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ABSTRACT

Keywords: Quantum chaos; Eigenfunctions; Quanutm baker’s map;

Hadamard transform; Fourier transform; Thue-Morse se-

quence; Multifractals; Modular exponentiation; Hypersensitiv-

ity

The classical baker’s map is a simple and paradigmatic model of a fully chaotic

system. Its quantization has been studied for many years now as a simple model of

quantum chaos. The quantum baker’s map is reviewed and various quantization

schemes are discussed. The quantization scheme of Shack and Caves is also given a

novel classical interpretation. Some statistical features of the eigenfunctions of the

quantum baker’s map is displayed, and the special nature of powers of 2 Hilbert

spaces is noted in both eigenvalue and eigenfunction statistics.

The heart of this thesis studies eigenfunctions of the usual quantum baker’s

map for Hilbert space dimensions that are powers of 2. The Walsh-Hadamard

(WH) transform, widely used in digital signal processing and quantum computing,

is used for analyzing the eigenstates of the quantum baker’s map. We find the

emergence of the ubiquitous Thue-Morse sequence, a simple sequence which is

at the border between quasiperiodicity and random, hence a good paradigm for

quantum chaotic states. This happens most prominently in a state we call the

“Thue-Morse” state and can be largely constructed from the Thue-Morse sequence

and its Fourier transform. It is shown analytically that indeed the Thue-Morse

sequence is an approximate eigenstate of the quantum baker’s map. In addition we

find other families of states that are simply related to the Thue-Morse sequence

and its Fourier transform. In general such states are strongly scarred by short

periodic orbits of periods that are powers of 2, and their homoclinic excursions.

Approximate analytical expressions for these and other families states are given

and evidence is exhibited that they are multifractal.

We introduce a class of functions that limit to multifractal measures and which

arise when one takes the Fourier transform of the Hadamard transform. This intro-

duces generalizations of the Fourier transform of the well-studied and ubiquitous

Thue-Morse sequence, and introduces also generalizations to other intriguing se-
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quences. We show their relevance to the quantum baker’s map a few of whose

eigenfunctions are approximated well by such measures,.

Subsequently we rationalize the efficacy of the WH transform in simplifying

the eigenstates of the quantum baker’s map. This is done by constructing closely

related, but new, unitary transforms that do signicantly better, thus nearly solv-

ing many states of the quantum bakers map. These transforms, which combine

the standard Fourier and Hadamard transforms in an interesting manner, are con-

structed from eigenvectors of the shift permutation operator that are also simul-

taneous eigenvectors of bit-flip (parity) and possess bit-reversal (time- reversal)

symmetry.

To check the efficacy of the WH transform and the new transform on maps

other than the usual baker’ s map, it is used to study a closed tetradic map and

a lazy baker’ s map. Also these transforms are applied to resonances of an open

tetradic quantum baker’s map. Significant simplifications of the eigenstates on

using WH transform and the new transform are found, and studied using the

participation ratios. Some of the eigenstates and resonances are further displayed

and underlying sequences are uncovered.

Finally we study hypersensitivity to perturbation of the transforms and op-

erators related both to the quantum baker’s map and Shor’s factoring algorithm

namely the Fourier transform, WH transform and the shift permutation operator.

The Fourier transform is not sensitive to perturbations, while both the Hadamard

and shift operator show intermediate sensitivities.
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CHAPTER 1

Introduction

It is recognized for sometime now that most Hamiltonian systems are chaotic, to

be more precise their phase space has a nonzero measure of chaotic orbits [1].

This is due to the ubiquity of nonlinearity and the fact that most systems have

more than one effective degree of freedom. One can say that the clockwork uni-

verse epitomized by the simple pendulum has given way to the intrinsic chaos of

the double pendulum. Since the late 1970’s there has been interest in what hap-

pens on quantization of classically chaotic systems, a subject that has now come

to be called “quantum chaos”. Early applications were mostly motivated from

atomic physics, for instance microwave ionization of hydrogen atoms [2] or the

hydrogen atom in a strong magnetic field [3]. Thus even the simplest of atoms,

hydrogen, one of the driving forces in the very formulation of quantum mechan-

ics could in the presence of external fields be examples of quantum chaos. Later

applications encompass a wide range of physical phenomena including mesoscopic

physics, optical and nuclear physics for instance. There are suggestive links be-

tween quantum chaos and the open problem of Riemann’s conjecture in Number

Theory [4]. Furthermore it is now recognized that the states of quantum chaos

possess a significant amount of entanglement, especially of the multipartite kind.

Entanglement being a resource for quantum information processing [5] has been

intensively studied in the recent past, and systems with quantum chaos have been

especially studied from this point of view [6, 7].

The principal analytical handle over quantized chaotic system has been semi-

classical theories. Gutzwiller in the late 1960’s, M. V. Berry and others later on

developed what is today called “periodic orbit theory” as the principal classical

structures that appear in such theories are classical periodic orbits. Being chaotic

systems, these periodic orbits are unstable and furthermore dense in phase space

and exponentially increasing in number with period. Yet, these conspire to add

with phases determined by the actions of these orbits and amplitudes by their sta-

bility to produce approximate quantum quantities, such as importantly discrete

energies. It is obviously a challenge finding classical periodic orbits of chaotic sys-

tems and this limits the usefulness of these theories. However, the ergodic nature

of chaotic systems then make their mark, and an important classical sum rule due

to Hannay and Ozorio de Almeida, called the “principle of uniformity” [8] is used



to deal with long periodic orbits. In fact this sum rule also provided the first idea

of why random matrix theory (RMT), developed in the 50’s, and 60’s by Wigner,

Dyson and Mehta provides a statistical framework from quantum chaos [9]. RMT

which had hitherto been applied to nuclear resonance spectra, was applied to very

simple, but chaotic, systems in 1984 by Bohigas, Giannoni and Schmit [10]. They

found that while spectra of quantized chaotic systems such as the Bunimovitch

stadium had fluctuations that were identical to those from RMT, integrable sys-

tems did not. This gave rise to the BGS conjecture that RMT is applicable for all

fluctuations in the spectra of quantum chaotic systems. A thorough review of the

use of RMT in quantum chaos is found in the monograph by F. Haake [11].

