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If the Hamiltonian of the system is denoted by FH(g,p), the motion of phase
point can be along the phase orbit and is determined by the canonical

equation of motion

oH (i=12....s) (1.1)

H(g.p)=E "

Therefore the phase orbit must lie
Constant energy surface on a surface of constant energy
(ergodic surface).

Phase Orbit

H(g.p)=E



Let us define 1 - space as phase space of one particle (atom or molecule). The
macrosystem phase space (/-space) 1s equal to the sum of - spaces.

The set of possible microstates can be presented by continues set of phase
points. Every point can move by itself along it’s own phase orbit. The overall
picture of this movement possesses certain interesting features, which are best
appreciated in terms of what we call a density function p(q,p;t).

This function is defined in such a way that at any time 7, the number of
representative points in the volume element’ (d*™q d*"p) around the point
(q.p) of the phase space is given by the product po(q,p;t) d*Ng d*"p.

Clearly, the density function p(q,p;t) symbolizes the manner in which the
members of the ensemble are distributed over various possible microstates at
various instants of time.



Let us suppose that the probability of system detection in the volume

dl =dpdq=dp,.... dp dq,..... dq near point (p,q) equal dw (p,q)= p(q.p)dI’
The function of statistical distribution p (density function) of the system
over microstates in the case of nonequilibrium systems is also depends on
time. The statistical average of a given dynamical physical quantity f(p,q) is
equal.:

| 7(p.0)pta, pit)d> qd* p (1.3)

{n 2 X 1‘\/]3Nn 3N
P4, p,t)a (¢

< f>=

L

P

The right “phase portrait” of the system can be described by the set of points
distributed in phase space with the density p. This number can be considered
as the description of great (number of points) number of systems each of
which has the same structure as the system under observation copies of such
system at particular time, which are by themselves existing in admissible
microstates 4



The number of macroscopically identical systems distributed along
admissible microstates with density p defined as statistical ensemble. A
statistical ensembles are defined and named by the distribution function
which characterizes it. The statistical average value have the same

meaning as the ensemble average value.

An ensemble is said to be stationary if p does not depend explicitly
on time, i.e. at all times

P _ (14)
ot

Clearly, for such an ensemble the average value <f> of any physical quantity
f(p,q) will be independent of time. Naturally, then, a stationary ensemble
qualifies to represent a system in equilibrium. To determine the circumstances
under which Eq. (1.4) can hold, we have to make a rather study of the
movement of the representative points in the phase space. i



Lioville’s theorem and I1ts conseguences

Consider an arbitrary "volume" @ in the relevant region of the phase space
and let the "surface” enclosing this volume increases with time is given by

O
&Tlpd@ (1.5)

where dw=(d’"q d*p). On the other hand, the net rate at which the
representative points “flow” out of the volume @ (across the bounding
surface o) is given by

[ v en )do (1.6)

here v 1s the vector of the representative points in the region of the surface
element do, while  is the (dutward) unit vector normal to this element. By
the divergence theorem, (1.6) can be written as



Statistics of Multiparticle Systems in Thermodynamic Equilibr
The macroscopic thermodynamic parameters, X = (V,PT,...), are

macroscopically observable quantities that are, in principle, functions of the
canonical variables, 1.e.

fi:fi(Pppzao--,pS,ql,qz,...,qs), i=12,...n, nlJ s
(fis foreen [)=(V,P,T,..) =X
U

X :X(pljpz,...,psaQIDQ29-"9qs)

However, the specification of all the macroparameters X does not determine a
unique microstate,

P # pi(X)7 q; # qz'(X)

» Consequently, on the basis of macroscopic measurements, one can make
only statistical statements about the values of the microscopic variables.
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Statistical descriptlon of mechanlcal systems is utilized for multi-particle
problems, where individual solutions for all the constitutive atoms are not
affordable, or necessary. Statistical description can be used to reproduce
averaged macroscopic parameters and properties of the system.

