Indian Institute of Technology Madras Quantum Mechanics for Engineers. PH350. Final 28 Nov. 2003.

Instructions

- Answer all questions. Part A has Eight questions while Part B has Six.
- The marks are indicated in bold at the end of the questions. Maximum marks=60. No choices.
- Do **NOT** mix up answers to parts A and B. Clearly indicate in your answer sheets, the parts.
- Please do not use pencils or red pens for answering.

Part A

1. Consider state of a two-level system $|\psi\rangle = a|0\rangle + b|1\rangle$ (not necessarily normalized), where $|0\rangle$ and $|1\rangle$ is an orthonormal basis.

(a) What is
$$\langle \psi |$$
?

(b) What is
$$\langle \psi | \psi \rangle$$
? (1)

(c) Consider an opertor A in the space, whose representation in the above basis is

$$A = \left(\begin{array}{cc} 3 & 1+i \\ 1-i & 2 \end{array}\right).$$

Can A qualify for a physical observable? Why OR Why not? (1)

- (d) If A is measured in the given state, what is its expectation value? (2)
- (e) What are the possible values of A on measurement? (2)
- (f) What are the final states after the measurement of A, and what are the probabilities for reaching these? (3)

- 2. A spin-half particle is known to be a pure state with equal probability of being found in $|S_z+\rangle$ and $|S_z-\rangle$. How many such possible states are there? State any one.
- 3. One hundred spin-half particles are passed through three Stern Gerlach apparati, first oriented along the z, the second along x and the third along the z directions. After each measurement the spin $-\hbar/2$ component is blocked. Enumerate the outcomes of the three measure ments. Is you answer determinsitic, or statistical?
- 4. If A and B are Hermitian operators then
 - (a) A + B is Hermitian. True or False.
 - (b) AB is Hermitian. True or False. (2)
- 5. If A and B are Unitary operators then
 - (a) A + B is Unitary. True or False.
 - (b) AB is Unitary. True or False. (2)
- 6. Encircle one of the possibilities:
 - (a) The Hamiltonian has to be an Unitary / Hermitian operator.
 - (b) The time-evolution operator is an Unitary / Hermitian operator.
 - (c) The finite displacement operator is an Unitary / Hermitian operator. (3)
- 7. A particular Hamiltonian is found to be an unitary operator. What are the possible energies that the system may have (in arb. units)? (3)
- 8. J_x, J_y, J_z are angular momentum operators, while x and p are position and momentum operators. Find the following commutators:
 - (a) $[J_x, [J_y, J_z]]$
 - (b) $[x^2, p^2]$
 - (c) $[x, J_x]$
 - (d) $[\sin(x), p]$ (4)

Part B

- 1. A particle of mass M rotates freely on a circle of radius R.
 - (a) Write the Lagrangian of the system.
 - (b) Write down the Hamiltonian of the system, identify the conjugate variables.
 - (c) Using the fact that angular momentum generates rotations, find the energy eigenvalues and corresponding eigenfunctions for this particle. (5)
- 2. Consider the one-half harmonic oscillator potential: $V(x) = m\omega^2 x^2/2$ for x > 0 and $V(x) = \infty$ for $x \le 0$, that is for a potential that is harmonic on the positive half of the real line and for which there is a hard wall at the origin.
 - (a) What are the eigenenergies and corresponding eigenfunctions?
 - (b) Let an initial state be

$$|\psi(0)\rangle = |z\rangle - |-z\rangle$$

where $|z\rangle$ is a coherent state of the corresponding full harmonic oscillator. Argue that this is an allowed initial state for the one-half harmonic oscillator, for $Re(z) \geq 0$.

- (c) This initial state is subjected to the one-half harmonic potential. Find the state at any later time t. (5)
- 3. A particle (mass m) is in the groundstate of an harmonic oscillator potential well (frequency ω), when at time t=0 the potential is suddenly removed. Examine the fate of the particle subsequently. In particular find its position and momentum distributions at later times. Also sketch them. (5)
- 4. Prove by any means the so-called Weyl commutation relations:

$$\exp(-i\hat{p}a/\hbar)\exp(i\hat{q}b/\hbar) = \exp(-iab/\hbar)\exp(i\hat{q}b/\hbar)\exp(-i\hat{p}a/\hbar)$$

where a and b are constants with appropriate units. How would you interpret this? (5)

5. A one-dimensional simple harmonic oscillator is subjected to a perturbation

$$\lambda H_1 = b x$$
,

where b is a real constant.

- (a) Calculate the energy shift of the ground state to the lowest nonvanishing order.
- (b) Solve this problem exactly and compare with your result above.

(5)

6. Solve for the reflection and transmission coefficients of the one-dimensional barrier potential: V(x) = 0 for x > |a|, and $V(x) = V_0$ for $x \le |a|$, where V_0 and a are constants with appropriate units. Consider both the cases, when the incoming particles are more and less energetic than V_0 . (5)