The understanding of classical chaos has been facilitated by the study of very

simple models, many of them being exactly solvable. For example the cat map

of V. I. Arnold or the baker’s map [12, 13, 14]. In fact the baker’s map is more

than a model: it is an abstraction of the genesis of Hamiltonian chaos, namely the

behaviour on a homoclinic tangle which is the structure created by intersecting

stable and unstable manifolds and is the heart of chaos. This gives rise to the

“left-shift” of symbolic dynamics, which lays bare the alarming tendency of chaos

to eat up the number of significant figures in any initial data [12, 13]. Given this,

it was only natural that those who started the study of quantum chaos should look

to quantize these simple models first. It turned out that the exactly solvable quan-

tum cat map, first studied by J. Hannay and M. V. Berry [15] and subsequently

by J. Keating [16], B. Eckardt [17], and others was very nongeneric, giving rise

to unusual spectra and exact recurrences. Nevertheless, this is a very interesting

model and its study has been an useful one. For instance it was shown for this

system that there are states that in the semiclassical limit are supported upto

50% by periodic orbits and the rest is the Lebesgue measure [18] . The quan-

tum baker’s map, first studied by N. L. Balazs, A. Voros [19], and subsequently

by M. Saraceno [20] and others, had a much more generic behaviour, including

spectral fluctuations that more closely agree with those of RMT. However it has

remained analytically unsolvable, despite a deceptively simple structure involving

only Fourier transforms. It has been a very important and “paradigmatic” model

due to the fact that its classical mechanics is completely solvable, for instance all

the periodic orbits, homoclinic orbits etc. are known explicitly. This then helps

with the study of semiclassical theories.

Eigenfunctions of quantum chaotic systems are less understood, although im-

portant phenomena such as “scarring” [21] have been known since 1984. Prac-

tically no analytic expressions exist for eigenfunctions of any quantum chaotic
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system (such as the hydrogen atom in a strong magnetic field). An exception is

the exceptional quantum cat map for which there exist analytical formulae [17].

Another interesting example is a chain of four nonlinear oscillators on a circle

studied by Jain, Grémaud, and Khare [22] for which they were able to display

some analytically exact eigenfunctions, but whose classical limit shows chaos. In-

terestingly these functions seemed to show scaling properties. However, it is fair

to say that most generic quantum chaotic systems seem to defy the mathematics

which is at our disposal. Statistical treatment of eigenstates and eigenvalue fluc-

tuations are important and RMT is successful by and large in this [11]. However

it is not clear how simple models such as the baker’s map can give rise such a

statistical phenomena, which is also strongly influenced by deterministic features

such as short periodic orbits.

One of the major components of this thesis is the uncovering of many analytical

features of the quantum bakers map, in especially its eigenfunctions when the

dimension of the Hilbert space is a power of 2. This thesis suggests various novel

ansatz for classes of eigenstates, based on automatic sequences such as the Thue-

Morse (TM) sequence [23, 24] and its generalizations. Chaotic eigenstates cannot

be assigned quantum numbers, as good quantum numbers are associated with

constants of the motion. Thus classification of states apart from their energy is

largely unknown. This thesis shows how this can be done, to some extent, with

the quantum bakers map. We show that the eigenfunctions of the quantum bakers

map are multifractal. Schnirelmann’s theorem [25] requires that most of the states

be equidistributed if the classical limit is ergodic. Thus our examples fall in the

category of exceptional states. Following this we turn to a discussion of why such

a simplification occurs in the case of the quantum bakers map, developing in the

process a completely new unitary transform that has elements of Hadamard and

the Fourier Transform, both widely used. This transform almost diagonalizes the

quantum baker’s map. We will also discuss about applications of this transform

to generalized quantum baker’s maps both open and closed. The initial work

based on this thesis has also been extended by other studies, notably that of

Ermann and Saraceno [26]. They constructed an “essential” baker’s map whose

spectral properties are close to that of the quantum baker’s map. There are also

interesting connections between results of this thesis and those of Nonnenmacher

and co-workers on fractal Weyl laws in open systems [27].

In the final part we deal with the hypersensitivity of operators that are closely

related both to the baker’s map as well as to Shor’s factoring algorithm and to

quantum computation in general. We find, along with earlier workers [28], that
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the quantum Fourier transform is not hypersensitive, while for the first time we

show that the Hadamard transform is sensitive. We have also studied the case of

the shift operator. This may have implications for experimental implementations

of various quantum algorithms for which the Hadamard is a main ingredient.

1.1 Classical Hamiltonian chaos

Classical mechanics had the aura of complete ability to predict around it, a fact

that is exemplified by Laplace’s demon. This demon could, given enough ini-

tial conditions, be able to predict the future of the universe and its constituents,

presumably including the fate of living beings. This hold of a deterministic, clock-

work universe was dealt two blows, one by the intrinsic uncertainty of quantum

mechanics, and other a much more internal consequence of classical mechanics,

namely chaos. However the “deterministic” nature of classical mechanics renders

this randomness “deterministic chaos”, that is there are no external sources of

stochasticity that are assumed. The first to realize the possible complex orbits of

deterministic classical mechanics was Poincaré in his famous study of the three-

body problem. After a lull, broken by important investigations by mathematicians

such as Birkhoff, Julia and others came the seminal works of Kolmogorov, Arnold

and Moser in the 50’s and 60’s which explained under what conditions stable mo-

tions are retained under perturbations (the famous KAM theorem). The word

“chaos” came to be a household name for physicists after the advent of the per-

sonal computer and the works of Li, Yorke (who brought the word “chaos” into

scientific usage in 1976), Ruelle, Lorenz, and others. We will briefly review the

elements of classical chaos that are of importance to the work in this thesis.

Consider a Hamiltonian system with d degrees of freedom with the phase space

variables (qi, pi), i = 1, . . . , d and the Hamiltonian H . Hamilton’s equations of

motion are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1.1)

These specify an incompressible flow in a space of dimension 2d. However the flow

also preserves several other integral invariants, actually d of them and these are the

Poincaré-Cartan integral invariants. This symplectic flow has certain important

consequences.

Before we come to that we state briefly that if there are d independent constants

of motion say Fi that are in involution, that is {Fi, Fj} = 0, where the brackets are

the usual Poisson brackets, then the system is integrable. In this case the motion
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in phase space takes place in a periodic or quasi-periodic manner on d dimensional

tori. In this case the dynamics admits a good action-angle set of coordinates such

that the Hamiltonian is a function of only the actions. If this is the case the system

is said to be integrable in the sense of Liouville and Arnold. Most systems do not

have d such constants. The symmetries of the system are such that less than this

number of conserved quantities exist. In such cases non-integrability invariably

leads to chaos, or exponential sensitivity.

An important simplification was introduced by Poincaré when he suggested to

study instead of the full flow, its intersections with a co-dimension 1 surface. Thus

for a two-degree of freedom Hamiltonian system, this meant that on a surface of

constant energy the section was two-dimensional. Due to the invariance of the

sums the areas projected on conjugate planes (one of the Poincaré-Cartan invari-

ants), the dynamics restricted to such a two dimensional section is area-preserving.

Thus two-dimensional area-preserving maps have been intensively studied in the

recent past as the simplest possible models of Hamiltonian chaos. As we are mostly

concerned with two-dimensional maps in this thesis, we will therefore talk in terms

of such maps although the concepts are of wider applicability.

