis-
cussion on the reduced Husimi function in Sec.5.1, then we discuss about the
second moment of the Husimi function in Sec.5.2. In Sec.5.3, we present our
detail numerical investigation of the entanglement production in coupled kicked
tops corresponding to different underlying classical dynamics and different cou-
pling strengths. In Sec. 5.4, we study decoherence in a kicked top which is
entangled with another top. Finally we present the derivation of the analytical

formula for the entanglement production in coupled strongly chaotic systems.

5.1 Reduced Husimi function

The reduced Husimi function is defined in a straightforward way. Let us consider

a state |¢) in the angular momentum basis |m,ms ), i.e.,

) = > Gmymy|mi,ma). (5.1)
mi,m2
The Husimi function of [¢) is ‘(zl; zo|) ?, where
(z132210) = D Gmyms (21/ma) (22ma), (5.2)
mi,m2
and |z;) = |0;, ¢;) are the directed angular momentum states (atomic coherent

states) presented in Eq.(4.4). We define reduced Husimi function corresponding
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Figure 5.1: Reduced Husimi functions of the time evolving state, evolving under Uy, are
presented corresponding to the time at which the entanglement production is saturated.
(a) k = 1.0. The wavepacket is spread over the elliptic orbits. (b) k¥ = 2.0. The wavepacket is
spread over the separatrix. It is also showing strong localization at the unstable period-4
orbit. (c) k¥ = 3.0. The wavepacket is spread over the whole chaotic region. (d) £ = 6.0.
At this parameter value, the phase space is mostly covered by the chaotic region, see
Fig.3.2. Consequently, the wavepacket is spread over almost whole phase space.

to first subspace as,

p1a(21) :/ ‘(Zl;Zth)‘Qdu(ZQ)a (5.3)
22
where du(z2) is the Haar measure :
du(z) = 2 4+ L gin 0, db, dgs. (5.4)
7

Since the phase space of a kicked top is the surface of a sphere of unit radius,
the total phase space area is 47. Therefore for the kicked top whose Hilbert space
dimension is N = 2j + 1, volume of the Planck cell is 47/(2j + 1). Hence the above
mentioned Haar measure du(z) is equal to the number of Planck cells present in
the infinitesimal area dz = sinfdfd¢. The integration of du(z) over whole phase

space will give total number of Planck cells N = 2j + 1 present in the whole phase
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91,¢1>-

(5.5)

space. We can also write the above expression, Eq. (5.3), as,

- 2 +1
pia (01, 01) = <91,¢1 ym

|:/; / <02,¢2‘¢><¢|92,¢2>Sin02d92d¢2:|

The above integral can easily be identified as the partial trace of the density matrix
|1 ) (9| over the second subspace, hence it gives the reduced density matrix (RDM)

corresponding to the first subspace. Therefore,

p1a (01, $1) = (01, b1|p1|61, H1), (5.6)

where p; is the RDM of the first subspace. Therefore, the reduced Husimi function
is just the Husimi function of the RDM. We can write p; = Y0V Aile;)(e;|, where
Ai’s are the eigenvalues of p; and |e;)’s are the corresponding eigenstates. These

le;)’s are also called Schmidt vectors. Therefore,

N

pra(01,61) = > Xi[(61, rles)|”. (5.7)

i=1
Thus the reduced Husimi function can also be expressed as the weighted sum
of the Husimi functions of the Schmidt vectors, where the weight factors are the
eigenvalues of the RDM. In an identical fashion, we can define reduced Husimi

function for the second subspace, and is given by,

N
p2m (02, h2) = Z il (62, ¢2|dz')‘2, (5.8)
=1

where |d; )’s are the Schmidt vectors of the second subspace.
In Fig.5.1, we show the reduced Husimi functions of the time evolving state

evolving under the time evolution operator corresponding to coupled kicked tops.

5.2 Second moment of Husimi function

Reduced Husimi function technique is useful for the visualization of the behavior
of the time evolving state on the phase space. Moreover, we want a quantitative
phase space based measure of the complexity of any state to relate it with the

entanglement. There already exists a good measure of that complexity based on
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the Husimi distribution function, pg = (z|p|z ), called ‘classical entropy’ or Wehrl

entropy [101] and that is given by

S(pw) = /d,u(z) palnpmg (5.9)

But it is difficult to determine the above quantity due to the presence of the loga-
rithmic function. Therefore, following a recent proposal [100], we consider inverse
of the ‘second moment of the Husimi function” W»(py) as a measure complexity of

quantum states. This measure is defined as,

1
Walpn) = Molon) (5.10)
where Ms(pg) = /dp(z) 0. (5.11)

The quantity W» actually represents the amount of the phase space effectively oc-
cupy by the Husimi function of the state p and its unit is the Planck’s cell volume.
We note that a similar kind of quantity, based on the Wigner function, has already
been introduced and studied as a measure of the complexity of quantum states
in phase space [102] many years ago.

We now define a quantity AN.¢r = Wo(pn)/N as the fraction of the total number
of Planck cells (N = 2j + 1) occupied by the state p. Since the total number of
Planck cells is also equal to the Hilbert space dimension, we can define ANqgr
also as the rough measure of the fraction of the Hilbert space occupied by the
above state. The above definitions of ANgg are valid for the single top. For the
coupled tops, phase space is 4-dimensional. Here we define AN ¢ for any one of
its subspaces. However, the only difference between these two cases is that p is a
pure state for the single top whereas for the coupled tops, p is a mixed state. Here
we study the time evolution of AN for the single top and also for the coupled
tops.

5.2.1 Single top

In the single top case, we again consider SU(2) coherent state ‘z/;(O)) = 160, do),
which we have already defined in the previous chapter, Eq.(4.4), as the initial
state. We construct this state at the point (6y, ¢9) = (0.89, 0.63), and evolve it with
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Figure 5.2: Evolution of AN is presented for the single top. For the nonchaotic cases
(k =1.0 and k = 2.0 ), denoted respectively by solid and dotted line, maximum value of
ANgr is very less. That means, the time evolving state has very little access over the
phase space. However, for chaotic cases (k¥ = 3.0 and k = 6.0 ), maximum value of AN
is also not large. For the strongly chaotic case ( k£ = 6.0 ), the average value of the maxima
is about 0.5.

repeated applications of the single top evolution operator U. The time evolution

operator U, defined between two consecutive kicks, is given as
U =exp (—iEJ )exp —iﬁﬁ . (5.12)
27y 25 %

For the single top case, AN at time n is

1
(27 + 1) Mp[p(n))]

/ MONCIONN (5.13)

ANeff

where M, [|¢(n)>]

and |¢(n)) = U"|4(0)). In Fig.5.2, we show time evolution of AN for different
k-values. For k = 1.0, the initial state is inside the elliptic region, and therefore,
time evolution of this state is governed by the elliptic orbits on which it is initially
placed. Since the evolution of this state is in some sense trapped by the elliptic

orbits, it has little or no access to many parts of the phase space. Consequently,
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the maximum value of AN ¢ is very small. After reaching its maxima, there are
many oscillations in the time evolution of AN due to partial and full revival
of the time evolving state |¢(n)> This particular issue of quantum revival of the
time evolving state in such mixed systems warrant a separate study. Now at
k = 2.0, the initial state is inside a stochastic layer present at the separatrix and
consequently its dynamics is restricted by and large to be inside that stochastic
layer. Naturally, for this case, the maxima of AN is also small. For k£ = 3.0, the
phase space is of a truly mixed type, with a significant measure of chaotic orbits.
In this case, the initial state is inside the chaotic region. Therefore, time evolution
of this state is governed by the chaotic dynamics and this state has access over
chaotic region of the phase space. Since the size of the chaotic region is large,
hence the maxima of AN ¢ is also larger (~ 0.35). Finally, when k = 6.0, the phase
space is mostly covered by the chaotic region, with few visible tiny regular islands.
The time evolving state has now almost full access over the phase space. However,
we observe that AN g reaches maximum around 0.5 and then fluctuates around
that value. This imply, for the strong chaotic case, the time evolving pure state
has access over only half of the phase space. We explain this typical behavior of
AN gf for strongly chaotic case by RMT in the following way.

In the angular momentum basis {|m)},

My [[pm)] = S0 S (| pn)) () k) (L)) (pin) [ m)

x /dp(z)<z|i><k‘z><z|l><m|z>. (5.14)

After performing the above integral, see Appendix A,

Me[[m)] = D2 D7 (il lm) (p(m) [ B) (1] 9(m) ) (i) | m)

i,k I,m

X F(25;4,k1,m) 6itik+m (5.15)

where

F(2s i kLm) = %\/(ﬁz) (jZ)—jk) (jQ—jl> <j ijm)

(25 —i—1)1(25+i+1)! (5.16)

X



Entanglement Production in Coupled Chaotic Systems 95

J\H‘H\‘H\‘H\‘

-0.1 0 0.1 0.2

C
‘HH‘HH‘HH‘

G

Figure 5.3: Distribution of the components of the time evolving state, evolving under
strongly chaotic single top dynamics, is presented. Top and middle windows are showing
that the real and the imaginary part of the components of the time evolving state are
Gaussian distributed random numbers with zero mean and the variance is 1/v/N, where
N = 2j + 1 is the Hilbert space dimension of the top. In this case j = 80. Bottom window
is showing that the distribution of the square of the absolute values of the components
of the time evolving state are exponentially distributed. This is a typical property of
the components of a GUE distributed vector. Dotted line representing the GOE (Porter-
Thomas) distribution.

Let us now assume, in the angular momentum basis,

|9(n)) =) em|m). (5.17)

m

In Fig.5.3, we present the distribution of the real and the imaginary part of the co-
efficients ¢,,,. They are indeed Gaussian distributed random numbers. Moreover,
in that figure, we also present the distribution of |¢,,|?. This figure shows that
lem|? are exponentially distributed, which is a typical property of the elements of a
Gaussian unitary ensemble (GUE) distributed random vector. Therefore, we can
assume that the distribution of {¢,,} are GUE type. For GUE case, RMT average

of a quantity identical to M, [|1/1(n)>] has been calculated in a recent publication
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[103], and according to that,
(M[[p(m)] ) = 1. where N = 2j+1 (5.18)
N+1’ ’

where the angular bracket (... ) represents RMT averaged value. Using the above

expression, we get

N+1 1 1
<ANeff> = SN 3 <1+ N) (5.19)
and for large N limit,

This is the saturation value of AN ¢, which we observe in strongly chaotic case
k = 6.0.