Comparison of objectives of the deterministic and statistical approaches:

Deterministic particle dynamics

Statistical mechanics

Provides the phase vector, as
a function of time Q(f), based
on the vector of initial
conditions Q(0)

Provides the time-dependent
probability density to observe
the phase vector Q, w(Q,1),
based on the initial value
w(Q),0)




Statistical Description of Mechanical Systems

From the contemporary point of view, statistical mechanics can be regarded as a
hierarchical multiscale method, which eliminates the atomistic degrees of
freedom, while establishing a deterministic mapping from the atomic to

macroscale variables, and a probabilistic mapping from the macroscale to the
atomic variables:

Microstates Macrostates

deterministic
conformity

e —_——
- -~
~
~

-
-~
~o

g —_—— -

P
-

probabilistic
conformity




Distribution Function

Though the specification of a macrostate X; cannot determine the microstate
2.9); = P1sP2s- - -Pss G15925- - --4,);» @ probability density w of all the microstates
can be found,

W( 1o Daoevos P35 Gaser g5t

or abbreviated:

w(p,q,t)

The probability of finding the system in a given phase volume G:
W (G.1) = [w(p.q.t)dpdg
G

I >7>~

The normalization condition:

j w(p,q,t)dpdq =1

(p.9)



Statistical Ensemble

Within the statistical description, the motion of one single system with given
initial conditions is not considered; thus, p(¢), q(t) are not sought.

Instead, the motion of a whole set of phase points, representing the collection of
possible states of the given system.

Such a set of phase points is called a phase space ensemble.

If each point in the phase space is considered as a random quantity with

a particular probability ascribed to every possible state (i.e. a probability density
w(p,q,t) 1s introduced in the phase space), the relevant phase space ensemble is
called a statistical ensemble.

t=1t: G,

G — volume in the phase
space, occupied by the
statistical ensemble.




Statistical Averaging
Statistical average (expectation) of an arbitrary physical quantity F(p,q), is given
most generally by the ensemble average,

(FO)= | F(p.q)w(p.q.)dpdg

(P.9)

The root-mean-square fluctuation (standard deviation):

AF) = (F=(F))

The curve representing the real motion (the experimental curve) will mostly
proceed within the band of width 2A(F)

F'— Truevalue — F
- F+ A(F)

For some standard equilibrium systems, thermodynamic parameters can be
obtained, using a single phase space integral. This approach is discussed below.



Ergodic Hypothesis and the Time Average

Evaluation of the ensemble average (previous slide) requires the knowledge of the
distribution function w for a system of interest.

Alternatively, the statistical average can be obtained by utilizing the ergodic
hypothesis in the form,

(F)=F

Here, the right-hand side is the time average
(in practice, time ¢ is chosen finite, though as large as possible)

F:%j;F(p(r),q(f))dr, { —> o0

This approach requires F as a function of the generalized coordinates.

Some examples

Internal energy: U=H(p,q)

E. Here,
T . T = 2E, e
emperature: - k E, —mean kinetic energy per degree of freedom
B
u, dU 5 C v —mean velocity of molecules
Change of CII'[I'Opy: AS = .[U 2 7 - J‘T2 7V dT [ —mean free path of gas particles
1 1

Gas diffusion constant: D = V?l



Law of Moti

A statistical ensemble is described by the probability den31ty in phase space,
w(p,q.,t). It is important to know how to find w(p,q.,f) at an arbitrary time ¢, when the
initial function w(p,q,0) at the time ¢ = 0 i1s given.

In other words, the equation of motion satisfied by the function w(p,q.¢) is needed.

An ~nf 2~ C+
1IVI1T UI ad oL

The motion of of an ensemble in phase space may be

(@)
o
o)
N
P o
(@
a
-
(@)
(@
o
w2
=
(@)
=
@)
=
o
=)
o
P
fab)

phase space fluid in analogy to the motion of an ord

Liouville’s theorem claims that
I'n=I'=1,=..
Due to Liouville’s theorem, the following equation of motion holds

Ow > (o0H ow OH ow
=[H,w], [Hw]=), -
@t i-1 5% api 8pi aqi

j (Poisson bracket)



Equilibrium Statistical Ensemble: Ergodic Hypothesis

For a system in a state of thermodynamic equilibrium the probability density in
phase space must not depend explicitly on time,

v _,
ot

Thus, the equation of motion for an equilibrium statistical ensemble reads
|H,w]=0

A direct solution of this equation is not tractable.
Therefore, the ergodic hypothesis (in a more general form) is utilized: the

probability density in phase space at equilibrium depends only on the total
energy:

w(p,q)=¢(H(p.q,a))
Notes: the Hamiltonian gives the total energy required; the Hamiltonian may depend
on the values of external parameters a = (a,, a,,...), besides the phase vector X.

This distribution function satisfies the equilibrium equation of motion, because

[H,p(H)]=0

Exercise: Check the above equality.



o Ensemble Method

o Ensemble ? : Infinite number of mental replica of
the system of interest

/ Large Reservoir (const.T)
All the ensembie members have the
/ Same N,V.T

|__— Energies can be exchanged

but molecules cannot.