Let (q′, p′) = T (q, p) be a two dimensional area-preserving map. Let Xt =

{qt, pt} denote a phase space point at discrete time t. The discreteness could from

the discrete set of intersections in the Poincaré surface of section, or could be the

period of forcing in a stroboscopic map, or could be just from the definition of an

abstract map. An orbit is the bi-infinite set {. . .X−2, X−1, X0, X1, X2, . . .}. There

are some very special types of orbits that are of interest:

1. Periodic Orbits: If X0 is such that XT = X0 then the orbit will repeat
itself and is a periodic orbit of period T . if T is the smallest such number
then it is a prime periodic orbit of period T . When T is equal to 1 it is
called as the fixed point of the given map.

2. Stable/Unstable manifold: The collection of orbits that in the far fu-
ture/distant past will come arbitrarily close to an orbit X constitutes the
stable/unstable manifold of this orbit.

3. Homoclinic Orbit: If Yi is an orbit such that as i → ±∞ Yi tends to the
periodic orbit X then it is homoclinic to this periodic orbit. That is, in the
distant past and the far future the Y orbit will be arbitrarily close to the
periodic orbit X.

4. Heteroclinic Orbit: Let X and X ′ be two periodic orbits, not necessarily
of the same period. Then an orbit Yi is an heteroclinic orbit if in the distant
past it comes arbitrarily close to one of the periodic orbits, say X and in the
far future comes arbitrarily close to the other.
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Figure 1.1: Cartoon of a homoclinic tangle. The dark line is the stable manifold
and the light line is the unstable manifold. Their intersection forms loops in such
a way that they do not self intersect.

While in general two orbits cannot intersect, the stable and unstable manifolds

can and do intersect and these constitute the homoclinic and heteroclinic orbits.

These intersection of stable and unstable manifolds are generically transversal.

Tangential intersections are nongeneric and they can only arise in integrable sys-

tems (e.g., one-dimensional simple pendulum). Stable/unstable manifolds cannot

self intersect due to continuity and invertibility of the map. However stable and

unstable manifolds forms structures as shown in the cartoon in Fig. (1.1) such

that they do not self intersect. Since the map is area preserving the areas formed

by successive loops should be same and this makes the loops thinner and longer

on successive iterations of the map. These form a complex network termed as

the homoclinic tangle. Although the dynamics is deterministic the phase space

points in this complex network behave in a apparently random manner. This was

appreciated by Poincaré, who wrote about it in his seminal treatise Les Methodes

Nouvells de la Mechanique Celeste in 1892 as follows:

“The intersections form a kind of lattice, web or network with infinitely tight

loops; neither of the two curves must ever intersect itself but it must bend in such a

complex fashion that it intersects all the loops of the network infinitely many times.

One is struck by the complexity of this figure which I am not even attempting

to draw. Nothing can give us a better idea of the complexity of the three body

problem and of all the problems in dynamics where there is no holomorphic integral

and Bohlin’s series diverge.” [29]
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Now, thanks to computers, it is quite easy to draw and visualize such tangled

webs, at least in two-dimensions. In Fig. (1.2) we see such a finite portion of the

stable and unstable manifolds for the unstable fixed point of the area-preserving

two-dimensional standard map. The value of the parameter k is such that at

k = 0.97 . . ., the last “golden mean” rotational KAM torus breaks. The standard

map is discussed in many textbooks [29, 14, 30] and we also briefly define it further

below.

Figure 1.2: The tangle showing the stable and unstable manifolds of the hyperbolic
fixed point of the standard map at k = 1.7.

1.1.1 Chaos

The term chaos is defined in different ways in the literature. A brief and concise

presentation of them is found in this [31]. We adopt here one of the mathematical

definition of chaos due to Devaney[12]. Definition: Let V be a set and f : V → V

a map on this set. We say that f is chaotic on V if

1. f has sensitive dependence on initial conditions. f : V → V has sensitive
dependence on initial conditions if there exists δ > 0 such that, for any
x ∈ V and any neighborhood ∆ of x, there exist y ∈ ∆ and n ≥ 0, such
that |fn(x) − fn(y)| > δ , where fn denotes n successive applications of f .
Practically this definition implies that there exist points arbitrarily close to
x which eventually separate from x by at least δ under iterations of f . We
point out that not all points near x need eventually move away from x under
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iteration (periodic points for example), but there must be at least one such
point in every neighborhood of x.

2. f is topologically transitive. f : V → V is said to be topologically transitive
if for any pair of open sets U,W ⊂ V there exists n > 0 such that fn(U) ∩
W 6= ∅. This definitions implies the existence of points which eventually
move under iteration from one arbitrarily small neighborhood to any other.
Consequently, the dynamical system cannot be decomposed into two disjoint
invariant open sets, what constitute ergodicity.

3. periodic points are dense in V . This is a very important condition which
implies that arbitrarily close to any point there exists a periodic orbit in
a chaotic system. This is the hidden order in deterministic chaos. This
also forms the backbone of many classical and semiclassical theories that
constitute periodic orbit theories. The fact that they are dense, means that
a subset of them may be used to approximate any orbit. Of course in a
chaotic system all such periodic orbits are unstable and it is altogether a
different and difficult task to find them.

From the definition we see that a chaotic system possesses three ingredients:

a) unpredictability because of the sensitive dependence on initial conditions, b)

indecomposability, because it cannot be decomposed into noninteracting subsys-

tems due to topological transitivity, and c) an element of regularity because it has

a dense set of periodic points or orbits. Banks et al.,[32] pointed out that topo-

logical transitivity and dense set of periodic points implies sensitive dependence

on initial conditions. Thus conditions 2 and 3 are sufficient for a system to be

chaotic.

1.1.2 Measuring the chaos: Lyapunov exponent

From a physicist’s perspective, there is chaos if the phase-space of the system is

bounded and there is a nonzero measure of orbits that are exponentially unsta-

ble. Now we turn our discussion to this important characterizer, the Lyapunov

exponents which gives details about linearized stability of any trajectory in the

phase space. Roughly speaking, for a given trajectory, the Lyapunov exponents

characterize the mean exponential rate of divergence of trajectories surrounding

it. The stability of any trajectory can be stated in terms of Jacobian matrix. For

a 2D area preserving map of the form

xn+1 = f(xn, yn)

yn+1 = g(xn, yn) (1.2)
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As a well-known class of examples [30, 14] consider the stroboscopic map with

V (x) a periodic function periodic on x ∈ [0, 1):

yn+1 = yn − V ′(xn) mod 1

xn+1 = xn + yn+1 mod 1. (1.3)

where we have made the choice to apply the potential kick before the free motion.