5.2.2 Coupled tops

In the last section, we have presented reduced Husimi function technique to vi-
sualize the behaviors of the time evolving state of the coupled tops on any one of
its subspaces. However, to measure the complexity of this state in any one of its
subspaces, we have to define ANy in a subspace. We define AN for a given

subspace as

1
AN, 5.21
eff (25 + 1) M2 (pimr) 521
where M2 (sz) = /du(zz) <Zz |pi ‘ Zi >, (5.22)

and 7 = 1,2 representing different subspaces. In Fig.5.4, we present the time
evolution of the above mentioned ANeff for different dynamics (different £ values)
and for different coupling strengths e. When coupling strength is very weak (e =
10~%), time evolution of AN¢s for different dynamics are practically identical to
that which we have observed in the case of single tops. Therefore, for this coupling
strength, effect of the dynamics of one top on the other top is very small and two
tops are very close to two uncoupled systems. For other coupling strengths, the
maxima of ANggr has not changed much for the nonchaotic cases (k = 1.0, and

k = 2.0). When e = 1073, for the chaotic cases (k = 3.0, and k = 6.0), AN s first
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Figure 5.4: Evolution of AN corresponding to coupled kicked tops is presented. Solid
lines and dotted lines are representing the results corresponding to nonchaotic cases (
k = 1.0 and k = 2.0 respectively ). Dashed lines are representing the mixed case (k£ = 3.0)
and dash-dot lines are showing the results corresponding to strongly chaotic case (k£ = 6.0
). The top window representing the results for the stronger coupling strength (e = 1072),
middle window is showing the results for the intermediate coupling strength (e = 1073)
and the bottom window is for the weak coupling case (€= 10"%).

reaches the saturation value which is observed in the case of single tops and then
it increases approximately linearly with time. However, for the stronger coupling
(e = 1072), it is not possible to divide the time evolution of AN gy, for the chaotic
cases, into two distinct time regimes. In these cases, AN g saturates at much
higher values than the maxima of AN¢ observed in single top. For the strongly
chaotic case k = 6.0, ANy saturates at a value that is very slightly less than
unity. We again apply RMT to explain this saturation of ANgg, which we now
proceed to do.

In the angular momentum basis, second moment of the Husimi function of the

reduced state, say for the first subsystem, at time n» is,

le ZZ P1)ik pllm/duzl z1|z><k|z1><z1‘l> m|z1 (5.23)

i,k I,m
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After performing the above integral, we have,
2(p1m) = Y Y (p1)ik (p1)imF (2458, K, 1, m0) Gicti e (5.24)
i,k l,m

where F( 2731, k, 1, m) has already been given in Eq. (5.16). If we write down above

expression in the eigenbasis of the RDM p;, then we have,

D dars DD (ifda)(dalk)(l|d5)(ds]m)

a,Bf=1 i,k Im
X F(2.7a ik, 1, m) 6i+l,k+m

N [Z X DY (i) da) (alk) (1] o) {a|m)

i,k lm

X F(2j;iakalam)5i+l,k+m:|

Z/\ s D2 > (il da) (ba| k) (1] d5) (85| m)
i,k Im

oy

X F(2j;i7kalam)5i+l,k+m]

D UNZQLL D MarsQ2s (5.25)
a o,
a#f

M;(p11)

where Qh, = Y. Y (i]da)(fa|k)(l]da)(da|m)F(24;i,k,1,m), (5.26)

ik Lm
and Q%; = ZZ<i|¢a><¢a|k><l|¢ﬂ><¢5‘m)F(2j;z’,k,l,m), (5.27)
i,k I,m

where {),, [¢o)} are the eigenvalues and the eigenvectors of the RDM p;. In
Fig.5.5, we present the distribution of the real and the imaginary part of the
components of the eigenvectors {|¢,)} of the RDM p;. This figure shows that the
real and the imaginary part of {|¢,)} are Gaussian distributed random numbers.
Moreover, Fig.5.5 also shows that the distribution of the absolute square of the
components of {|¢,)} is GUE type. Therefore, from the recent calculation [103],

we can again use RMT average values of Q%, and Q? 5 to get RMT average value of
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Figure 5.5: Distribution of the components of the eigenvectors of the RDM, correspond-
ing to which entanglement production has reached the statistical bound. The top and the
middle window shows that the real and the imaginary part of the components of these
eigenvectors of RDM are Gaussian distributed random numbers with zero mean and the
variance is 1/v/N. Here N = 2j 41 = 161. The bottom window is showing that the distribu-
tion of the absolute square of the eigenvectors of the RDM are exponentially distributed.
Therefore, the eigenvectors of the RDM are GUE distributed. Dotted line representing the
GOE ( Porter-Thomas ) distribution.

M (p1m) as,

(M (o)) = NLH<ZA§> N+1<Z>\ Aﬂ>

#ﬂ
2
- N+1<Za:/\ >+N+1

=)
S (1 + <zx>) | 5.28)

We know from our derivation in previous chapter, Eq.(4.14),

,\ 2N+
<Z,\ > L (5.29)
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Therefore, we have,

1 2N +1

Hence,

1

N{(Ms(p1n))

(N +1)(N?2+2)
~ N(N2+42N +3)’ (6.31)

In the large N limit,

(ANqgf) = x—ii +0 (%) < 1.0 (5.32)
This is the saturation value of AN.¢r, Which we observe in the strongly chaotic
(k = 6.0) and strongly coupled (e = 1072?) case. We emphasize that this is nearly
twice that of pure states in a single top. Thus roughly speaking the effect of
strongly coupling to another chaotic system doubles the phase space access of a

state.

5.3 Entanglement production : Numerical results

In Fig.5.6, we present our results for the entanglement production in coupled
kicked tops for the spin j = 80. As we go from top to bottom window, coupling
strength is decreasing by a factor of ten. Top window corresponds to ¢ = 102,
middle one is showing the results for ¢ = 10~® and the bottom window corre-
sponds to the case ¢ = 107*. For each coupling strength, we study entanglement
production for four different single top parameter values, whose corresponding

classical phase space picture has already been shown in Fig.3.2.

5.3.1 Coupling ¢ = 1072

Let us first discuss the case of stronger coupling ¢ = 1072, whose results are
presented in Fig.5.6(a). It shows that there exists a saturation of Sy for £ = 1.0
and k£ = 2.0, which are much smaller than the saturation value corresponding

to highly chaotic cases such as when k£ = 6.0. The saturation value of Sy for
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Figure 5.6: Time evolution of the von Neumann entropy in coupled kicked tops is pre-
sented for different coupling strengths and for different underlying classical dynamics.
(@) e =1072. (b) e = 1072, (c) e = 10~%. Solid line represents k = 1.0, dotted line corresponds
to k = 2.0, dashed line is for ¥ = 3.0 and dash-dot line represents k = 6.0.

k = 6.0 is the statistical bound Sy = In(N) — £ ~ 4.57 (where N = 161), which can
be understood from random matrix theory. See previous chapter. However for
k = 3.0, corresponding to a mixed classical phase space, Sy is still less than the
above mentioned saturation value, indicating the influence of the regular regions.

These two distinct behaviors of the entanglement saturation can be under-
stood from the underlying classical dynamics. For k£ = 1.0, the initial unentangled
state is the product of the coherent wavepacket placed inside the elliptic region
[see Fig.3.2(a)] of each top. This initially unentangled state will become more and
more entangled under the repeated application of the coupled top unitary operator
Ur. Moreover, if one observes the evolution of the reduced Husimi function cor-
responding to each top, then it can be seen that the initially localized wavepacket
starts moving along the classical elliptic orbits on which it was initially placed
and simultaneously it also spreads along those orbits.

However, one can observe some initial oscillations in the entanglement pro-

duction, which is due to the fact that the entanglement production is mostly
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determined by the spreading of the wavepacket along f-direction. As we know
cos; =lim;_,(J;;/j), therefore the spreading of the wavepacket along §-direction
determines how many eigenstates of J,,, which are also our basis states, are
participating to construct the wavepacket. Larger amount of spreading of the
wavepacket along the #-direction causes greater number of basis states to partic-
ipate in the wavepacket. Moreover, coupling between two tops is via interaction
between J,, and J,,. Therefore, this interaction term will couple greater number
of basis states and consequently leads to higher entanglement.

Initially, the spreading of the wavepacket sometimes may become parallel to
the ¢-direction and therefore its spreading along #-direction become less. Con-
sequently, one can observe a dip in the entanglement production. Finally, the
wavepacket spreads all over the elliptic orbits and the entanglement production
reaches its saturating maxima. In Fig.5.1(a), we show the reduced Husimi func-
tion of the wavepacket corresponding to the maxima (saturation) of the entangle-
ment production. After reaching its saturation, there are again many dips in the
entanglement production. These dips are also due to the small spreading of the
wavepacket along #-direction. However, the localization of the wavepacket along
f-direction are now happening due to fractional or full revival of the wavepacket.
These revivals are actually the single top behaviors which persists even under the
interaction with other top. The quantum revivals of the wavepacket are interest-
ing phenomena of any quantum system and therefore it requires separate study,
especially in this rather more complex setting.

At k = 2.0, the center of the initial coherent state was inside the separatrix.
Therefore, in its time evolution, the spreading of the wavepacket was restricted
to be inside the separatrix region. Finally, the wavepacket spread over the sep-
aratrix region, and the entanglement production arrived at its saturation. The
corresponding reduced Husimi function has been shown in Fig.5.1(b). Moreover,
the reduced Husimi function shows that even though the wavepacket has spread
over the whole separatrix region, its spread is not uniform. The wavepacket is
strongly localized at the unstable period-4 orbit. This strong localization of the
wavepacket is also a single top behavior which may also warrant separate study.

At k = 3.0 and k£ = 6.0, the initial wavepackets were inside the chaotic region.
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However, the saturation of the entanglement production are different for these
two cases. This can be understood as the phase space of the kicked top is more
mixed type for £ = 3.0 than the case k¥ = 6.0. Therefore, the size of the chaotic
region is less for k£ = 3.0 than its size corresponding to £ = 6.0. Consequently, the
wavepacket can spread over less of the phase space for £ = 3.0 than £ = 6.0. In
Fig.5.1(c), we have shown the spreading of the wavepacket corresponding to this
case. At k = 6.0, since the phase space is almost fully chaotic, the wavepacket
can spread over almost whole phase space. In Fig.5.1(d), we have shown reduced

Husimi function corresponding to this strongly chaotic case.

5.3.2 Coupling e =103

Entanglement production corresponding to this coupling strength is presented in
Fig.5.6(b). For the nonchaotic cases (k = 1.0 and k& = 2.0), the saturation value of
the entanglement production is less than the entanglement saturation observed
in the stronger coupling case (¢ = 1072). For weaker coupling, the influence of
one subsystem on the other subsystem becomes less, and the individual subsys-
tems behave more like isolated quantum systems. Consequently, pure quantum
effects play dominant role in the evolution of the wavepacket. In Fig.5.7, we show
reduced Husimi function for ¥ = 1.0 and k£ = 2.0 at the time n = 384 when the
entanglement production saturated. For k£ = 1.0, the reduced Husimi function is
showing that the wavepacket has spread over the elliptic orbits, but not uniformly.
Now for k£ = 2.0, at the entanglement saturation, the wavepacket has spread as
usual over the whole separatrix region. Moreover, it also shows localization at the
same unstable period-4 orbit. However, the difference is that the wavepacket is
now more localized at a particular periodic point of that period-4 orbit which was
very close to the initial wavepacket. As we have seen in Fig. 5.4b, within our
observational time (n = 1000), ANeff has not reached any saturation value for the
mixed and as well as for the chaotic cases. Moreover, for the strong chaos case,
k = 6.0, the AN ¢ was well short of unity even after the observational time and
consequently the wavepacket has not got access over whole Hilbert space within
this time of observation. Therefore, the entanglement production is well short of
the known statistical bound In(N) — 1.
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Figure 5.7: Reduced Husimi functions of the time evolving wavepacket are presented
corresponding to the time n = 384 at which the entanglement production gets saturated.
(a) £ = 1.0. The wavepacket is spread over the elliptic orbits, but the spreading is not
uniform. (b) ¥ = 2.0. The wavepacket is spread over the separatrix and shows strong
localization on the unstable period-4 orbit. Here e = 103,

5.3.3 Coupling e =10*

The entanglement production for this very weak coupling regime has been pre-
sented in Fig.5.6(c). The entanglement production for this weak coupling has
recently been explained by perturbation theory [53]. However, the formula for
the entanglement production presented in that work is not valid for arbitrarily
long times. In Section 5.5 we present an approximate formula for the entangle-
ment production in coupled strongly chaotic systems. This formula explains the
entanglement production for the case k = 6.0. Here we have also observed that en-
tanglement production is much larger for the nonchaotic cases than the chaotic
cases. Rather, we can say that, for weakly coupled cases, the presence of chaos

actually suppresses entanglement production.