Current N = 20

but N = infinity



Thrarm A ilavAac
IWO postuiates

* Longtime average = Ensemble average at N = infinity

time

E1||E2 || E3 | E4 || E5 ‘

v

* |nan ensemble, the systems of enembles are distributed uniformly (equal
probability or frequency)

— -2 Ergodic Hypothesis
— =2 Principle of equal a priori probability
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* Probability of observing particular quantum state i

Z n
)

 Ensemble average of a dynamic property

<E>=)EP

 Time average and ensemble average

= hmZEAt = hmZEP

T—>0 n—>0



QL

Ko
=
D
(¥p)
-

LL]

-
>
b

O
(O
O

O

S

al

G
O

-
O

'S
(O

=
O

(O
O

e Several methods are available

— Method of Undetermined multiplier



Maximization of Weight
- Most probable distribution

 Weight

NI

nln,n,!.. Hn'

W_




chnsemmpies
Micro-canonical ensemble: E,V,N
Canonical ensemble: TVN
Constant pressure ensemble: TN

Grand-canonical ensemble: TV, u



Canonical Ensemble:

The canonical ensemble occurs when a system with fixed V and N
and the system is at constant temperature (connected to an infinite
heat bath).

In the canonical ensemble, the probability of each microstate is
proportional to exp (- BEm).



Systems 1 and 2 are weakly coupled
such that they can exchange energy.

What will be E,?

Z
Q(E,E-E)=Q,(E)xQ,(E-E)

BA: each configuration is equally probable; but the number of
states that give an energy E, is not know.

23



Q(E,E-E)=Q,(E)xQ,(E-E,)
InQ(E,E-E)=InQ (E)+hQ,(E-E)

(8an(E1,E—EI)) o
OF, o

fomQ () (omQ,(E-E,)
L OF i OE

S R
(6lmQ (E)) (olmQ,(E-E,
k oL, . k OF,

p
< b= b5, > 24

N, V.

;

N,,




Entropy and number of
configurations

Conjecture: S =1n0O




S =k, InQ(E)
With kg= 1.380662 102 J/K

In thermodynamics, the absolute (Kelvin)
temperature scale was defined such that

(G_Sj :l dE=TdS—pdV+Z,uidNi
OL )y, T

i=1

But we define:

()]




And this gives the “statistical” definition of temperature:

In short:

Entropy and temperature are both related
to the fact that we can COUNT states.

Basic assumption:
1. leads to an equilibrium condition: equal temperatures
2. leads to a maximum of entropy
3. leads to the third law of thermodynamics

27



Number of configurations

How large is Q7?
*For macroscopic systems, super-astronomically large.

*For instance, for a glass of water at room temperature:

Q ~ 102><1025

*Macroscopic deviations from the second law of thermodynamics are not
forbidden, but they are extremely unlikely.



Canonical ensemble

Consider a small system that can exchange heat wi
%

a big rese

8mQE+m

nQ(E-E)=InQ(E)-
nQ(E~E)=nQ(E)~"—"F
an(E—El.):_ E,

Q(E) keyT

Hence, the probability to find E;.

p(e)=2E-E) _ _ew(CE /)

l Q(E-E;) Y exp(-E, /k,T)

P(E,)ocexp(~E,/k,T)
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* Probability of observing particular quantum state i

Z n
)

 Ensemble average of a dynamic property

<E>=)EP

 Time average and ensemble average

= hmZEAt = hmZEP

T—>0 n—>0



Thermodynamics

What is the average energy of the system’?

Z E. exp
(E) =T E(E)- S o
8aniexp -pE,)
op
OlnQ,, ,
Compare: B op

OF/T F
—FE Hence: =—In




» Canonical Partition Function

0= e



The Boltzmann Distribution

> Task : Find the dominating configuration for
given N and total energy E.

» =2 Find Max. W which satisfies ;



-,
LCITTHTNIECU

> Maximum weight , W
> Recall the method to find min, max of a function...

dinW =0

(aanjzo
dn,

> Method of undetermined multiplier :

o Constraints should be multiplied by a constant and added
to the main variation equation.




Method of undetermined multipliers

dinW = Z(GLHW]dni +ay dn, - BY Edn,
i n, i i

_ Z{(a;nW]+a—ﬂEi}dni —0

1

(@mW

dn.