The notation V ′ indicates the derivative of V with respect to x. The standard

map corresponds to

V (x) = − k

4π2
cos (2πx) . (1.4)

At k = 0 the map is integrable and is a stroboscopic map of a freely rotating

particle. At this value of k there are both rational and irrational tori, depending on

if the momentum is rational or irrational, and constitute “unperturbed tori”. For

nonzero, but small, k the incommensurate or irrational tori survive in accordance

with the KAM theorem, while the commensurate or rational ones break up into

a pair of stable and unstable orbits in accordance with the Poincare -Birkhoff

theorem. The phase space starts getting mixed with stable and chaotic orbits for

increasing k. At around k ≈ 0.97 the last rotational irrational KAM tori, with

a winding number of the golden mean, breaks and leads to global diffusion. For

k > 5 the standard map is considered to be largely chaotic, although it is also not

proven to be so for any value of k, however large. This map is a typical scenario

for a two-degree of freedom Hamiltonian system. The chaos comes mixed with

regularity. In this thesis we study models in which the chaos is complete and

distilled, with no trace of regularity.

The Jacobian or stability matrix of the general 2D map in Eq. (1.2) evaluated

at the phase-space point (xn, yn) is

J(xn, yn) =

(

∂f/∂xn ∂f/∂yn

∂g/∂xn ∂g/∂yn

)

. (1.5)

Area-preservation implies that Det(J) = 1. the stability matrix of an forward

orbit segment of length n with an initial point (x1, y1) is given by

Mn(x1, y1) =

n∏

i=1

J(xi, yi) (1.6)

The finite time Lyapunov exponents are strictly speaking defined via the singular

values of Mn, which are the eigenvalues of MT
n Mn. If the eigenvalues of these are
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κi(n), i = 1, 2 then the Lyapunov exponents are

λi = lim
n→∞

1

2n
log(κi(n)). (1.7)

Note that this is in principle dependent on the initial point (x1, y1), but thanks

to ergodicity this dependency gets obliterated and we can talk of a Lyapunov

exponent valid for almost all trajectories. Short time periodic orbits could have

significantly different Lyapunov exponents however. The entire set of periodic

orbits, although dense, are of measure zero. While the eigenvalues defined above

are guaranteed to be positive, it is very common in the literature to define the

Lyapunov exponents directly from the exponential growth rate of the magnitudes

of the, in general complex, eigenvalues of the stability matrix Mn, asymptotically

in time n. For most systems these two procedures yield the same “Lyapunov”

exponents. We note that a recent detailed study of finite-time Lyapunov exponents

and stability exponents defined as the growth rate from the Jacobian, especially

for the standard map is in [33].

We now recall the definitions and properties of an abstract model of chaos, the

baker’s map. The properties of the quantization of this model will be one of the

main topics of this thesis and hence we will expand on the classical baker’s map

first.

1.1.3 The classical baker’s map

This map imitates the action of the bakery baker who is kneading dough. The

action which leads to a homogenization of the ingredients called for in the cake’s

recipe is distilled as the action which leads to Hamiltonian chaos and the tangle.

The classical baker’s map [14], T , is the area preserving transformation of the

unit square [0, 1) × [0, 1) onto itself, which takes a phase space point (qn, pn) to

(qn+1, pn+1) given by

qn+1 = 2 qn

pn+1 = pn/2

}

0 ≤ qn < 1/2;
qn+1 = 2 qn − 1

pn+1 = (pn + 1)/2

}

1/2 ≤ qn < 1. (1.8)

where the stretching along the horizontal q direction by a factor of two is compen-

sated exactly by a compression in the vertical p direction. Pictorial representation

of the map is given in Fig. (1.3). Its Jacobian is simply diag(2, 1/2) everywhere,

the eigenvalues are 2 and 1/2. The Lyapunov exponents are log(2) correspond-

ing to horizontal q direction and − log(2) corresponding to vertical p direction
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Figure 1.3: The classical baker’s map. The two disjoint parts Left(L) and
Right(R) is mapped to Top(T) and Bottom(B) after one iteration with stretching
along the horizontal q direction and compression along the vertical p direction by
a factor of 2.

and their sum equals to zero. Thus with a positive nonzero Lyapunov exponent

the map is a candidate for chaos. It will become clear if we write any initial

phase point(namely (q0, p0)) in terms of binary representation of numbers say as

q0 = 0.a0a1a2 . . . and p0 = 0.a−1a−2a3 . . ., where ai = 0, 1. Note that a0 = 0 if q0

lies in left half L and it is 1 otherwise. Thus q1 = 2 q0 − a0 whether a0 = 0 or 1.

Similarly p1 = (p0 + a0)/2 in either case.

If we write (q0, p0) as a bi-infinite sequence of the following form

(p0|q0) = . . . a−3a−2a−1 ◦ a0a1a2 . . . (1.9)

then

(p1|q1) = . . . a−2a−1a0 ◦ a1a2a3 . . . (1.10)

The notation (p|q) is to indicate a phase space point, the right side is to be thought

of symbolically, with the small circle separating the p in the left from the q on

the right and the circle denotes the present moment. The classical baker’s map

action is to shift the entire sequence of ai to the left by one place. This dynamics

is known as a left shift.

We can easily obtain periodic points, stable/unstable manifolds and homo-

clinic/heteroclinic points interms of binary representation of phase space points.
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Consider the phase space points such as

(p0|q0) = . . . uk uk ◦ uk uk . . . (1.11)

where uk is any binary string of length k. It is then clear from the left shift

dynamics that (pk|qk) = (p0|q0), that is this initial point comes back to itself after

k steps. It also immediately follows that after any multiple of k the point recurs,

in short we have a periodic point of period k. As there are 2k possible uk strings

for any k, there are exactly 2k possible periodic points for the baker map of period

k. The repeating string is often denoted by an overbar, thus (p0|q0) = uk ◦ uk.

The decimal representation of (p0|q0) = uk ◦ uk, is

q0 = d(uk)/(2
k − 1), p0 = Rd(uk)/(2

k − 1). (1.12)

If the string uk = a0a1 . . . ak−1 then d(uk) = 2k−1a0+2k−2a1+2k−2a2+. . .+ak−1

is the value of the binary string uk, and Rd(uk) = 2k−1ak−1 + 2k−2ak−2 + . . . a0

is the value of the string that is obtained by reversing the string uk, with the

least significant bit becoming the most significant bit etc. For example the point

01 ◦ 01 is a periodic point of period 2, and in usual decimal representation it

is (q0 = 1/3 , p0 = 2/3). For any point or orbit in the baker’s map the stable

and unstable manifolds are easily found using the left shift. For instance for the

fixed point at the origin any point whose position (in binary) ends in an infinite

string of zeros is in the stable manifold. In general for a periodic orbit of period

k characterized by the string uk the following is easily seen:

1. Stable Manifold: something ◦ somethingelse uk.

2. Unstable Manifold: uk something ◦ somethingelse.

3. Homoclinic points: uk something ◦ somethingelse uk.

4. Heteroclinic points: u′l something ◦ somethingelse uk.

For example 01 ◦ 1001 is a point that is homoclinic to the period 2 point

(2/3|1/3) = 01◦01, while 101◦00101110 is an heteroclinic connection between the

period 2 orbit 10◦10 = (1/3|2/3), to which it comes arbitrarily close in the future

and the period 3 orbit 101 ◦ 101 = (5/7|5/7), from which it deviated arbitrarily

closely the sufficiently distant past.