5.4 Decoherence in coupled chaotic systems

When we consider observation at one of the two subsystems of any coupled quan-
tum system, we see different consequences due to the entanglement between the
two subsystems. One important effect is the disappearance of quantum interfer-
ences and this effect is known as decoherence. In case of coupled kicked tops,
we are interested to study the decoherence in one top due to its interaction with
the other top. More precisely, we are interested to observe the effect of different

underlying classical dynamics on decoherence.
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Figure 5.8: Time evolution of an initial reduced density matrix (corresponding to the first
subsystem) shown in the left topmost figure. The left, middle and right panels correspond
to the cases k¥ = 2.0 (nearly regular), £ = 3.0 (mixed) and k£ = 6.0 (chaotic) respectively.
Coupling strength ¢ = 0.1. |p1(m1,n1)|? is plotted along z-axis.
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In this study, as usual, we start with product states, but now the states cor-
responding to each subsystem are linear superposition of two coherent states
placed at the two different points on the phase space. This choice of initial state
gives rise to large off-diagonal parts in the initial reduced density matrix (RDM).
See the left topmost figure of Fig.5.8. These off-diagonal parts are the conse-
quence of the quantum interferences. We now study the evolution of the initial
RDM under the coupled top time evolution operator for three different underlying
classical dynamics, like nearly regular (k¥ = 2.0), mixed (¢ = 3.0) and chaotic
(k = 6.0) cases. Here we keep the coupling strength fixed at ¢ = 0.1. Fig. 5.8
shows that the off-diagonal parts of the RDM for all the three different kind of
dynamics are significantly reduced, even after one time step. For later times, the
RDM corresponding to strongly chaotic case ( k¥ = 6.0 ) rapidly become diagonally
dominant. That means, for the strongly chaotic case, decoherence rate is very
fast. In contrast, for the mixed classical dynamics, the RDM also becomes diag-
onally dominant, but its rate is slower than the strongly chaotic case. For nearly
regular case, the RDM also shows similar tendency to become effectively diago-
nal, but the rate is much slower than the other two cases. These results indicate
that the decoherence rate becomes faster with the presence of stronger chaos in
the system. Enhancement of the decoherence rate in the presence of chaos has
also been observed in coupled standard map [52], however, in this reference, the
dynamics of the individual subsystems were kept fixed and the decoherence was
studied for two different coupling strengths. For the stronger coupling, when the
over all system was chaotic, a faster decoherence rate was observed. In our study,
we are not concern about the over all dynamics of the coupled systems. Therefore
we keep the coupling strength constant and study the effect of the dynamics of

the individual subsystems on the decoherence rate.

5.5 Entanglement production in coupled strongly chaotic

systems : An analytical study

We have already mentioned that, due to the relatively simpler form, it is easier

to derive an approximate formula for the time evolution of the linear entropy Sg.
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Hence we now present an analytical formalism for the time evolution of S in
coupled strongly chaotic systems.

Let us assume, the initial state is a product state, given as |4(0)) = |¢1(0)) ®
|¢2(0)), where |$;(0))’s are the states corresponding to individual subsystems. In
general, the time evolution operator of a coupled system is of the form U = U.U, =
U.(U; ® Uy), where U, is the coupling time evolution operator and U;’s are the time

evolution operators of the individual subsystems. Furthermore, we assume
U6 = exp(—ieng) (533)

where Hy; = () @ h(?), and the k(¥ are Hermitian local operators. For simplicity
we derive our formalism in the eigenbasis of h(’s, i.e., h(®) |e(i) = e, ‘e ), where
{ea ) ‘ea) )} are the eigenvalues and the corresponding eigenvectors of A(®).

The one step operation of U on [¢(0)) will give,
) eg)w(l)) = exp (—ieeg}) e(;)) (e((xl), e(ﬂ2)|¢0(1)>, (5.34)

where [¢(1)) is the time evolving state of the full coupled system at time n = 1
and |¢(1)) is the same for the uncoupled system. From the above expression,
one can get the RDM corresponding to one subsystem by tracing over the other

subsystem. The RDM corresponding to first subsystem is given by,
)],y = (Plorles”) = 3 (e, e@[p(1)) (w(n)]e, )
v
= Zexp [—z'e (eal) — e/(gl)) 6,(72)] <e(al), e,(f) ‘¢0(1)> <¢0(1)|e(ﬂl), e,(f) )5.35)
v

Here we now assume that, |1y(1)) is a random vector. Consequently we can further
assume that the components of |¢(1)) are uncorrelated to the exponential term

coming due to the coupling. Hence we have,
% Z <e&1 , @ apo (1 >< (1) >ZeXp [ ( (1) 6531)) 6(72)]

= p10 aﬂ Z exp [ ( — eg)) egf)] , (5.36)

Y

1R

[pl(l)]aﬁ

where N is the Hilbert space dimension of the first subsystem and p;g is the

density matrix corresponding to the uncoupled top. If we proceed one more time
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step, then at the time n = 2 we have,

% Ip(e)| P10 a/j Z exp [ ( (1) e(ﬂ ))]

Y

where p(e) = e Zexp( zee()e(;)) (5.37)
a,p

1R

[91(2)] af

If we use the above assumptions up to any arbitrary time n, we obtain
1 2(n—1) P ORI OMNC)
[p1(n)]aﬂ =~ Ip(€)] [pm(n)]ab, Z exp [—'L ( e ) ey ] (5.38)
v

From the above expression, it is straightforward to calculate Linear entropy and

that is given as,

Sp(n) ~ 1 — —|p(e)|**V ZZexp [ ( (ﬂl)> (e,(f) - 6((52))] . (5.39)

a,f 7,6

This is a general result, applicable to any coupled strongly chaotic systems of the
form U, (U; ® Uy). Moreover, this result is valid for long time.
For the coupled kicked tops His = J,; ® J,,/j. Therefore, for this particular

system, the above formula would become,

1R

Sr(n) 1- %p(e)“n*l) Z Z exp [—z] mi —n1)(mg — ng)

m1,n1=—7j ma,n2=—j
+j

where p(e) = el Z exp (—igmlmg) and N=2j+1 (5.40)
J

mi,ma=—j

In large j-limit, we can substitute above sums by approximate integrals and then

performing those integrals we get (for details, see Appendix B),

Sr(n) ~ 1—p(e)*n=D l% {1 + W} (A}_€> {1 — cos(2Ne)

+ Ci(2Ne) — In(2Ne) — 'y}] (5.41a)
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Figure 5.9: Evolution of the Linear entropy for the coupled strongly chaotic system is
presented. The dotted line is the numerical results of the coupled kicked tops system.
We choose k£ = 6.0 for the first top and k¥ = 6.1 for the second top. The solid line is the
theoretical estimation, given by Eq.(5.41).

where

ple) =~ % [1 + %Si (%)] . (5.41b)
The functions Si and Ci are the standard Sine-integral and Cos-integral function,
while v = 0.577216... is the Euler constant. In the above derivation we have not
assumed, unlike the perturbation theory [53], any particular order of magnitude
of the coupling strength e. Therefore, as we demonstrate below the above formula
is applicable for non-perturbative coupling strengths as well.

In Fig.5.9, we show the numerical result of the Linear entropy (Sr) produc-
tion in the coupled tops where the individual tops are strongly chaotic. Here we
consider many initial coherent states at different parts of the phase space and
present the Linear entropy production, averaged over all these initial states, with
time. In all our previous calculations we only considered the entanglement pro-
duction on coupling identical tops, therefore, permutation symmetry was present.

As in the above derivation, we have not assumed any special symmetry property,
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we break permutation symmetry by taking slightly non-identical tops with k£ = 6.0
for the first top and k = 6.1 for the second top.

Fig.5.9 demonstrates that our theoretical estimation, denoted by the solid
curve, is not only valid for weak coupling case like ¢ = 10~* but it also valid
for sufficiently strong coupling cases like ¢ = 1072. Moreover, this formula is ap-
plicable for very long times. If we consider weak coupling approximation, i.e.,

je < 1, then the above formula will become approximately,

2€2j2

Sr(n) ~ (n—1) + O(e353). (5.42)

Therefore, at this weak coupling approximation, the entanglement production rate
is 2¢252/9, which has been calculated in a recent publication [53] by very different

means.
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Appendix A

111

Calculations of the integral present in Eq. (5.14) and Eq.

(5.23) :

We know (m|z) = (m|f,$) and using Eq.(4.4) from the previous chapter, the

above mentioned integral becomes

2D EIR)
< L[ (rrweg) ()

x exp[—i¢{(i +1) — (k+m)}] sinfdodg.

After performing the ¢-integral, we get

, 2j 2j 2j 2j '
2 1)\/<j TG () (2) s
T 4j+2(i+1)+1 45 =2(i+1)+1
0 . 0
X / (cos —) (sm —) de.
6=0 2 2

Substituting n = 6/2, we get

22 H)\/(a?—jz) (jz—jk> (jz—j z) (j ijm) bt

o /2 (sin ) —26HD+L (gog p) 4+ 204D+ g
n=0

The above integral is a -integral, and therefore we get,

2 +1)\/<j2—j2> (gg—]k) (ff l> (j ijm)

x Bl{Ei+1)-GE+0)} {2 +1)+GE+D}] Siripem

From the relation, (m,n) = [['(m)['(n)]/T'(m + n), we get

ey 67 620 (70 G 2)

x T{(2j +1) = (@ +D}T{(2i + 1) + G+ D)} St bme

(5.43a)

(5.43b)

(5.43c¢)

(5.434d)

(5.43¢)
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We know that, for any integer m, I'(m + 1) = m!. Using this relation the above

expression will be equal to Eq.(5.15) and Eq.(5.24).

Appendix B

Calculations of Eq. (5.41)

Let us first calculate the sum present in the expression of p(e). That sum can

be simplified in the following way.