1

j+a—ﬂﬂ=0



ONInN

on.

l

InW =NInN->) nlnn,

olnw ) aNlnN_Za(nj Inn,)
on, 2 on,

i J i

[8—N]lnN+Nx%(6—N]:lnN+l

on. n,

1

J

oW nm +1)+(n N +1)=—In "
on, N

o(n;Inn;) on,; 1
= _ ln .4+ n.X
Z ani ;{(8 n] n]



n.
—In—‘t+a+ pPE =0
N PE

ﬁ — ea—ﬁEi
N
— — a _ﬂEJ
V=3, = Ne“Te
J J
e’ = 1
o ~pE
D
J
Boltzmann Distribution
n. e P . :
B = = — (Probability function for
N Ze PE] energy distribution)




Canonical Partition Function

> Boltzmann Distribution

b e e
"N Ze_ﬂ Y0
j

» Canonical Partition Function

0=
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One important preliminary issue related to the use of Gibbs’ canonical distribution is

the additivity of the Hamiltonian of a mechanical system.

Structure of the Hamiltonian of an atomic system:

H=E"(p,,pys-.,Py) +U(X,T,,....1,)

_Zp )+ Y W)+ Y Wr,r,,r)+..

1]>1 l]>i,k>j

Here, kinetic energy and the one-body potential are additive, i.e. they can be
expanded into the components, each corresponding to one particle in the system:

E(p,Pase-nPy) = E"(p) + EX" (p,) +...
D () =W (6)+ W, (1) +...

Two-body and higher order potentials are non-additive (function Q, does not exist),

W) =W (Ir=r,]) = D Wr,r)# ..+ 0y(r)+...+ O,(r)) +...

i,j>i



Canonical Distribution: Preliminary Issues
Thus, if the inter-particle interaction 1s negligible,

W, +W, +...<< EX" + W,

the system 1s described by an additive Hamiltonian,

1
Here, H 1s the total Hamiltonian, and h; 1s the one-particle Hamiltonian.

2
H=3h. b=t W)

» For the statistical description, it is sufficient that this requirement holds for the averaged
quantities only.

* The multi-body components, W, cannot be completely excluded from the physical
consideration, as they are responsible for heat transfer and establishing the thermodynamic
equilibrium between constitutive parts of the total system.

» A micromodel with small averaged contributions to the total energy due to particle-particle
interactions 1s called the ideal gas.

Example: particles in a circular cavity. Statistically averaged value 7, 1s small:

Q 3 particles: O 5 particles:
W, 0.049E" W, 0.026E*




Canonical Distribution

Suppose that system under investigation 2, is in
thermal contact and thermal equilibrium with a
much larger system 2, that serve as the
thermostat, or “heat bath” at the temperature 7.
From the microscopic point of view, both 2, and
2, are mechanical systems whose states are
described by the phase vectors (sets of canonical
variables X, and X,). The entire system X+, 1s
adiabatically isolated, and therefore the
microcanonical distribution is applicable to 2,+%,,

1

ﬁﬁ(E—H(p19Q1;p29Q2))

w( Py, 4,5 Prrq,) =

Assume N, and N, are number of particles in X,
and %, respectively. Provided that N, << N,, the
Gibbs’ canonical distribution applies to X;:

1 _H(p9Q)

Z

z,

Thermostat T

w(p,q)=—e (p.9)=(p,q,)




CanAnicral NickvrilvniFiAan DAaviitiAnn CiinA+iAan
waliviliivadl VIDULTHIVULIVILI ral Ltitiviil 1 1ICLIVII
. . . Thermostat T
The normalization factor Z for the canonical
distribution called the integral over states or N
0y 0 . . 1
partition function is computed as
21
1 _H(paQ7a)
Z = 3 " dpdq N,
N AT
27k N N y,
(p.q)
H(p,r
1 _H(p,r)

:(27zh)3NN' e * dp,..dp,dr,..dr,
“(p.r)

Before the normalization, this integral represents the statistically averaged phase

volume occupied by the canonical ensemble.

The total energy for the canonical ensemble is not fixed, and, in principle, it may
occur arbitrary in the range from —[] to [J (for the infinitely large thermostat, N,

0 0).



Partition Function and Thermodynamic Properties
The partition functlon Z 1s the major computational characteristic of the
canonical ensemble. The knowledge of Z allows computing thermodynamic

parameters of the closed isothermal system (a [] V, external parameter):

Free energy: F(T, V) =—kTInhZ
(relates to mechanical work)

I
Entropy S=- a— :k hlZ+Tian
(variety of microstates) V 6 T

/d
Pressure P=— a— = kTian

ov )y oV

Internal energy U=F+TS=kT’ a—aT InZ

These are the major results in terms of practical calculations over canonical ensembles.

Class exercise: check the last three above formulas with the the method of thermodynamic potentials,
using the first formula for the free energy.