The transformation Eq. (1.8) has two basic symmetries. The first is parity

symmetry obtained by p→ 1−p and q → 1−q which corresponds to reflection of a

trajectory with respect to the center of the square. The second is an anticanonical
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time reversal symmetry related to the interchange of p and q and the reversal

t → −t. The repeated action of T on the square leaves the phase space mixed,

this is well known to be a fully chaotic system that in a mathematically precise

sense is as random as a coin toss. The area-preserving property makes this map a

model of chaotic two-degree of freedom Hamiltonian systems.

1.2 Quantum chaos

“Quantum chaos” is really a short form for saying that it is the study of the quan-

tization of classically chaotic systems. Michael Berry has recommended the term

quantum chaology, but the short form seems to be in wide usage, and we will use it

in this thesis. A mentioned earlier, the motivations for this study stem from even

the simplest of systems, such as hydrogen atom in external electromagnetic fields

or the helium atom excitation spectra. The effects of quantum chaos on transport

has been studied through measurements of magneto-resistance in quantum dots

[34]. The classical motion of the electrons inside these is like the motion of a ball

on billiard tables, and this class of billiard problems have been at the center of

many classical as well as quantum studies. Experimental work on such systems

has been on for more than a decade now. Recent explorations of the possibility of

a quantum computer, has also brought to the forefront issues of the effect of chaos

on the functioning of many-body quantum computers [35, 36]. In particular the

“entangling” power of quantum chaos is a current research topic [6]. Entanglement

which measure how nonseparable quantum systems are in a genuinely quantum

way, is influenced by chaos in an apparently very nontrivial manner. The funda-

mental nature of quantized chaotic systems could also lie at the foundations of

quantum statistical mechanics [37]. Studies also suggest that decoherence, which

is the entanglement of a system with its environment, is strongly influenced by

chaos in the system and/or environment [38].

The field of quantum chaos had its origins with the independent and almost

simultaneous publication of two papers, one on the quantized standard map [39]

which lead to the discovery of the phenomenon of dynamical localization, while

the other was on general planar area-preserving maps [40] in 1979. This was

immediately followed by a work that quantized the classical cat map, which is

like the baker’s map a fully chaotic linear map of the 2-torus onto itself. Thus

the earliest quantized chaotic systems where quantizations of stroboscopic maps,

and area preserving abstract maps. In addition to these “quantum maps” there

was also an extensive numerical study of the eigenfunctions of the stadium billiard
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[41] who looked at nodal pattern of these functions and concluded that they were

random and had no apparent order. The study of quantum billiards (again two-

dimensional) forms a very important and rich class of models with immediate

applications to quantum dots. As this thesis is concerned with a quantum map,

we provide an introduction to these here.

1.2.1 Quantum Maps

Broadly speaking quantum maps come in two flavors: (1) quantizations of non-

autonomous systems with periodic time dependence mostly of the “kicked” variety,

and (2) quantization of abstract dynamical systems, such as the baker’s map,

and the cat map. Although in some cases (like the cat map) there have been

mappings on to kicked systems [42]. Most of the studies so far on this have been

restricted to 2D area preserving mappings. Experimentally kicked Hamiltonians

have been realized using pulsed fields that provide a very good approximations to

delta function impulses. One important phenomenon studied here is the dynamical

localization of wave packets [43]. Experimental realizations of the quantum baker’s

map have been proposed using simple quantum gates [44].

Quantum maps are quantizations of classical maps. Classical two-dimensional

area preserving maps are special cases of symplectic or canonical transformations.

Thus quantum maps may be thought of as the quantum equivalents of canonical

transformations. The quantum equivalent is an unitary operator, and it is not

immediately clear how this association is to be done. For the class of maps derived

from kicked Hamiltonians we can derive the quantum map quite easily. We will

first deal with the broad class of canonical transformations that comes from kicked

systems. Consider the Hamiltonian:

H = H0 + V
∞∑

n=−∞

δ(t/T − n), (1.13)

where H0 and V are time independent operators. The Schrödinger equation we

want to solve is

i~
∂

∂t
|ψ〉 = H0|ψ〉 + V δT (t)|ψ〉; (1.14)

given an initial state |ψ(0)〉, we wish to solve for the state at a later time, |ψ(t)〉.
Let δT (t) be an abbreviation for the train of delta impulses. Say that the classical

map relates phase space variables just after consecutive kicks. Similarly then we

may consider the quantum map to be that unitary operator, say U , that connects

states just after consecutive kicks. Thus if we write the state just after kick n as
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|ψ(n+)〉 we are seeking that U such that

U |ψ(n+)〉 = |ψ(n+ 1+)〉. (1.15)

From just after kick n to just before kick n + 1, the delta function term is

effectively absent in Eq. (1.14). Thus we have:

|ψ(n+ 1−)〉 = exp(−iH0T/~) |ψ(n+)〉. (1.16)

Now we have to deal with integration over a kick, during which time the wave func-

tion changes abruptly. Integrating the schrödinger equation over the infinitesimal

time about the kick, eliminates the H0 part of the Hamiltonian, or alternatively

we could say that the kick dominates the Hamiltonian during this time. Therefore

we get that

|ψ(n+ 1+)〉 = exp(−iV T/~) |ψ(n+ 1−)〉. (1.17)

Combining this with Eq. (1.16) we get:

|ψ(n+ 1)〉 = exp(−iV T/~) exp(−iH0T/~) |ψ(n)〉, (1.18)

where we have dropped all the + superscripts, all the states are understood to

be immediately after the stated times. Thus the quantum map is the unitary

operator:

U = exp(−iV T/~) exp(−iH0T/~) (1.19)

Since the Hamiltonian is explicitly time dependent the usual description in

terms of eigenstates and energy eigenvalues does not exist. However the quantum

map, is “stationary” in the sense that it does not depend on the kick number, and

is a special case of the Floquet operator for general periodic time dependence. It-

erating the classical map produces time evolution while in quantum maps repeated

multiplication by the operator U is required:

|ψ(n)〉 = Un |ψ(0)〉. (1.20)

The powers of an operator is determined by its eigenvalues and vectors and hence

the problem of time evolution is in this case also solved by an eigenvalue problem.