+j ¢
Z exp (—i—,mlmg)
mi1,me=—j J

1

2N -1 S L
= - Z Z exp | —i- m1m2 + Z Z exp | —i- m1 mo
mi=1ma=1 mi=—j ma=1
J
f Y e (_,, )+ 33 e (~iEmm)
m1=1 ma=—j mi=—j ma=—j
IN-1 2 J !
= + N2 Z exp (i;rm mz) + Z exp (‘Z?ml m2>
mi,ma=1 mi,ma=1
2N — 1 4 J €
= e + N2 Re Z exp (z;ml m2> , (5.444a)
mi,mae=1

where ‘Re’ denoting the real part. Now we define z = my/j, y = mo/j and § = 1/j,
where § — 0 in large j limit. We can convert the above sum into an integral in the
large j-limit as,

1

1
32 (}i_r)r(l) . /_6 dx dy cos(je:(;y)

1 . .
sin(j ex
= 42 lim 7.(3 ) dz
=0 J,—s JET

= Si(j e) (5.44b)

In the large j-limit, N = 2j + 1 ~ 2j, therefore

2N -1 2 . (Ne
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If we neglect N2 term, then we get,

i(Ne
ple) ~ % [1 + y] . (5.444)

Let us now calculate the bigger sum [see Eq. (5.40)]. If we define [} = m; —ny
and I, = my — ng, then this sum will become,

+M

> (N—hl) (N —|iaf) exp (—z'f,ll 12) : M =2j=N-1
l1,la=—M J
+M +M +M ¢
=N 3 () YD (V= ) (V= ) exp (=it )
li=—M lh=—MIlo=—M J
11#0  12#0

M
= 4N’M + 4Re Y (N -10) (N —1I) exp (z‘f_lllg)
l1,l2=1 J
M

M
= 4N?’M + 4N?Re Z exp (z’;llh) — 8NRe Z 11 exp (z?zl 12>
l1,l2=1 l1,l2=1

M

+ 4Re Y ilil exp (z’f,ll 12) (5.44¢)
Ih,la=1 J

We can write the first sum of the above expression as,

M € M 2e

Z exp (z;ll l2) = Z exp (zﬁll lg) . (5.44f)

l1,l2=1 l1,l2=1

This sum is similar to the sum which we have calculated to derive p(¢), see Eq.

(5.44a). Therefore, using this previous result, we get the above sum as,

M € M
D exp (i—_h 12) ~ ——Si(2Me). (5.44¢)
l1,l2=1 J €
Now
M €
Second sum = Re Z l1 exp (z’—,lllz)
l1,l2=1 J
1 1
~ M3 lim/ / :ccos(?Mexy)dmdy
6—=0 Jr—5 y=4
2
~ > A sin(2M6x)dw
M
~ —[1—cos(2Me¢)] (5.44h)
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M
Thirdsum = Re Y Uil exp (if_ll 12>
l1,l2=1 J
1 1
~ M*lim / / dz dyzy cos(2M exy)
0=0 Jro—s y=5
M3 1 1 cos(2Me:c) -1
~ — 1 in(2Mez)d —d
e 530 l/_r_(g Sm( e:z:) T+ /I_(; 2Mezx T
M2
~ 12 [1 —cos(2Me) + Ci(2Me) — ln(2Me) — 7]. (5.44i)

For large j-limit, M ~ N and therefore substituting above results in Eq.(5.44¢),

we will arrive at Eq.(5.41).



Chapter 6

Mixed state entanglement and Operator

entanglement

In the previous two chapters we have extensively discussed the effect of under-
lying classical dynamics on the entanglement, where we only considered the en-
tanglement production for the initially pure state. That means, we assumed that
the initial state of the coupled quantum system is completely known. But this is
not the general scenario, in realistic situation, most of the time it is not possible
to know the state of a quantum system completely. In this situation, the state of
a quantum system is a mixed state, which arises from some ensemble {pi, i ) }
of pure states. A mixed state can only be expressed in terms of the density matrix
like p = >, pi|9i) (¥i|. where ). p; = 1. The probability for the system being
in the state |¢;) is p;. These probabilities have no quantum mechanical origin,
rather they come from our ignorance into the quantum state.

A natural consequence and also a generalization of the previous two chap-
ters is to study the entanglement production for the initially mixed states. The
von Neumann entropy and the linear entropy are the good measures of entan-
glement for the pure bipartite states. For a mixed state, the entanglement can
be measured as the average entanglement of its pure state decomposition. But
there exists an infinite number of such decompositions, and therefore we have
to minimize over this huge set. This procedure is really a nontrivial task. How-
ever, Hill and Wootters have shown that a new quantity called concurrence can

be a measure of the mixed state entanglement of two two-level (qubits) systems
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[104]. But for any arbitrary dimensional case, there is no consensus about the
measure of the entanglement. This is a major obstacle to study the mixed state
entanglement. Recently Werner and Vidal, following Peres’ criterion of separability
[105], have proposed a computable measure of entanglement called Log-negativity
[74]. This measure is valid for the large Hilbert space dimension, and therefore
we can use this measure to investigate the influence of the underlying classical
dynamics on the entanglement of the mixed states. However, there is a problem
with this measure which directly comes from the Peres’ criterion. It has been
shown that Peres’ criterion is not applicable for a special kind of entangled states,
called bound entangled state [106]. Since the log-negativity measure is based on
Peres’ criterion, therefore this is not a bonafide measure for the bound entangled
states. Except this drawback, the log-negativity measure is applicable for any
other entangled states. In our numerical study of the mixed state entanglement,
we consider the entanglement production for the two different types of initial
mixed states. In one case, we consider a product of mixed and pure state, i.e. the
initial state corresponding to the first subsystem is mixed type, whereas the ini-
tial state corresponding to the other subsystem is the pure state. In another case,
we consider a product of two mixed states corresponding to each subsystem, like
p(0) = p1(0) ® p2(0), as the initial state. These two initial states are the simplest
type of mixed states which one can think of. We choose these states because our
previous knowledge of pure state entanglement may be useful to understand the
mixed state entanglement production.

As we have mentioned above that the subsystems entropies like the von Neu-
mann entropy or the linear entropy are no more the measures for the mixed state
entanglement. However, they are still very important quantities, which require
elaborate study. Therefore, we also study the von Neumann entropy as well as
the linear entropy of the subsystems. We observe that the behaviors of the sub-
systems entropies are qualitatively similar to the Log-Negativity measure of the
entanglement. Even both of them show a statistical upper bounds (saturation)
for the strongly chaotic and strongly coupled cases. These results indicate that
even though the subsystems entropies are not the measures of mixed state entan-

glement, but they may have some relations with the entanglement. Using random
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matrix theory, we estimate the saturation value of the subsystems linear entropy.
Here we mention that, unlike the pure state case, the saturation value of the
subsystems entropies depends on the initial subsystem entropies.

We know that, entanglement implies a quantum action or a quantum process
by which disentangled or product states are transformed into entangled ones. Any
quantum transformation can always be described by operators. Therefore, one
may consider entanglement produced by the different operators. Let us assume,
a given operator acting on a product state, transform the product state into an
entangled state. This given operator is referred as entangling operator. Of course,
not each operator is entangling, or neither their entangling powers are same. One
given operator, operating on a product state, can create more entanglement than
the another given operator. As an example, a unitary operator corresponding
to a classically chaotic system, in general, produces more entanglement than a
unitary operator corresponding to a regular system.

In this chapter we also study the entangling power of a given unitary time evo-
lution operator corresponding to the coupled kicked tops, for different underlying
classical dynamics of the individual tops and for different coupling strengths be-
tween the two tops. Recently Nielsen et al [107] have proposed a measure, based
on a method called Operator Schmidt decomposition, of the entangling power of a
given unitary operator. However, following a technique called matrix reshaping,
it can be shown that the operator Schmidt decomposition and the state Schmidt
decomposition are basically equivalent. Our numerical studies show that qual-
itatively operator entanglement has similar properties as the pure state entan-
glement. Few common properties are (1) the operator entanglement, in general,
support ‘more chaos more entanglement’ view ; (2) there exists saturation of op-
erator entanglement for strongly chaotic and strongly coupled cases, and these
saturation values are again in the form of In(vd) where d is the dimension of the
operator Hilbert space ( Hilbert-Schmidt space ) ; (3) in case of weakly coupled
tops, the operator entanglement corresponding to the regular dynamics are more

than the chaotic cases, at least within our observational time.
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6.1 Mixed state entanglement

6.1.1 Measure of the mixed state entanglement
Peres’ separability criterion for density matrices [105] :

A quantum system consisting of two subsystems is separable, if its density matrix

p can be expressed as
p= pin @ ", 6.1)
i

where the positive weight factors p; satisfy ), p; = 1, pz(-A) and pZ(B) being density
matrices for the two subsystems. It will be easier to understand the derivation of
the separability criterion by writing the density matrix elements explicitly with all

the indices. Hence Eq.(6.1) becomes

Pmuny = Zpi (pz(A)>mn <p§B)>MV’ (62)

where Latin indices refer to the first subsystem and Greek indices refer to the
second one. In general, the dimensions of the subsystems are unequal.

Let us now construct a new matrix ¢ from the above density matrix p as

Omu,nvy = Pmvnu- (6.3)

This expression shows that the Greek indices of p have been transposed, but not
the Latin ones. This operation is called partial transpose. This is definitely not
a unitary transformation, however the ¢ matrix is still Hermitian. If the density
matrix p is separable, then Eq.(6.1) is valid, and therefore we can write the o

matrix as

o= no" e (A7) (6.4)

T *
The transposed matrices (pr )) = (pZ(B)) are nonnegative matrices with unit
trace, and hence they are legitimate density matrices. It follows that none of the
eigenvalues of ¢ (partially transposed p) is negative. This necessary condition for

the separability of p is the Peres’ separability criterion for the density matrices.
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Log-Negativity. A computable measure of entanglement / A quantitative version

of Peres’ criterion [74] :

Before going into the detail discussion of this measure, let us first set our no-
tations. If we perform partial transpose over first (second) subsystem, then the
resultant matrix will be denoted by p’ (p’2). More explicitly, if p satisfies Eq.

(6.1), then

Ta

p > pi (pEA) )T ® pi” (6.5a)
7

and o = Y pipl? ® (pr))T. (6.5b)

Vidal and Werner [74] have proposed a computable measure of the entanglement
based on the trace norm of the partial transpose p’4 ( or p’8 ) of the bipartite
mixed state p. It essentially measures the degree to which p’4 fails to be positive,
and therefore it can be considered as a quantitative version of Peres’ criterion.
The trace norm of any operator A is ||A|| = TrvVAAT. If A is Hermitian, then

||A|| is the sum of the absolute value of the eigenvalues of A. All the eigenvalues of

the density matrix p are positive and therefore ||p|| = Trp = 1. p’4 also satisfies
Trp'™s = 1, but if p is an entangled state, then p’4 may have negative eigenvalues.

Vidal and Werner have actually proposed two interdependent measures. The first

one is the negativity N(p), which actually measures the sum of the absolute value

1A

of the negative eigenvalues of p’4 and it vanishes for unentangled states. After

some simple algebraic manipulations, we get

TaAll _ 1
N(p) = %. (6.6)

The second measure, Log-Negativity is defined as
En(p) = In||p™]|. 6.7)

In terms of eigenvalues of p

1 N

N(p) = 5 (Z Al — 1) (6.8a)
i=1
N

En(p) = 1n<Z\A,-|> (6.8b)
i=1

where N is the dimension of p.