Thermodynamic Properties and Canonical
Ensemble

U=<E>=) EP==—) Ee'™

Q) _ -,
(ﬁj STk
N,V i(gs)

U:_i(a_Qj _
O\op N

|
N
>
< |5
Q
N
=
<



Thermodynamic Properties and
Canonical Ensemble

_ Small Adiabatic expansion of system

—»‘ dx‘<—

(6w,)y = PdV = Fdx
(dE.)), =—Fdx=—PdV =—w,

p-{
ov )y




Thermo recall (2)

First law of thermodynamics

dE =T7dS — pdV

Helmholtz Free energy:

F=FE-TS
dF =-8dT — pdV

FIT) _py Lo _p oo
olT T olT oT
=F+TS=E




We have assume quantum mechanics (discrete states) but
we are interested in the classical limit
Ziexp(—ﬂEl.)

h3N'Hdedr exp{ ,6’{ i;;li+U(rN)}}
1

R —  Volume of phase space (particle in a box)

1 s Particles are indistinguishable

N
Integration over the momenta can be carried out for most syster

el s ool ogl] 5




Define de Broglie wave length:

2 2\
2
2mm

Partition function:

O(N,V.,T)= AWNJdr exp[ BU (r )]




Example: ideal gas
O(N,V,T)= A3NN'jdr exp| AU ()|

N1: VN

} A3NN! Jar AN
Free energy:

VN
pr= _IH£A3NN!]

~NInA’ +Nln(ﬁJ:NlnA3 +Nlnp
Pressur v
c. Energy:

)
- or )14 E:(aﬂFj 3_N6_A:§NkT
op A o 2



ldeal gas (2)

( OF )

Chemical potential: L@N )

b2 T,V,N;

BF =NInA’ + Nln[N}

.. 1. A3 1. .1
pu=1M/A +~IMpPpr1

pu’ = pu’ +1np



chnsemmpies
Micro-canonical ensemble: E,V,N
Canonical ensemble: TVN
Constant pressure ensemble: TN

Grand-canonical ensemble: TV, u



Summary:
Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular configuration

P(T)x exp[—ﬂU(F)}

Free energy

:BF =—In QN,V,T

52



Thermodynamic Properties and
Canonical Ensemble

Pressure at

quantum state i \ /

P=<P>=) PP,

Probability

Equation of State in Statistical Mechanics




Thermodynamic Properties and Canonical
Ensemble

dU — 5qrev o §Wrev
dU =d()_E,P)=) EdP +) PdE,

rey

Y PdE, =) P{%} dV =—PdV =—6w
i I N

Y EdP = —%(Z In PdP,+In Q) dP)

1
=—— > In PdP.
FTnrr



Thermodynamic Properties and
Canonical Ensemble

1
Z})idEi = _EzlanE =, S :kan+U/T+,80/

S=klnQ+U/T

ﬂé‘qrev - _d( E ln})l) = ﬂTdS
Zi: S=—k) PInP=—k<InP>

fq,p, =d(U +InQ) = fTdS

The only function that links heat (path integral) and
state property is TEMPERATURE.

B=1/kT



Summary of Thermodynamic Properties in
Canonical Ensemble

0lnQ
U=kT(——

( o T)V N
5= k(an+<aan>VN)

Oln
Oln Oln
H = kT((ﬁl ?)V N (61 g) j All thermodynamic properties
‘ Can be obtained from
A=-kTInQ “PARTITION FUNCTION”
olnQ

G =—kT| In

(no-@"2,,)




chnsemmpies
Micro-canonical ensemble: E,V,N
Canonical ensemble: TVN
Constant pressure ensemble: TN

Grand-canonical ensemble: TV, u



Constant pressure simulations:
V N,BT ensemble

ConsiGga small system that can exc e volume

and energy with #9%ig reservoir

_
an(V—ViE—El.):an(V,E)—(aanj Ei_(alngj v+
’ 0E ), oV ),

Q(E_Ei’V_Vi) __E _pVi

In

Q(EV) kT kT
Hence, the probability to find E; V.
—-E. V-V -B(E. + pV,
P(E) -2 EY N) __ewl A )]

Zj,kQ(E_EJ’V_Vk) Zj,kexp[_'g(Ej—i_ka)]
oC exp[—ﬂ(El. +pVi)] 58



Thermo recall (4)
First law of thermodynamics

dE =TdS - pdV+)_ udN,

Hence

iz(ﬁj
T \0E),,

and

(@_Sj _p
oV TN T




N,PT ensemble (2)