The eigen angles of U take the role of the energies and the eigen vectors of U are

the “stationary” states. Since U is an unitary operator its eigenvalues lie on the
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unit circle, the eigenvalue equation may be written as:

U |φk〉 = exp(iφk)|φk〉. (1.21)

where 0 ≤ φk < 2π are real numbers, the eigen angles, and also referred to as the

“quasi-energies”. The index k may be discrete, or continuous, as the eigen angles

are discrete or continuous.

One of the most extensively studied quantum maps corresponds to the quan-

tum standard map with H0 = p2/2, and V = k cos(2πq) [45]. This has been

studied with a phase space topology of a cylinder as well as a torus. The Harper

map with H0 = g cos(2πp) and V0 = g cos(2πq) has also been quite extensively

studied [46, 47]. While the above quantization works for kicked systems with a

Hamiltonian generating the map, there are abstract maps for which this is not a

given. We will deal in the next chapter with the quantization of the baker’s map

which is a prime example of this kind.

1.2.2 Eigenfunctions

We very briefly describe here some of the phenomenology associated with eigen-

functions of quantum chaos.

Scarring.

Eigenfunctions are semiclassically associated with classically invariant sets. For

classically completely chaotic systems, the only such set which is not of measure

zero is the energy shell. The smaller invariant sets, for instance associated with

periodic orbits whose measure is zero was not expected to influence the eigenfunc-

tions. This gave rise to the Berry-Voros hypothesis which said that the Wigner

representation of typical eigenstates will be uniformly spread on the energy shell

[48, 49]. A mathematical formulation known as Schnirelmann’s theorem is a state-

ment of eigenfunction ergodicity.

However numerical investigation of the eigenfunctions of the chaotic stadium

billiard by Heller showed that most of the eigenfunctions had strong enhancements

that could be unambiguously identified with classically unstable and isolated pe-

riodic orbits. Heller called these “scars” of periodic orbits in quantum wave func-

tions [21]. Since these investigations many examples have been found. Heller has

put forward certain explanations for this phenomena based on wave packet dy-
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namics, while Bogomolny [50] and Berry [51] have advanced semiclassical theories

based on Gutzwiller’s periodic orbit theory. Today we know that apart from pe-

riodic orbits there are also scars of homoclinic and heteroclinic orbits. However

our understanding is far from complete, in the sense that we cannot say which

eigenfunction will be influenced by which classical orbits. Heller gave a criteria

that restricts those periodic orbits that could scar the wave functions, which ef-

fectively cuts off long periodic orbits. Almost all scarring studies have been done

with two-degree of freedom systems or quantum maps. Experimental evidence

exists from resonant tunneling experiments [34] and in analogy experiments such

as in microwave cavity billiards [52].

When the baker map was first quantized, the bakers Balazs and Voros con-

cluded that the eigenfunctions in the position representation were mostly erratic,

or random looking. However when subsequently Saraceno made use of coherent

states to study the functions a bewildering variety of patterns became visible,

most of which could be identified with some classical feature, such as periodic

orbits, or homoclinic orbits, or stable and unstable manifolds, but the way they

were appearing held no particular rule. We will have opportunity in later chap-

ters, and especially in chapter 3 to display these eigenfunctions and uncover some

mathematical structure in them.

Eigenfunctions in a mixed phase space, containing a measure of both chaotic

and regular orbits is even more complicated. This is primarily because the border

between order and chaos is not clean and is in general a fractal one. However a

rough rule seems to be either that the eigenfunctions are supported in the regular

regions, or in the chaotic one, but not by both simultaneously. This was conjec-

tured to be the case by Percival [53] in the early 1970’s, and while it is seen to hold

for many two-degrees of freedom systems, it is not clear if this is valid in higher

dimensions. Violations of these have come to light in certain periodic systems,

and states that are localized in both chaotic and regular regions have been called

“amphibious” [54].

1.2.3 Semiclassics of Eigenvalues

Although this thesis is not directly concerned with eigenvalues, they have formed

the principal object of investigation due to the existence of semiclassical periodic

orbit theory or the trace formula. The Gutzwiller trace formula connects the trace

of the energy Green’s function to a weighted sum over the periodic orbits on energy

shells [55]. The trace formula is more simply studied using quantum maps. One
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central object is the trace of the propagator after time t:

Tr(U t) =

N−1∑

i=0

exp(itφi) (1.22)

where U is some unitary map, the φi are the eigen angles. This implies that if we

know the traces of the powers of U we can know the eigen angles. This is seen by

Fourier transforming both sides:

∞∑

t=−∞

e−iωtTr(U t) =
∞∑

m=−∞

N−1∑

i=0

δ(φi − ω − 2πm) (1.23)

where we have made use of the Poisson summation formula.

∞∑

n=−∞

∫ ∞

n=−∞

f(x)e2πinx dx =
∞∑

m=−∞

f(x). (1.24)

Thus Fourier transforming the traces of the powers of the propagator will give us

delta functions at the eigenangles.

Semiclassical theory then attempts to find Tr(U t) from purely classical quan-

tities. The general structure of this trace formula is

Tr(U t) ∼
∑

γ(t)

Aγ exp(2πiSγ/~) (1.25)

where γ enumerates classical periodic orbits of period t, Sγ is the action of the

periodic orbit, and Aγ is a weight that typically exponentially falls with the period

t. This last statement may give rise to the expectation that the long orbits can be

neglected, but in chaotic systems there is an exponential proliferation of periodic

orbits with period. Therefore this is a delicate problem that needs care and in

fact while the trace of quantum maps on finite dimensional Hilbert spaces hardly

poses a problem, whole of semiclassics is beset with convergence issues. There is

also the question of how long the above approximation holds good, while a fair

amount of work has gone into this it is again not very clear what exactly this time

is and how it depends on the scaled Planck constant and the parameters of chaos.

A semiclassical theory of the quantum baker’s map also exists [56, 57] and has

the generic form of the trace formula above. For instance one surprising result that

has emerged from the study of simple systems such as the quantum baker’s map

is that semiclassics can be valid over much longer time scales than the Ehrenfest

time, which signals the end of quantum-classical correspondence. The use of the
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quantum baker’s map is crucial as it permits calculating very long periodic orbits

with ease.

1.2.4 Random matrix theory

As has been said earlier, the statistical aspect of quantum chaos is well described

by random matrix theory (RMT), and is widely used in many areas from nuclear

to mesoscopic physics [58]. Wigner in the 1950’s suggested that since complex

many body Hamiltonians such as for nuclei were unknown or were difficult to

solve, especially for higher excitation spectra, we may assume that the Hamilto-

nian matrix is a random matrix, that is a matrix whose elements are drawn from

a distribution at random. The model that is most often used is when the distribu-

tion is a Gaussian and the matrix elements are independently drawn. This leads

to the Gaussian ensembles. There are some fundamental symmetries that systems

may obey despite all the complexity and chaos. For instance time-reversal (TR)

symmetry is quite fundamental and implies that given any arbitrary basis, we

can find a related basis, the time-adapted one, in which the Hamiltonian is real.