Mixed state entanglement and Operator entanglement 120

6.1.2 Numerical results
Initial mixed states :

We consider two different types of initial unentangled mixed states.
(1) A product of mixed and pure states, i.e., the initial state corresponding to
the first subsystem is mixed and the same for the second subsystem is pure.

Mathematically we express this state as p(0) = p,(0) ® |12(0)) (12(0)

, where p, (0)
is the initial mixed state of the first subsystem and |¢2(0) ) is the initial pure state
of the second subsystem. We take [12(0)) as a generalized SU(2) coherent state
as presented earlier in Eq.(4.4). The mixed state p;(0) is a combination of two

coherent states placed at two different points on the phase space, i.e.,

p1(0) = 6%, #%0) (60, #ol + (1 — p) 163, ¢10) (610, S1ol- (6.9)

Here we take (6%, ¢%,) = (0.89,0.63) and (6, ¢%,) = (2.25, —0.63), and
|h2(0)) = |00 = 0.89, ¢o9 = 0.63). We only study p = 1/2 case, that means the
contributions of both the coherent states are same on the formation of p; (0). Since
the two coherent states are placed away from each other on the phase space, their

overlapping is almost negligible (shown in Fig. 6.1), i.e., (0%, ¢% |6%, ¢5,) =~ 0.

= ¢ L

Figure 6.1: Husimi function of the initial mixed state p;(0). Center of the two peaks are
at (¢, 0) = {(0.63,0.89) and (—0.63, 2.25) }.

(2) A product of mixed states, but of the very simple form p(0) = p1(0) ® p2(0),
where p;(0) is same as presented in Eq.(6.9). We also take the initial mixed state
corresponding to the second subsystem p3(0) as same as p;(0).

The most general form of an unentangled mixed state is p = ), p; pgi) & pg).

However, our choice of these very simple initial mixed states will help us to under-
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Figure 6.2: Evolution of the log-negativity measure ( evolving under the coupled tops
time-evolution operator Ur ) corresponding to the case of the mixed-pure initial state is
presented. Solid lines and dotted lines are representing the results corresponding to the
non-chaotic cases (k£ = 1.0 and ¥ = 2.0, respectively ). Dashed lines are representing the
mixed case (k = 3.0) and dash-dot lines are showing the results for the strongly chaotic
case (k = 6.0). (a) Representing the results for the stronger coupling strength (e = 1.0).
(b) This window is showing the results for ¢ = 0.1. (c) This window is for ¢ = 0.01 case. (d)
This window is showing the results for the weak coupling case (¢ = 0.001).

stand better the mixed state entanglement. We now evolve the initial mixed states

p(0) by the time evolution operator corresponding to the coupled kicked top, i.e.
p(n) = UF p(0) UL". (6.10)

We now study the time-evolution of the log-negativity measure and the subsystem
entropies (the von Neumann entropy and the linear entropy) of p(n) corresponding

to the above mentioned two initial mixed states.

Mixed-Pure case :

Let us start the discussion with the mixed-pure case, i.e., the initial unentangled
mixed state corresponding to the coupled system is of type (1). In this case, first

we discuss the time-evolution of the log-negativity measure of the entanglement
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and then we discuss the time-evolution of the subsystem entropies.

(@) Log-Negativity measure : In Fig.6.2, we present the time-evolution of

the log-negativity measure Ey(p) for different individual top dynamics (k£ =
1.0, 2.0, 3.0and 6.0) and for different coupling strengths. Let us discuss the case
of a stronger coupling ¢ = 1.0, whose results are presented in Fig.6.2(a). This
coupling strength is very strong and therefore, irrespective of the individual top
dynamics, the over all coupled system is chaotic. Therefore, the location of the
initial states and the dynamics of the individual tops are irrelevant for the satu-
ration of the Ex(p). Hence we see almost same saturation values of Ey(p) for all
the different values of k.

The time-evolution of Ey(p) corresponding to e = 0.1 is presented in Fig.6.2(b).
We now observe that the saturation values of Ey(p) corresponding to two non-
chaotic cases (k = 1l.0andk = 2.0) are less than the saturation values corre-
sponding to the other two cases. These lower saturation values of Ey(p) corre-
sponding to the non-chaotic cases are due to the influence of the regular orbits
on the evolution of the mixed state. Consequently we notice that the saturation
values of En(p), corresponding to the non-chaotic cases, are less than the satu-
ration values observed in the case of stronger coupling (¢ = 1.0). However, the
saturation values of Ey(p) corresponding to the other two cases, £ = 3.0 and
k = 6.0, are almost equal to the previous case (¢ = 1.0).

Now for the coupling strength ¢ = 0.01, whose results are presented in
Fig.6.2(c), the saturation values of En(p) corresponding to the non-chaotic cases
are again less than the other two cases. In addition, the saturation values of En(p)
corresponding to the non-chaotic cases are less than the corresponding satura-
tion values observed in the previous two coupling strengths (e = 1.0, e = 0.1).
But here we notice that, when 50 < n < 200, the magnitude of Ex(p) correspond-
ing to the non-chaotic cases are larger than the other two cases. The saturation
value corresponding to the mixed case (k = 3.0) is now less than the saturation
value corresponding to the chaotic case (¢ = 6.0). This implies that, for this
moderate coupling strength, the presence of small regular islands in £ = 3.0 case
effects the entanglement production.

Finally when coupling strength is weak, ¢ = 0.001, we observe completely dif-
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ferent behaviors of the time-evolution of Ex(p) and these results are presented
in Fig.6.2(d). For this coupling strength, En(p) corresponding to the non-chaotic
cases are higher than the chaotic cases within our time of observation. These
results imply that, in case of weak coupling, the presence of chaos in the system
actually suppresses the entanglement production. This suppression of the en-
tanglement production by chaos, corresponding to the weak coupling case, was
also observed for the pure state entanglement production, which we have already

discussed in Chapter 5.

(b) Subsystem entropy : Here we study two different measures of the subsystem

entropy. One is the linear entropy S and the other one is the von Neumann
entropy Sy. In case of mixed state, the subsystem entropies are not the measure
of the entanglement. However, the subsystem entropies are still very important
quantities to investigate. In addition, we find that the qualitative behaviors of the
subsystem entropies are similar to the log-negativity measure. This implies that
the subsystem entropies may have some connection with the entanglement.

Two subsystem entropies are defined in the usual way. We have the total
density matrix p(n) at time n which is defined in Eq.(6.10). To determine the re-
duced density matrix ( RDM ) corresponding to the first (second) subsystem p;(n)
[ p2(n) ], we have to trace over the second (first) subsystem. As usual, the subsys-
tem von Neumann entropy is defined as S‘(,1 ) = —Tr [p1(n) In pi(n)] and S‘(,Q) =
—Try [ p2(n) In pa(n)]. Corresponding linear entropies are Sg) = 1 —Try pi(n)? and
Sg) = 1 — Try p2(n)?. Since the initial state corresponding to the first subspace is
mixed, so the corresponding subsystem entropies ( Sy, Sg) are greater than zero.
On the other hand, the initial state corresponding to the second subsystem is pure
and therefore the corresponding subsystem entropies are zero. Consequently, the
time-evolution of the subsystem entropies of the individual subsystems are dif-
ferent.

In Fig.6.3, we present the time-evolution of Sg for the individual subsystems.
We have mentioned earlier that the overlapping between the two coherent states,

which constructing p;(0), is almost zero. Therefore the initial value of Sg corre-
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Figure 6.3: Evolution of the subsystem linear entropy ( evolving under the coupled
tops time-evolution operator Ur ) corresponding to the case of mixed-pure initial state is
presented. Left windows correspond to the first subsystem and the corresponding right
windows are showing the results for the second subsystem. Solid lines and dotted lines
are representing the results corresponding to the non-chaotic cases (k = 1.0 and ¥ = 2.0,
respectively ). Dashed lines are representing the mixed case (k = 3.0) and dash-dot lines
are showing the results corresponding to the strongly chaotic case (k = 6.0). (al, a2)
Representing the results for the stronger coupling strength (e 1.0). (b1, b2) These
windows are showing the results for e = 0.1. (c1, c2) These windows are for ¢ = 0.01 case.
(d1, d2) Representing the results for the weak coupling strength (e = 0.001).

sponding to the first subsystem can be obtained as follow.

1 — Try p1(0)?

1 a
ey | 3 (18, 880 0 6801 + 108 9h0) (0, o))

Sr

1
1= 3 3 [ Homlots, o) + [tmalot, o) ]
mi

1

5 (6.11)
The second equality in the above expression is due to the above assumption of
the non-overlapping coherent states and the last equality is due to the normalized
coherent states. In Fig.6.3, we observe that the initial value of Sg corresponding

to the first subsystem are indeed 1/2. On the other hand, the initial state cor-
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responding to the second subsystem is pure and hence the initial value of Sg is
zero.

We now discuss the time-evolution of the linear entropy Sg, which is also re-
ferred as the production of Sg, corresponding to the different single top dynamics
and the different coupling strengths which we have studied in case of the log-
negativity measure. Let us start discussion with the stronger coupling strength
e = 1.0, whose results are presented in Figs.6.3 (al) and (a2). These figures show
that, even though the initial values of Si are different for the two subsystems,
the saturation values of S are same for both the subsystems. Again, due to the
strong coupling, the saturation values of Sg are same for all the different single
top dynamics. Later we will show that the saturation value of Sy depends on
the initial value of S and on the Hilbert space dimensions of the participating
subsystems.

The time-evolution of S corresponding to ¢ = 0.1 is presented in Figs.6.3(b1)
and (b2). Now we observe that the saturation values of Sg corresponding to the
non-chaotic cases (k¢ = 1.0 and k£ = 2.0) are less than the other two cases. This
observation is valid for both the subsystems. A similar behavior of the saturation
was also observed in our study of the time-evolution of Ex(p).

The production of Si corresponding to the both subsystems, for the coupling
strength ¢ = 0.01, are presented in Figs.6.3(c1) and (c2). Here we observe that,
for n < 200, production of Sg corresponding to the non-chaotic cases is larger
than the production in other two cases. Another important observation is that,
the saturation values of Si are less than the previous two coupling strengths for
all kind of single top dynamics.

Finally, we come to the weak coupling case, ¢ = 0.001, whose results are pre-
sented in Figs.6.3(d1) and (d2). In this case, within our observational time, we
find that the production of Sg corresponding to the non-chaotic cases is larger
than the production in chaotic cases. More precisely, the production of Sg de-
creases with the increment of the parameter k£ and this is observed for both the
subsystems. However, due to the different initial values of Sg, the production of
S for all the different values of k is always larger for the first subsystem than the

second subsystem.
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Figure 6.4: Evolution of the subsystem von Neumann entropy ( evolving under the cou-
pled tops time-evolution operator Uz ) corresponding to the case of mixed-pure initial state
is presented. Left windows correspond to the first subsystem and the corresponding right
windows are showing the results for the second subsystem. Solid lines and dotted lines
are representing the results corresponding to the non-chaotic cases (k = 1.0 and ¥ = 2.0,
respectively ). Dashed lines are representing the mixed case (k = 3.0) and dash-dot lines
are showing the results corresponding to the strongly chaotic case (k = 6.0). (al, a2)
Representing the results for the stronger coupling strength (¢ = 1.0). (b1, b2) These win-
dows are showing the results for ¢ = 0.1. (c1, c¢2) These windows are for ¢ = 0.01 case.
(d1, d2) Representing the results for the weak coupling strength (e = 0.001).