In the classical limit, the partition function becomes

O(N,P.T)=

jdVexp - [PV jdr exp[ ,BU( )]

A3NN'

60



Grand-canonical simulations:
. wV,T ensemble

Consi small system that can exch

and energy with

particles
Ig reservoir

i
an(N—Nl.E—EZ.):an(N,E)—(aanj Ei—(amj N +...
| aE N E

an(E_Ei’N_Ni): L, _l_luiNi

Q(E,N) kT kT
Hence, the probability to find E, N
—E . N—-N. —B(E. — u.N.
P(EiaNi): Q(E E;, N Nl) _ eXp[ 'B( i M l):l

Zj,kQ(E_EJ’N_Nk) Zj,kexp[_ﬂ(Ej_’uka)]
oc exp| —B(E, - 1N,) ] :



Thermo recall (5)
First law of thermodynamics

dE =TdS - pdV+)_ pdN,

Hence




wV.T ensemble (2)

In the classical limit, the partition function becomes

The probability to find a particular configuration: N l.N
b

P(N,rN) oc exp[ﬂ,uN—,BU(rN)]

63
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It is not easy to derive all the partition functions using
guantum mechanics

Classical mechanics can be used with negligible error when
energy difference between energy levels (Ei) are smaller
thank kT.

However, vibration and electronic states cannot be treated
with classical mechanics. (The energy spacings are order of kT)



Dhace SnA
FNdSe Spd

e Recall Hamiltonian of Newtonian Mechanics

H(",p")=KE(kinetic energy) + PE(potential energy)

Hx",p")= Z 21:7; +U(x,,ry,...,Ty)

_8_H_
] or, |
_%_
| Op; |

* |Instead of taking replica of systems (ensemble members), use abstract
‘phase space’ compose of momentum space and position space (6N)

* - Average of infinite phase space
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1 .

U =lim— | E(T)dz = lim j @, (T)E(T)dT
T T n—0

QDN (F)df ————  Fraction of Ensemble members in this range
(I' to I'+dI)

\ Using similar technique used for
Boltzmann distribution

exp(—H / kT)dl
|...[ exp(~H /KT)dr

@, (0)dl =



5
s

.
o

)

O
my
O

)
)

O
Q)
O
O
Q
R,

Q)
-5
—+

~

T =j...jexp(—H/kT)dr

Q =c|...| exp(~H / kT)dr

Z exp(—£, /kT)

1

v

¢ = lim =L
= [..[ exp(~H / kT)dT N

For rigorous derivation see Hill, Chap.6



Canonical Partition Function in Classical
Mechanics

Q = N!ZNF [ ... exp(~H/kT)dr



Example :
Translational Partition Function for an Ideal Gas

H(",p")=KE(kinetic energy) + PE(potential energy)

H(x",p N)=22p—"+U(rl,r2 ..... r,) No potential energy, 3 dimensional
o space.
H= ZZm >
Py dpdrd
0= th3N exp(— Z )p1 pydn..dry

= CXp(— p har,ar;
N'RY | Y 2m, g

1 [ 2mmkT TV
N g
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The energy of a molecule is distributed in different modes
- Vibration, Rotation (Internal : depends only on T)
- Translation (External : depends on T and V)

Hamiltonian operator can be separated into two parts
(internal + center of mass motion)

_ cM int
H,=H, +H,

EiCM + El-int El.CM El-int
0=> exp(- )= D exp( pre )D_exp( pra

Q:QCM(NaVaT)Qint(NaT)
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* Internal parts are density independent and most
of the components have the same value with
ideal gases.

Qint(NapaT) — Qint(NaoaT)

* For solids and polymeric molecules, this
assumption is not valid any more.
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For T > 50K, classical approximation

can be used for translational part.
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H., =2 ™ +U (1, 1y es Iyy)
1 p2 +p2 er2
— _ ix Iy iz 3N . 3N
0=y [ expC = ey [ U kT
-3N
_A 7
N!
h2 1/2
) (2727’”/” j Configuration

Integral

v

Z = [..[ (U kT)drdr,...dr,,

_ 1 -3N
Q _ﬁQintA Z

1 N
Z=|—| |..|(U/kD)drdr,..dr,, dw,..do
For non-central forces (Qj J I 1772 3N N

(orientation effect)

Q:Idw



Canonical Ensembles

After adoption of the ergodic hypothesis, it then remains to determine the actual
form of the function ¢(H). This function depends on the type of the
thermodynamic system under consideration, i.e. on the character of the interaction
between the system and the external bodies.