Therefore TR symmetric Hamiltonians are generically real, while TR nonsym-

metric Hamiltonians are in general complex. We have till now talked of unitary

matrices, maps rather than Hamiltonians. Therefore the appropriate ensembles

are called circular, as the matrices are unitary and were first studied by Dyson

[59]. For the results we will recall, the most simplest, it does not make a difference

in the leading order if the ensembles were Gaussian or circular. One such very

popular result is immediately described below.

The nearest neighbor spacing distribution. (NNS)

This is one of the most widely used RMT measures in quantum chaos, and is about

how the nearest neighbor energy differences are distributed distributed. First a

procedure called unfolding is done which makes all spectra have average unit mean

spacing. This allows us to consider spectra from very different physical origins. It

is also important that this analysis included only states that belong to the same

symmetry class.

If the system were integrable the NNS is Poisson distributed, which will happen

if the energy levels do not have any correlation between them. If the system is

chaotic (in the classical limit) the distribution will be one of two types depending

of if there is TR symmetry or no TR symmetry. These are universal distributions,
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independent of the system. The only requirement is that the classical limit be

fully chaotic. In the case of the unitary operators such as quantum maps, the

mean spacing is simply 2π/N as the eigenangles are uniformly distributed over

[0, 2π). Therefore define

si =
N

2π
(θi − θi−1), (1.26)

and consider the set of normalized spacings {si, i = 1, . . . , N − 1}. If these are

distributed according to the function P (s), RMT says that for the Gaussian or

Circular ensembles:

P (s) =







exp(−s) Integrable.

π

2
s exp(−πs2/4) Chaotic. TR symmetric.

32

π2
s2 exp(−4s2/π) Chaotic. No TR symmetry.

(1.27)

These are understood to be asymptotic results valid for large matrix sizes. However

one remarkable fact is that even small matrices have NNS that are very good

approximations to these. Indeed Wigner first studied 2× 2 matrices to derive the

Wigner law valid for chaotic TR symmetric systems, the second of the equations

above. This law was found to hold good for a simple but chaotic system by Bohigas

and others when they found the NNS from several hundred numerically levels of

the stadium and the Sinai billiard [10]. For mixed systems, distributions are found

that are intermediate between the Poisson and the Wigner. In the next chapter

we will talk about what RMT has to say about eigenfunctions.
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CHAPTER 2

Quantum baker’s map and Statistics of its

Eigenfunctions

2.1 Overview

The baker’s map was quantized by Balazs and Voros [19] in 1989. Being a map that

does not have a Hamiltonian generating it (at least a “natural one”), it required

a certain amount of classical-quantum reasoning to quantize the map. As it later

turned out the quantization was consistent with those suggested by quantizations

based on generating functions. A mixed (q−P ) generating function is natural for

the baker’s map and this results in the quantum baker being simple in the mixed

representation. This was first realized in the works of Balazs and Voros. However

as is well recognized quantization is not a unique process, and today there is a

whole community of quantum bakers who share the common classical limit. As an

aside, the population of this community is more than the smallest accounted towns

in the United States of America (for instance, Maza, North Dakota, population:

5).

Then there are “semi-quantum” bakers, appreciated early on by Balazs and

Voros but more thoroughly studied by Saraceno and Voros [57]. These are quan-

tizations after some classical time has elapsed. That is, quantization is done after

compounding the map with itself a certain number of times. Later there was a

very interesting series of quantum bakers published by Schack and Caves [60], one

of which was identical to the Balazs-Voros quantum baker. We will subsequently

present these quantizations as it has an impact on this thesis. We will also present

an interpretation of this quantization from a classical point of view, which we be-

lieve is either new or at least unpublished. It must be mentioned that before all

these quantizations of the baker’s map was done, Penrose in his remarkable book

on Statistical Mechanics [61], gave the quantization as an exercise and presented a

solution himself. This solution which is a simple shift operator does not have the

correct classical limit. The last of the Schack-Caves series of quantum bakers is in

fact very closely allied to the shift operator. Lakshminarayan recently made use

of the shift operator and projectors to construct a quantum baker map that has



the correct classical limit, but does not preserve time reversal symmetry exactly in

the quantum mechanical case. This allowed the reverse process of using the quan-

tum bakers to be used to construct the shift operator. The significance of this is

that the shift operator is an example of the so-called modular exponentiation part

of Shor’s celebrated quantum algorithm for factoring. Thus this work displayed

an intimate connection between this algorithm and quantum chaos, opening up

questions about the algorithm’s sensitivity to perturbations [62, 63].

In this chapter we will recount some of these varied quantizations and introduce

the main players, or operators, in this thesis. We will also present a first look at

the eigenfunctions of the quantum baker’s map, via their statistical distributions.

The components of quantum chaotic states are known to be normally distributed

in the small ~ limit. Earlier studies of the statistics of the eigenfunctions of the

quantum baker’s map were by O’ Connor and Tomsovic [64]. They point out

that the quantum baker’s map shows deviations especially for the case when N ,

which is the dimensionality of the Hilbert space and also the inverse scaled Planck

constant is a power of 2. We also observed this, and in addition observe that the

distributions for this case are heavy tailed and have power law scaling of the tails.

Such distributions are of very general interest and are sometimes called Pareto

distributions. These occur in a wide variety of statistical data, ranging from sand

piles to citation indices [65]. It is interesting that the quantum baker’s map shows

such distributions. We will see in later chapters that these eigenfunctions are also

multifractal. We will evaluate the power laws that occur in the quantum baker’s

map and provide evidence that there are very strong correlations present. Thus

models of power law processes that rely on i.i.d. are of little relevance in this case.

Recently there has been studies of the largest and smallest intensities of chaotic

or random states. These extreme value statistics studies of eigenfunctions showed

that due to the weak correlations present in the states, only due to overall nor-

malization, the largest intensity distribution tends towards the universal Gumbel

distribution, while the smallest intensity is exponentially distributed[66]. We have

found that in the case of the quantum baker’s map there is a clear deviation from

the Gumbel distribution, however we do not present these results in this thesis

as they are of a preliminary nature. The study of extremes in the case when the

events are power-law distributed and strongly correlated needs to be further ad-

dressed. That this is of relevance to quantum systems with fractal eigenfunctions

is rather evident. The study of extremes in these case is bound to be of even more

interest that in the normal case as extreme events can occur with larger probabil-

ity. However in the absence of a knowledge of how exactly the correlations occur,
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this is a difficult task.