In Fig.6.4, we present the production of the von Neumann entropy Sy for dif-
ferent individual top dynamics and different coupling strengths. Because of the
identical qualitative behaviors of Sg and Sy, we are not giving any elaborate dis-
cussion on the production of Sy. The above description of the production of Sp is

well applicable for the production of Sy .

Mixed-Mixed case :

In this case, the initial unentangled state is a product of mixed states of the
form p(0) = p1(0) ® p2(0), where p,(0) is identical to p;(0), and p;(0) is defined in
Eq.(6.9). Following earlier sequence, we first discuss the time-evolution of the log-

negativity measure Eyn(p) and then we discuss the production of the subsystem



Mixed state entanglement and Operator entanglement 127

2 =
32 1.5 é
= 1 E
0.5 =
0 | PR P P P =

0 10 20 30 40 50
5 ;’i R e e e e e e e L,.,f::Li;u,J‘,g,,é
Fob
0.5 =
0 | | =

5 0 100 200 300 400
E T = 3
~15F S E
S 1= =
=05 E 3
0k 3

0 200 400 600 800 1000
FT E
1 E 3
& C |
505 [ 3
0k B

0 200 400 600 800 1000

n

Figure 6.5: Evolution of the log-negativity measure ( evolving under the coupled tops
time-evolution operator Ur ) corresponding to the case of the mixed-mixed initial state is
presented. Solid lines and dotted lines are representing the results corresponding to the
non-chaotic cases (k£ = 1.0 and ¥ = 2.0, respectively ). Dashed lines are representing the
mixed case (k = 3.0) and dash-dot lines are showing the results for the strongly chaotic
case (k = 6.0). (a) Representing the results for the stronger coupling strength (e = 1.0).
(b) This window is showing the results for ¢ = 0.1. (c) This window is for ¢ = 0.01 case. (d)
This window is showing the results for the weak coupling case (¢ = 0.001).

entropies.

(a) Log-Negativity measure : In Fig.6.5, we present the time-evolution of Ey(p) for

different individual top dynamics (k£ = 1.0, 2.0, 3.0and 6.0) and for different cou-
pling strengths. If we compare Figs.6.5 and 6.2, then we can clearly see that the
qualitative behaviors of the time-evolution of Ey(p) corresponding to the mixed-
mixed case is same as the behaviors observed in the mixed-pure case. Therefore,
for the present case, a detail qualitative description of the time-evolution of Ey (p)
is not required, and the description presented for the mixed-pure case is applica-
ble for the present case. However, we identify a quantitative difference between
these two cases. The time-evolution of Ey(p) corresponding to the mixed-mixed
case is always less than the mixed-pure case. This is true for all the four different

single top parameter values and for all the coupling strengths. This result implies
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Figure 6.6: Evolution of the subsystem linear entropy ( evolving under the coupled tops
time-evolution operator Ur ) corresponding to the case of mixed-mixed initial state is
presented. Solid lines and dotted lines are representing the results corresponding to the
non-chaotic cases (k = 1.0 and k£ = 2.0, respectively ). Dashed lines are representing
the mixed case (k = 3.0) and dash-dot lines are showing the results corresponding to
the strongly chaotic case (k = 6.0). (a) Representing the results for the stronger coupling
strength (e = 1.0). (b) This window is showing the results for e = 0.1. (c) This window is
for e = 0.01 case. (d) Representing the results for the weak coupling strength (¢ = 0.001).

that the mixedness of the initial state corresponding to the second subsystem ac-
tually suppresses the entanglement production. This is an important observation
which requires separate study.

(b) Subsystem entropy : In this case, the initial state corresponding to each

subsystem is identical and therefore, the production of subsystem entropies
(Srand Sy ) remains same for the each subsystem. Hence in Figs.6.6 and 6.7,
we present the results of the production of subsystem entropies corresponding
to the first subsystem only. A comparison between the present results and the
results obtained in the mixed-pure case shows no qualitative differences between
the two results. However, in contrast to the log-negativity measure, the produc-
tion of the subsystem entropies are slightly higher for the present case than the

previous case (mixed-pure), but these small differences are not distinctly visible
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Figure 6.7: Evolution of the subsystem von Neumann ( evolving under the coupled tops
time-evolution operator Ur ) corresponding to the case of mixed-mixed initial state is
presented. Solid lines and dotted lines are representing the results corresponding to the
non-chaotic cases (k = 1.0 and k£ = 2.0, respectively ). Dashed lines are representing
the mixed case (k = 3.0) and dash-dot lines are showing the results corresponding to
the strongly chaotic case (k = 6.0). (a) Representing the results for the stronger coupling
strength (e = 1.0). (b) This window is showing the results for e = 0.1. (c) This window is
for e = 0.01 case. (d) Representing the results for the weak coupling strength (¢ = 0.001).

from the respective figures. In the next subsection, our random matrix estima-
tion of the saturation of Sg, corresponding to the above two different type of initial
states, will show the larger saturation value for the mixed-mixed case than the

mixed-pure case.

6.1.3 Saturation of the subsystem linear entropy : A random matrix es-

timation

We now present the RMT estimation of the saturation value of the subsystem
linear entropy. Here we consider the initial state as the mixed-mixed type, i.e.,
p(0) = p1(0) ® p2(0). Since the pure state is just a special case of the mixed state,
we can also estimate the saturation of the subsystem linear entropy correspond-

ing to the mixed-pure case as a special case of the mixed-mixed case. Following
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identical procedure, it is also possible to estimate the saturation value of the
subsystem linear entropy corresponding to the most general initial unentangled
mixed state of the form p = ). p; Pgi) ® pg). However, here we only present the
whole derivation corresponding to the case which we have mentioned above and
we only highlight the results corresponding to the most general unentangled ini-
tial mixed state. At the very beginning, we set some notations. We denote the
subsystem linear entropies by S; where ¢ = 1, 2 represent two subsystems. In
addition, we denote the RMT average of any quantity by a bar on the top, like se.

Let us take the initial state corresponding to two subsystems, in their respec-

tive eigenbasis, as

N

p1(0) = > aili) (il and p1(0) = Y bala)(al,

i=1
where Efil a; =1 = Zi"zl b, and the coefficients, a;’s and b,’s, are real positive
semidefinite. N and M are the dimensions of the first and the second subsystem
respectively. Without loosing any generality, we assume N < M. Therefore, the

initial state of the composite system is,

N M
= D2 tibap (6.12)

where
2i0) = (1)) ® la)) ((il ® (a]) = [i, @) (4, al. (6.13)
From now onwards, we use |e) ®@ [o) = |eo, o).
Now
pU(0) 7 pi(n) = U™ i, @) (i, ol (6.14)

Let us assume, {|j) } is orthonormal basis for the first subsystem and {|3) } is

orthonormal basis for the second subsystem. Therefore,

Z Z ol ol |5, B) (k, A 6.15)

J,k=1 Byy=1
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and hence

p(n) = U"p(O)U™

M:

=1

a; by Z Z a]ﬂ akv |], B) (k, ~|. (6.16)

J.k=1 By=1

Q
I
-

The RDM corresponding to the first subsystem is

where A1)

M=

pi(n) = {(Blp(n)|5)

i
L

N M
aibe D D agg’ o) 17) (K

jk=1 p=1

Il
M-
NE

-~
Il
_
Q
Il
—

=

a; by A@) gGe)T 6.17)

[
WE
NE

=1 a=1

is a rectangular matrix of size N x M and whose elements are the

coefficients {a%a)}. Similarly, the RDM corresponding to the second subsystem

is

I
Mz

p2(n) (ilp(n)]5)

<.
Il
—

M
Z ECOLC (6.18)

Il
il Mz

We now derive the RMT averages of the subsystem linear entropies, S; and S,.

For the unequal Hilbert space dimensions (N # M), S; and S, are different. Let

us first calculate S,. From Eq.(6.18), we have

Trs p3

M M

> (A3 1y) Zzafbi 3 (] (AGOT 460 )2 |y
y=1 =1 a=1 y=1

N M M

ST a2 30D babs (] (AT A AT A 4 c) )
=1 a,f=1 y=1

a#B
M M . ) . '
aia; Y > b2 (| (AU A6 AU 40) 4 1 c) |y)

a=1 y=1

J

il

e
<

N M M ) ) ) .
S S aiajbabsiy] (A(mﬁA(za) AGBT 4GB8) h.c)ly)

ij=1 a,f=1 y=1
i#j  oB
(6.19)
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According to Ref.[99], the RMT average of the first term of the above expansion

M

3 (] (At At ) |y )

7=1

M+ N

= —. 6.20
MN +1 ( )

We now derive the RMT averages of the other three terms. All these terms are

of the following general form

M
> (1|ATAB'B + h.cly). (6.21)
y=1
Note that,
M M
> (Y ATABIB + h.cly) =2 > (y|ATABIBly). (6.22)
y=1 y=1

Now we have

(7|A"AB'B|y)

M=

7
L

(| ATk) (k[A]6) (81BT|E) (1| Bly)

I
M=
NE

1

bl

J=1

3
=2
I

E

a};,y Qs b% bl’y

i=1

M= 3=
M=z

‘ak7|2 ‘bh‘z + other terms. (6.23)

Il
—

k,

~

o 1
The terms which we referred as the ‘other terms’ in the above expression contain
only one a (orb) with same indices, and therefore the RMT averages of all such

terms are zero. Hence

M
> (7| AtABIBy)
y=1
M N

= |“iw|2 |bl7|2
y=1 k,l=1

[
E
M=

2 2 2 2
(o +ap, ) (BE +0),7)
k,l

1

2
Il
—

I
M=
M=

R2:R2 R2,52 I 2;R2 I 2;12
[ak,y bl,y + ay, bl7 + ay, bl7 + aj, b17 ], (6.24)

k=1

7
L
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where Re (a, b) = (af, b%) and Im (a, b) = (a¥, b%). From the normalization condi-

tion
N M N M
2
oY lawl = XD (el +ab,’) =1
we have
aR?2 = gl 2 = 1
ky ky 2MN’

and similarly we can get

bR2 72 _

by b 2MNT
Substituting the last two results in Eq.(6.24), we get

M 1 \2 1
At ABtB = 4MN? [ —— | = —. 6.25
>t ) G 6.25)

Using the results of Egs.(6.20) and (6.25), we get from Eq.(6.19)
N M

_ M+ N
Trao2 — 2
203 MN+1Z;Q§:1

N M N M N M
Z Z a?bab/j-i- Z Zaiajbi+ Z Z aiajbabg

i=1 a,f=1 ij=1 a=1 ij=1 a,f=1
a#f i#j i#j afp
(6.26)
From another normalization condition ZZ 1 Z _; a;bp = 1, the term inside the
bracket [...] can also be written as
N M
I WL
i=1 a=1