We will consider canonical ensembles of two types of systems:

1) Adiabatically isolated systems that have no contact with the surroundings and
have a specified energy E.

 The corresponding statistical ensemble is referred to as the microcanonical
ensemble, and the distribution function — microcanonical distribution.

2) Closed isothermal systems that are in contact and thermal equilibrium with an
external thermostat of a given temperature 7.

» The corresponding statistical ensemble is referred to as the canonical
ensemble, and the distribution function — Gibbs’ canonical distribution.

Both systems do not exchange particles with the environment.



Microcanonical Distribution

For an adiabatically 1solated system with constant external parameters, a, the total
energy cannot vary. Therefore, only such microstates X can occur, for which

H(p,q,a) = E = constant

This implies (5 — Dirac’s delta function)
w(p,q)U 6(E—H(p,q,a)) E,a
and finally: | (PTV,...)
w(p,q) = NE.a S(E—-H(p,q,a))

where Q is the normalization factor,

Q(E,a)= j 5(E—H(p,q,a))dpdq

(p.q)
Within the microcanonical ensemble, all the energetically allowed microstates have
an equal probability to occur.



Microcanonical Distribution: Integral Over States

The normalization factor 2 is given by

O(E.q) = (GF(E,a)j
oE ), Phase volume
where I is the integral over states, g
or phase integral: "
ST
I'(E,a)= ! I dpdq o
| (27Z-h)fN N ' H(p.q.a)<E B —05-04-02 0 02 04 06
1
= — | 0(E-H(p.q))dp,..dp,dq,..dq,
(272'h)f N (
P.q)
0, x<0 _
O(x) = , 1 - Planck's constant, j - number of DOF per particle

Ll’ x>0

I'(E,a) represents the normalized phase volume, enclosed within the
hypersurface of given energy determined by the equation H(X,a) = E.

Phase integral I" is a dimensionless quantity.

Thus the normalization factor {2 shows the rate at which the phase volume
varies due to a change of total energy at fixed external parameters.



The integral over states 1s a major calculation characteristic of the microcanonical
ensemble. The knowledge of I" allows computing thermodynamic parameters of the
closed adiabatic system:

-1
S—kInT, T:(@_S] o opo ! (@Fj
OF QE N\ oV ),

(These are the major results in terms of practical calculations over microcanonical ensembles.)



Summary:
micro-canonical ensemble (N,V,E)

Partition function:

Probability to find a particular configuration
P(F) oc |

Free energy

:BS =In QN,V,E

78



We will consider one-dimensional illustrative examples of computing the phase
integral, entropy and temperature for microcanonical ensembles:

Spring-mass harmonic oscillator

Pendulum (non-harmonic oscillator)

We will use the Hamiltonian equations of motion to get the phase space trajectory,
and then evaluate the phase integral.



Harmonic Oscillator: Hamiltonian

Hamiltonian: general form [f = T( p) +U (x)

2
Kinetic energy T = P k m
2m < -—>
2 X
Potential energy U = kx
2

Potential energy is a quadratic function of the coordinate (displacement form the
equilibrium position)

The total Hamiltonian
pZ kx2
H(p,x)= +
2m 2

Parameters:
m=10""kg, k=25x10"'N/m



Harmonic Oscillator: Equations of Motion and Solution

Parameters:

Hamiltonian and equations motion: m=10"kg, k =25x10~'N/m

2 2
Hpy=2s & (o o
2m 2 op

Initial conditions (m, m/s):

x(0)=—-0.2, #(0)=0

x(0)=—-0.4, %(0)=0

x(0) = —0.6, #(0)=0




Total energy:

HavrmAanisr Necerilla
riratitiviliic voiiliia

E =0.5x107"J, E,=2.0x10""J, E, =45x10""]

x(0)=-0.2
%(0)=0

x(0)=—0.4
%(0)=0

x(0)=-0.6
%(0)=0



Phase integral: Harmonic Oscillator: Phase Integral
1 5 5 N N
['(E)=——A(E), A(E)= | O(E-H(x,p))dxdp] —2 O\E-H(io, ,jo
(E)=5—A(E), A(E) (Jp)( (x, p))dxdp 2ﬁhZZ( (id,. j5,))
0,=2x,,,/N-step forx, 6,=2p . /N-stepforp, N —number ofintegration steps
e o 3 e
2 2 2
g 1 o8 1 5 1
2. ") = =
-1 -1 -1
) ! =2 _2
-3 -3 -3
-1 -05 0 05 1 -1 =05 0 05 1 1 05 0 05 1
X = X

10

I, =0.95x10"
I,=3.80x10"
I, =8.54x10"

Phase integral, 10
(] = = o o]

For the harmonic oscillator, phase
volume grows linearly with the
increase of total energy.

