Indian Institute of Technology Madras Quantum Mechanics for Engineers. PH305. Quiz 1. Sept. 12 2003.

NAME:

ROLL NO.:

Instructions

- Attempt only any 2 of the "5 Mark" questions and any 4 of the "10 Mark" ones. Clearly mark here() which six questions you should be graded on.
- Please **do not** use pencils or red pens for answering.
- 1. Write down the most general possible 2×2 Hermitian matrix. Find its eigenvalues and show that these are real. (5 Marks)
- 2. Consider the three-dimensional Hilbert space spanned by the eigenkets, say, $\{|0\rangle, |1\rangle, |2\rangle\}$, of an observable A. Let $|\phi_1\rangle = |0\rangle + (1+i)|1\rangle + 2i|2\rangle$ be the state of a system described by such a Hilbert space. Normalize it. If measurements of A^2 are made what are the possible final states and with what probabilities are these obtained? (10 Marks).
- 3. Is it true that $[A, A^{\dagger}] = 0$ for a general operator A? Is it true for a Hermitian operator? Is it true for a unitary operator? (5 Marks).
- 4. Is it true that if [A, B] = 0, and [B, C] = 0, then [A, C] = 0? Justify any position you may take. (5 Marks).

5. Explain with the help of S_x and S_z measurements why the state

$$\frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$$

cannot be thought of as having 50% $|+\rangle$ and 50% $|-\rangle$ states? (10 Marks).

- 6. Consider the state $|+\rangle$, eigenstate of S_z with spin up. Find the uncertainties associated with measurements of S_x and S_y and verify if the uncertainly relation is satisfied. (10 Marks).
- 7. Show that $[x, p^2] = 2i\hbar p$. What is $[x, p^3]$? (10 Marks).
- 8. Consider the subspace of periodic functions in $L^2[0,1]$, that is those functions that satisfy $\phi(0) = \phi(1)$. Find the eigenfunctions and eigenvalues of the momentum operator $-i\hbar d/dx$ on this Hilbert space. (10 Marks).