Therefore,
N M

M+ N
Tro 02 — 212
2P MNH;;M*

M
-3 e ) (6.27)
a=1

Sl
VRS
—_

and consequently
M

|
—

N

— — M+ N
S; = 1—Trsp8 = LY
i=1

~ MN +1 &

M
a?b? — % (1 -> a$b§>. (6.28)
1 a=1

o=
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Now the initial subsystem entropies are
N M
S1(0) =1 - ) a7 and S(0) =1 - ) b2 (6.29)
i

Therefore, in terms of the initial entropies, we can write

_ M+ N M?2 -1

So=1-— uN 1t MOIN 1 1) [S1(0) + S2(0) — S1(0) S2(0)]. (6.30)
Following an identical procedure, we get
— M+ N N2 -1
S =1-— MN + 1 + N(MN n 1) [51(0) + SQ(O) — 51(0) SQ(O)]. (6.31)
For N = M case,
- = 2N N2 -1
Si=%=1- w1t NEr i [51(0) + S2(0) — S1(0) S2(0)].  (6.32)

The above derivation of the RMT average of the subsystem linear entropies
are valid for the mixed-mixed initial states. For the mixed-pure initial states

S2(0) = 0. Therefore, for the mixed-pure case

_ M+ N N2 -1
—1- :
51 N +1 T vy 7 00O (6.332)
_ N M2 — 1
S - 1- MFEN $1(0) (6.33b)

MN +1 M(MN + 1)
and when N = M

S oGl N, Mol
e N2 +1 ' N(N2 +1)

$1(0). (6.34)

Finally, we just want to present the RMT average of the subsystem lin-
ear entropies for the most general form of the unentangled initial mixed state
p(0) = >, pi pgi) 0) ® pg) (0) and these are

5 - 1 MEN () ) () 5
S o= 1 MN+1+NMN~|— sz 0) + 55°(0) = 5:°(0) 557 (0) ],

(6.35a)
p? [5900) + s (0) — 57(0) 557(0)],

— M+ N M? -1
= 1-
52 MN+1+M(MN+1)Z

(6.35b)

where S,(ci) (0) =1 — Trg [p,(:) (0) ]2, k = 1, 2. Derivation of the above expression is

straightforward but lengthy. Therefore, we are not presenting it here.
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Some numerics :

We now check the above RMT estimation of the saturation of the subsystem lin-
ear entropy with the numerical results obtained from the coupled kicked tops.
Here we consider strongly coupled tops whose individual subsystems are strongly
chaotic (e = 1.0, k = 10.0). Here again we consider same two different types of
initial mixed states, i.e.,

(1) mixed-pure :
p(0) = p1(0) ® [12(0)) (¥2(0)], (6.36)

where p1(0) = pl6f, #%) (0%, ¢l + (1 — ) 1650, #%0) (600, ¢l and [12(0)) =
|20, P20 ). The states |0, ¢)’s are usual SU(2) coherent state.

(2) mixed-mixed :

p(0) = p1(0) ® p2(0) (6.37)

where p;(0) is same as above and p»(0) is also identical to p;(0). In our detail study
of the mixed state entanglement production, we only consider p = 1/2 case. Now
we determine the saturation of the subsystem linear entropy for different p, where
p actually determines the initial subsystem entropy. When p = 0 and p = 1, the
initial state is pure. As we increase p from zero, the mixedness of the initial state
increases and it reaches maxima at p = 1/2 ; then a further increase in p actually
decreases the mixedness of the initial state and it reaches zero again atp = 1.

In Fig.6.8, we present the saturation of the subsystem linear entropy as a func-
tion of p. Figs.6.8(a) and 6.8(b), showing respectively the results corresponding
to the mixed-pure and the mixed-mixed cases. In both the cases, our RMT esti-
mations (solid line) match well with the numerical results. The small fluctuations

are due to the finite-dimensional effects.

6.2 Operator entanglement

6.2.1 Operator Schmidt decomposition

We start our discussion on operator entanglement with a brief introduction to the

operator Schmidt decomposition, a method recently proposed in Ref.[107]. Let us
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Figure 6.8: Saturation of the subsystem linear entropy corresponding to the coupled
kicked tops is presented for different values of p. The magnitude of p determines the initial
subsystem linear entropy. Solid curve is the RMT predicted estimation. (a) Representing
the results corresponding to the initial mixed-pure case. (b) This window is showing the
results corresponding to the initial mixed-mixed state. In both the cases, (a) and (b), RMT
prediction match well with the numerical results.

first consider a Hilbert space of N x N operators whose inner product is defined
as (A, B) = Tr(A' B), where A and B are any two operators. Using this inner
product, it is possible to define an orthonormal operator basis {A,} such that
(A;, Aj) = Tr( AZ A;) = 4;5, where §;; is just the Kronecker delta. Note that the
dimension of the operator Hilbert space of N x N operators is N2. A very simple
example of a complete orthonormal operator basis is {I2, 0;}/v2, where I, is the
2 x 2 unit matrix and o;’s are the Pauli spin matrices. Here the dimension of the
operator Hilbert space is 22 = 4.

Suppose we have a unitary operator U acting on a space Hy ® Hp, where the
dimension of H4 and Hp are N and M respectively. Without loss of any generality

we can assume N < M. We expand U in orthonormal operator product bases
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{AZ‘ ® Bj} as

N2 M2

U=> Y u;A® B, (6.38)

i=1 j=1
where A; and B; are fixed orthonormal bases for H4 and Hp respectively, and u;;

are the coefficients. According to the singular value decomposition, the coefficient

matrix 4 can be written as
u= VsV (6.39)

where V and V are the unitary matrices and s is a N2 x M? rectangular matrix of

the form [s] = s5;0;; where s;’s are nonnegative. We thus obtain

2 M2
U = Y > ViusuVi,4i ® B;
i,k=1 j,l=1
N2 M2 N2

= Y NN VisiVij A ® By (6.40)

i=1 j=1 k=1

Let us now define

N2
i=1
M2
By = ) WiB;. (6.42)
j=1

It can be easily shown that A, and By, are also an orthonormal bases for #4 and

‘Hp. Hence we obtain the operator Schmidt decomposed form of U as,

N2
U = Z Sk Ak ® Bk. (6.43)
k=1

6.2.2 Measure of operator entanglement

We can define the operator density matrix as,

N2
pr = UU = 3" sps (A A) ® (Bi B)). (6.44)
k=1
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But now Trp, = TrUU' = Zkle s = MN. Therefore to normalize p;, i.e., to
make Trp,;, = 1, we define

5 = . (6.45)

The normalized form of the operator density matrix is
N2
pu =Y ki (Ard]) ® (BrB)) (6.46)
k=1
and then the operator RDM, say for the 1st subsystem, will be

N2
oy =3 @A AL (6.47)
k=1

Ay = 5% are the eigenvalues of the operator RDM. Now we can define the operator

von Neumann entropy and the operator linear entropy respectively as

N? 2 2
Sy(U) = -Trpl Inpld = Z =-y (1\;}6\4) In (A‘;M> (6.48)
k=1
(12 1 &,
and  Sp(U) =1-Tn (pU ) =1- o0 ; sk, 6.49)

Sy (U) and Sgr(U) are the measures of the operator entanglement.

6.2.3 Numerical results
The time evolution operator corresponding to the coupled kicked tops is
Ur = (Up ® Us) UZ, (6.50)

where U; and U, are the time evolution operators corresponding to the individual
tops and U!? is the coupling term. We have already discussed this particular
system in the Chapter 3. Presently we are interested in studying the evolution
of the operator entanglement of Ur, i.e. in studying the operator entanglement of
U} as a function of the time step n. In our numerical calculation, we choose the

complete orthonormal operator bases corresponding to each subsystem as,

Aa = |m1><n1| (651)
and Bﬁ = |m2)<n2| (652)
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where

o = N(m1 +]1) + (n1 +j1—i—1);(m1,n1) = —jl,...,jl

B = M(ma+ j2) + (n2+j2 + 1); (ma,n2) = —jo,..., 52

and N = 25; + 1, M = 2j, + 1. In these orthonormal bases, Ur can be expressed
as

N2 M2

Ur =Y ) tapda ® Bs. (6.53)
a=1 /3:1

Since U} is also a unitary operator, so we can write it in the above bases as,

NZ M2

Ut =YY uas(n) Ay ® Bg. (6.54)
a=1 ﬂ:l

Now applying the operator Schmidt decomposition and following the procedure
given in the preceding subsection, we determine the operator von Neumann en-
tropy Sy (U}) as a function of n. In Fig.6.9, we present our numerical results
corresponding to the operator entanglement production for the coupled kicked
tops of spin size j; = jo = j(say) = 10. For this spin size, the operator Hilbert
space dimension corresponding to each subsystem is N2 = (25 +1)2 = 441. As
we go from top to bottom window of Fig.6.9, coupling strength is increasing by a
factor ten. Top window corresponds to ¢ = 103, next window is showing the re-
sults for e = 1072, the third window from the top corresponds to ¢ = 10~! and the
bottom window is showing the results for e = 1.0. For each coupling strength, we
study the operator entanglement production for the same four different single top
parameter values, which we studied in case of the state entanglement production
(Chapter 5).

Let us first discuss the case of weaker coupling ¢ = 1073, whose results are
presented in the top most window of Fig.6.9. Here, within our time of observation
n = 1000, we observe a larger operator entanglement production for the non-
chaotic cases than the same for the chaotic one. In the preceding chapter, we ob-
served similar behavior of the state entanglement production, but for the weaker

coupling strength (e = 107*). However, in case of the pure state entanglement
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Figure 6.9: Time evolution of the operator von Neumann entropy corresponding to the
coupled kicked tops is presented for different coupling strengths and for different under-
lying classical dynamics. Solid line represents £ = 1, dotted line corresponds to k£ = 2,
dashed line is for ¥ = 3 and dash-dot line represents k£ = 6.

production, the initial state plays a crucial role. But the operator entanglement
is a property of the operator itself and therefore it is completely independent of
any kind of initial states. The conclusion is that, for the weakly coupled case, the
presence of chaos actually suppresses the operator entanglement production.

The results corresponding to the case ¢ = 1072 are presented in the second
window from the top of Fig.6.9. For a non-chaotic case k£ = 1.0, the initial (n < 95)
operator entanglement production is larger than all the other cases. Moreover, for
n < 240, the operator entanglement production corresponding to both the non-
chaotic cases is larger than the same corresponding to the mixed case (k = 3.0).
However, the operator entanglement corresponding to both the non-chaotic cases
eventually saturates at a value lower than the values corresponding to the mixed
(k = 3.0) and the chaotic (k¥ = 6.0) cases. We also observe that the operator
entanglement production corresponding to the chaotic case is always larger than
the mixed case.

Let us now come to a reasonably stronger coupling strength ¢ = 10~!, whose
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results are presented in the third window from the top of Fig.6.9. For this coupling
strength, we observe the saturation of the operator entanglement production cor-
responding to chaotic and non-chaotic cases. However, these saturation values
are clearly different for non-chaotic, mixed and chaotic cases. For the chaotic case
k = 6.0, the saturation value is very close to In(0.6 N?) = In (0.6 x 441) ~ 5.578.... ;
whereas the saturation value corresponding to the mixed case k£ = 3.0 is slightly
lower than this value. But the saturation values corresponding to two non-chaotic
cases are distinctly lower than the other two cases.