1 2 3 4 5
Total energy, 10721 J



Harmonic Oscillator: Entropy and Temperature

Entropy: S=kInT, k=138x10"J/K .,
=

S, =3.81x10™2 J/K 5"

S, =4.00x10™ J/K 539

S, =4.11x107 JK 2 33

1 2 3 4 5
Total energy, 10re* g

oE
We perturb the 1nitial conditions (on 0.1% or less) and compute new values E and S.
The temperature is computed then, as

-1
Temperature: T = ( ) j

350

5 ¢ -1 5 300
TH| =—= (benchmark: T == E"") gzso
E-E k 7 200
ilso
T,= 363K E 0
T, =145.1K > -
T,=326.5K 1 2 3 4

Total energy, 10721 J



Pendulum: Total Energy

2

P

12

Total energy: E = H (¢, p) = v mglcosp = Const (atany ¢(2), p(?))

2
?(0)=0.3
@(0)=0
1
5
o
- 0(0)=1.8
Y @(0)=0
-1
-3

NN\ 1"
p(0)=3.12

¢(0)=0

-3-2-10 1 2 3
g

p = @l - angular momentum

E =-187x107"1], E, =0.45x107"J, E,=1.96x107"]



Phase integral: P

AV\IJIIIIIM DL\’\(‘I\ IV\"‘I\ITV"'\I
CliIuuiullili I'IIGDCIIILCSIGI
1 0,0, & e
T(E)=——A(E), A(E)= | 6(E-H(p,p))dpdpl] > > 0(E-HGS,, js,))
27h (o) 2rh 3 5

0, =2x,, /N-—step forp, 6,=2p . /N—stepforp, N —number of steps

2 2 2

1 1 1
1, 4 7 5
— =
S o 1\0 S o S 0
oy = =

=i -1 -1
=3 -2 -1 0 1 2 3 -3 =2 =1 0 1 2 3 —3 =2 .—1 0 1 2 3
@ @

®

I,= 0.4x10"
I,=11.2x10"
I, =21.4x10"

]
=

p—
th

Phase integral, 10%
m =

=]

For the pendulum, phase volume 5 - o : 5
grows NON-linearly with the increase Total energy, 107! J
of total energy at large amplitudes.




Pendulum: Entropy and Temperature

Entropy: S=kInT, k=138x10" J/KK %*j'
o
N o4r
S, =3.68x1072 J/K 5,
S, =4.15x107 J/K % 3.9
S, =4.24x107 J/K £33
S 37
as )\ -2 -1 0 1 2
Temperature: T = 8_E Total energy, 10721 J

We perturb the initial conditions (on 0.1% or less) and compute new values E and S.

The temperature is computed then, as i

125 ¢
100 |

T[] ( 53 ] (benchmark: 7' = %E Ky

Temperature, K
]
wn

E-E
50 |
L= 63K "
T, =153.8K o |
;= 960K _2 _1 0 1 2

Total energy, 10721 J



Summary of the Statistical Method: Microcanonical Distribution

l.

Analyze the physical model; justify applicability of the microcanonical
distribution.

Model individual particles and boundaries.
Model interaction between particles and between particles and boundaries.
Set up initial conditions and solve for the deterministic trajectories (MD).

Compute two values of the total energy and the phase integral — for the
original and perturbed initial conditions.

Using the method of thermodynamic parameters, compute entropy,
temperature and other thermodynamic parameters. If possible compare the
obtained value of temperature with benchmark values.

-1
S—kInT, T:(a_Sj o opo ! (”j
OF QE NV )

If required, accomplish an extended analysis of macroscopic properties (e.g.
functions 7(E), S(E), S(T), etc.) by repeating the steps 4-7.




Free Energy and Isothermal Processes

Free energy, also Helmholtz potential 1s of importance for the description of
isothermal processes. It is defined as the difference between internal energy and
the product of temperature and entropy.

F=U-T§

Since free energy is a thermodynamic potential, the function F(7,V,N,...)
guarantees the full knowledge of all thermodynamic quantities.

Physical content of free energy: the change of the free energy dF of a system at
constant temperature, represents the work accomplished by, or over, the system.

Indeed,
dF =dU —TdS—SdT (dU =TdS—o6W)

=-—8dT — oW
dFF =—oW

Isothermal processes tend to a minimum of free energy, i.e. due to the definition,
simultaneously to a minimum of internal energy and maximum of entropy.