Finally, the results corresponding to the case of very strong coupling (¢ = 1.0)
are presented in the bottom window of Fig.6.9. Here, due to the strong coupling,
the over all coupled system is chaotic, irrespective of the underlying classical
dynamics of the individual subsystems. Therefore, the saturation values of the
operator entanglement production are almost same for all the different values of &
and these saturation values are very close to ~ 5.57. However, if we closely observe
these saturation values, then we find minute differences between the non-chaotic

(means, subsystems are non-chaotic) and the chaotic cases.

Saturation of the operator entanglement :

We have observed the saturation of the operator entanglement production cor-
responding to the cases when the individual top dynamics is chaotic and their
coupling strength is also very strong. Most important observation is that the sat-
uration value of the operator von Neumann entropy is equal to ~ In(0.6d) where
d = N? is the dimension of the operator Hilbert space. Therefore, from our pre-
vious knowledge of the saturation of the pure state entanglement, we expect the
distribution of the eigenvalues of the operator RDM should follow the Laguerre
ensemble. In Fig.6.10, we present the distribution of the eigenvalues of the oper-
ator RDM corresponding to the coupled kicked tops for the different Hilbert space
dimensions M of the second top, while the dimension of the Hilbert space of the

first top is fixed at N = 25; + 1 = 21. The solid curve is representing the RMT
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Figure 6.10: Distribution of the eigenvalues of the operator RDMs of coupled kicked
tops. N = 2j; + 1 = 21. Solid curves correspond to the theoretical RMT predicted
distribution function [Eq. (6.55)]

predicted Laguerre distribution

0@ \/ Oz = A) (A = Ain)

f) =
(6.55)

- (e )
where A € [Mins Amaz|, @ = do/di,di = N% dy = M? ; and the histograms
are the numerical results corresponding to the coupled kicked tops. This figure
clearly indicates the agreement between the RMT prediction and the numerical
data. Using the above distribution and following the procedure of Chapter 4, we

can estimate the saturation value of the operator entanglement production.

6.2.4 Operator entanglement and state entanglement : A relation

The measure of the operator entanglement is based on the operator Schmidt de-

composition. Using a recently proposed matrix reshaping technique, it can be
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shown that the operator Schmidt decomposition and the state Schmidt decom-
position are basically equivalent [108]. Basic idea behind the matrix reshaping
technique is very simple. Let us consider a rectangular matrix A of size N x M.
This matrix can be reshaped, by just putting its elements row after row in lexico-

graphical order into a vector |A) of size NM. For example, let us consider a 2 x 2

matrix
a [4
A = 11 12 ) (656)
a1 G322
After reshaping, we get
ail
4y = | 2. (6.57)
a2
a22

Now the inner product of any two elements (A and B) of the operator Hilbert space
is defined as (A, B) = Tr( A B). If we take the matrix B = ((by1, bi2), (ba1, b22) ).

then we have
(A, B) = Tr(A'B) = af; bi1 + alybiz + a3y bor + ajy boo.

The above expression is the inner product of the vectors |4) and |B), i.e. (A|B),
where (A| = (ai,aly,a3,a3,) is a row vector. Therefore, the matrix reshaping
technique puts the operator inner product and the vector (state) inner product on
a same footing.

Following the above technique, any unitary operator U can be reshaped into a

vector |U') as,

N2 M2

U) =) uagl4a; Bs) (6.58)

a=1 =1
where u,g = (A, Bg|U). Applying Schmidt decomposition to the above vector
|U ), we get

N2
U) =) 5al4q; Ba)- (6.59)

a=1
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Thus the matrix reshaping technique shows that the operator Schmidt decompo-
sition is not a special technique, it is equivalent to the well known state Schmidt
decomposition. Moreover, this also explains why the saturation value of the op-
erator entanglement [In(yd), where d = N?]| depends on the dimension of the
operator Hilbert space in such a manner which is identical to the observed satu-

ration values [In(v N )| of the state entanglement.



Summary and Future Outlook

Summary :

In classical physics, an important class of dynamical systems is the Hamiltonian
systems. We can divide the dynamics of the Hamiltonian systems into two differ-
ent types : the regular motion of the integrable systems and the chaotic motion of
the nonintegrable systems. In this thesis we have studied both types of dynamical
systems.

In Chapter 2, we have presented our work on the integrable systems. Here we
have studied, both classically and quantum mechanically, a time dependent one
dimensional nonlinear integrable system, namely, the time dependent harmonic
oscillator with an inverse square potential. We have evaluated the exact invariant
of this system by applying our Lie-algebraic interpretation of the Lewis-Riesenfeld
invariant of the time dependent harmonic oscillator. This evaluation of the exact
invariant has established the integrability of the above nonlinear system. One can
apply our Lie-algebraic method to determine the invariant of any time-dependent
Hamiltonian formed by the generators of any closed algebra. We have studied
extensively the special and interesting case of a kicked-quadratic potential from
which we have derived a new integrable, nonlinear, area preserving two dimen-
sional map that may, for instance, be used in numerical algorithms that integrate
Calogero-Sutherland-Moser Hamiltonian. Here we have derived that map from the
Hamiltonian formed of the generators of the su(1,1) algebra. We expect that we
can determine integrable two-dimensional mapping from the Hamiltonian formed
by the generators of other closed algebra. We have constructed the classical time
evolution operator, or the Perron-Frobenius operator for the nonlinear integrable

system, taking advantage of a recent method of integrating the quantum Liouville-

145
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Bloch equations. Our results have shown the exact one-to-one correspondence
between the classical and the quantum dynamics.

Rest of the thesis is concentrated on the classical and the quantum mechanical
study of the chaotic systems. However, we have studied the quantum mechanics
of chaotic systems from slightly different point of view. Recently, entanglement
has been discussed extensively due to its crucial role in quantum computation
and quantum information theory. Entanglement is an unique property of a quan-
tum mechanical system, which consists of at least two interacting subsystems.
Since a quantum computer is a many particle system, entanglement is inevitable.
The many particle nature of a quantum computer may be prone to problem of
chaos. Some studies have inquired whether chaos will help or hinder in the op-
eration of quantum computer. However, in this thesis, we have investigated at a
more basic level the effect of the underlying classical dynamics on entanglement.

We have mentioned that entanglement can be observed in a quantum system
which consists of at least two interacting subsystems. Therefore, to study the
effect of classical chaotic dynamics on entanglement, we have to consider a cou-
pled chaotic system which consists of at least two chaotic subsystems. Kicked
top is a well-studied model of chaotic system. Moreover, coupled kicked tops has
already been used in the study of entanglement. Therefore, we have also consid-
ered coupled kicked tops as our model. The classical limit of the coupled kicked
tops presented in an earlier work was unfortunately incorrect, in fact it was not
even canonical. In Chapter 3 we have derived the correct classical map and we
have also described different classical dynamical properties of the kicked top.

Recent results indicate that chaos can lead to substantial entanglement pro-
duction, but this still falls short of maximality. There exists a statistical upper
bound on entanglement whose value depends on the Hilbert space dimension of
the participating subsystems. Random matrix theory (RMT) has been successful
in calculating many important universal statistical properties of quantum chaotic
systems. We have also applied RMT to derive the above mentioned statistical
bound on entanglement. More importantly, we have presented a universal distri-
bution of the eigenvalues of the reduced density matrices which determines the

saturation value of (statistical bound) the entanglement entropy, and have also
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demonstrated that this distribution is realized in quantized chaotic systems by
using the model of coupled kicked tops. Chapter 4 of this thesis is devoted to the
discussion on the above mentioned statistical bound on entanglement.

The saturation of entanglement is the property of a strongly coupled highly
chaotic system. In Chapter 5, we have studied entanglement production in cou-
pled kicked tops corresponding to different underlying classical dynamics and
different coupling strengths. We have found that, in general, the entanglement
production is higher for stronger chaotic cases. Moreover, coupling strength be-
tween two tops is also an important parameter for the entanglement production.
For example, when the coupling strength between two tops was very weak, we
have found that the entanglement production is higher for sufficiently long time
corresponding to nonchaotic cases. Here we have used the reduced Husimi func-
tion, the Husimi function of the reduced density matrix, to visualize the possible
behaviors of a wavepacket. We have studied a phase-space based measure of
complexity of the time evolving state and used RMT to model the strongly chaotic
cases. In this chapter we have also derived an approximate formula, based on
the ideas of RMT, for the entanglement production in coupled strongly chaotic
system. This formula is applicable, unlike perturbation theory, to large coupling
strengths and is valid for sufficiently long time.

Chapter 6 of this thesis is divided into two parts. In the first part, we have
studied the entanglement production for the initially mixed unentangled state.
Here we have used log-negativity measure to study the influence of the underlying
classical dynamics on the mixed state entanglement production. We have found
that the presence of chaos, in general, enhances the entanglement production.
We have also observed that the mixedness of the initial state actually suppresses
the entanglement production. This is an important observation, which requires
further studies. In case of mixed state, the subsystem entropies are not the mea-
sures of the entanglement. But still they are very important quantities. Therefore,
in this chapter, we have also studied the production of the subsystem von Neu-
mann entropy as well as the linear entropy. We have found that the production
of the subsystem entropies and the entanglement production have some similar

qualitative properties. Existence of a statistical upper bound is one such property
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which is common to both the above mentioned quantities. We have used RMT to
estimate the statistical upper bounds (or the saturation value) of the subsystem
linear entropy.

In the second part of the Chapter 6, we have studied the operator entangle-
ment as a measure of the entangling power of a given operator. We have actually
investigated the entangling power of a unitary time evolution operator correspond-
ing to the coupled kicked tops, for different underlying classical dynamics of the
individual top and for different coupling strengths between the tops. Our numer-
ical studies have shown that the operator entanglement production and the pure

state entanglement production share some common properties.

Future outlook :

Most of the studies on the effect of underlying classical dynamics on the entan-
glement production are restricted for the pure state case. There is almost nothing
have been done in case of mixed state. In this thesis, we have taken some ini-
tiative in this direction. More elaborate study of the mixed state entanglement
production can definitely be an extension of this thesis. We have also initiated
the study of the operator entanglement production, a measure of the entangling
power of a given operator. An extensive study of the operator entanglement pro-
duction can also be regarded as a possible future direction of this thesis.

Until very recently, the topic of ‘chaos and entanglement’ has been a purely
theoretical one. But now, due to some recent proposals, we believe that the re-
sults obtained in this thesis can be experimentally verified in the near future.
Therefore, without going into details, it is worthwhile to mention some of those
experimental proposals. In one proposal, multiple scattering of electrons in a
quantum dot has been considered [109]. If the scattering is chaotic, a universal
random matrix description (statistical description) of the entanglement produc-
tion is possible. Therefore, this experimental setting can be used to verify the
different universal statistical properties of the entanglement production observed
theoretically in this thesis. In another proposal, an atom trapped in a magneto-
optical lattice (AMOL) has been shown as a feasible experimental system to test

the effect of classical dynamics on the entanglement production [110]. The AMOL
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can exhibit generic features of entanglement dynamics, for example quasiperi-
odicity for a state initially localized in a regular regime and a rapid increase of
entanglement in a chaotic regime. These results are very similar to the results

obtained in Chapter 5 of this thesis.
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