2.2 The quantization

We now briefly discuss the Balazs-Voros quantisation of the baker’s map. The pro-

cedure consists of two steps. First one specifies the kinematics [67] i.e., the states

and operators associated with the description of the system and then dynamics,

that is the time evolution of these objects. Saraceno [20] imposed anti-periodic

boundary conditions when studying the quantum baker’s map and this was a very

important step as it restored the broken parity symmetry of the quantum map.

The baker’s map is defined on a unit square. It is convenient to impose periodic

boundary conditions on the square and make it a torus. Quantum mechanically

this gives us a freedom to choose two phases as will become evident below. In

hindsight torus boundary conditions are not natural for the baker’s map as on

a closed square there are two fixed points at the corners (0, 0) and (1, 1) while

the other corners are not fixed. This leads to unusual semiclassical contributions

that are of the order of log(1/~) [57]. Lakshminarayan [68] for instance showed

that imposing reflective boundary conditions removed these anomalous effects.

However this was at the cost of studying four classically noninteracting bakers

(the four-baker’s map) with interesting quantum tunneling properties. For most

purposes, the simpler single baker with torus boundary conditions is desirable and

sufficient. Therefore this has continued to be studied as such. Hence our first stop

is to indicate the kinematics of quantum states when the phase space is a torus.

2.2.1 Quantum kinematics on the torus

Let the torus (square with opposite edges identified) [0, 1)× [0, 1) be the classical

(q − p) phase space. As is well known in the case of angular momenta, imposing

periodic boundary conditions for the angle variable leads to the quantization of

momenta. Imposing periodic boundary conditions on both position and momen-

tum, results in a discrete set of states in both these variable, and more importantly

then to a state space, or Hilbert space, of finite dimensions. Thus the quantum

mechanics on the torus is finite dimensional quantum mechanics and has applica-

tions to many diverse areas of physics. The first systematic treatment of this was

by Schwinger [67].

Let |qn〉 and |pn〉 be the position and momentum eigenstates with n = 0, 1, . . . , N−
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1, where N is the dimensionality of the Hilbert space. As is well-known in usual

continuum quantum mechanics exp(−ipa/~) is the position translation operator

in the sense that exp(−ipa/~)|q〉 = |q + a〉,, while exp(iqb/~) is the momentum

translation (or boost) operator [69], where a and b are arbitrary real numbers. In

finite dimensional spaces, infinitesimal generators such as position and momen-

tum are not well defined, but their unitary extensions, the translation operators

are. Hence rather than deal with position and momentum operators we deal with

position and momentum translation operators.

The position translation operator is denoted by U , and is such that

〈qn|U = 〈qn+1|, and 〈qn|UN = 〈qn+N | = exp(2πiβ)〈qn|. (2.1)

Here 0 ≤ β < 1, is the phase accumulated as one goes along the q direction. For

periodic boundary conditions β = 0, while for anti-periodic, it is β = 1/2. Phases

such as these are very useful in controlling quantum symmetries. The physical

interpretation of this phase is possible as a magnetic flux line threading the parti-

cle’s circular configuration space. The phase then appears as the Aharanov-Bohm

phase and is useful in controlling time-reversal symmetry. The translation opera-

tor in momentum, V , is similarly defined.

V |pn〉 = |pn+1〉, and V N |pn〉 = |pn+N〉 = exp(2πiα)|pn〉. (2.2)

Here the phase α (0 ≤ α < 1), often controls parity symmetry. We find the

relationship between the two bases, the position and momentum, by requiring

that the momentum states be eigenstates of the position translation operator and

vice-versa; just as in continuum mechanics.

It is then easy to show by direct verification that

|pm〉 ≡
1√
N

N−1∑

n=0

exp (2πi(n+ α)(m+ β)/N) |qn〉 (2.3)

is an eigen vector of U , that is

U |pm〉 = exp (2πi(m+ β)/N) |pm〉. (2.4)

Similarly

V |qn〉 = exp (2πi(n + α)/N) |qn〉. (2.5)

Hence we get the transformation between position and momentum states to
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be a generalized discrete Fourier transform:

〈pm|qn〉 =
1√
N

exp (−2πi(n + α)(m+ β)/N) ≡ (GN)nm . (2.6)

We have defined the matrix GN via this means. We will mainly use either

α = β = 0 or α = β = 1/2. We may also identify “position” and “momentum”

eigenvalues from the eigenvalues of the translation operators as qn = (n + α)/N

and pm = (m+ β)/N). As stated earlier we have a 2 parameter family of quanti-

zations and this freedom with boundary conditions is absent in ordinary quantum

mechanics on the plane. The operator U is diagonal in the momentum represen-

tation and the operator V is diagonal in the position representation. They satisfy

the commutation relation given by

UV = V Ue−2πi/N , (2.7)

which is the equivalent of the more usual commutation relation [q, p] = i~. From

comparing the transformation function with the continuum formula for 〈q|p〉 we

may infer that N = 1/h. This also follows from semiclassical arguments: as there

are N states on the unit phase space, and there is one state per h, it follows that

h = Total area of phase space/Total number of states = 1/N. (2.8)

as the area of the phase space is unity. Thus 1/N is the effective scaled Planck

constant, the Planck constant divided by the phase-space area. The classical limit

is then the large N limit, N → ∞.

2.2.2 The Balazs-Voros-Saraceno construct

Quantization of the classical baker’s map is an unitary transformation which ide-

ally has the symmetry properties of the classical system and must reproduce the

area preserving transformation in the classical limit. Recall that the classical

baker’s map begins by decomposing the phase space into two disjoint and equal

vertical halves L (Left) and R (Right), refer to the Fig. (1.3). Then each part is

separately mapped into two disjoint and equal horizontal halves B (Bottom) and

T (Top) where (L → B,R → T ). Each map separately compresses p and dilates

q by a factor of two.

The quantization of Balazs and Voros proceeds in an analogous way. The

vector space of states HN is divided into two orthogonal subspaces, R, L with
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vectors |ψR〉, |ψL〉 respectively . We require that in the position representation:

〈qn|ψL〉 = 0, for n ≥ N/2, (2.9)

and similarly

〈qn|ψR〉 = 0, for n ≤ N/2. (2.10)

Thus HN = R⊕L.

To maintain complete symmetry between L and R, N is restricted to even

integers. One iteration must transfer the vectors |ψL〉 and |ψR〉 into B and T which

belong to spaces B and T . These spaces B and T are mutually orthogonal and

complete: HN = B⊕ T . They are now distinguished by vanishing components in

the momentum representation:

〈pm|φB〉 = 0, for m ≥ N/2, (2.11)

and

〈pm|φT 〉 = 0, for m ≤ N/2. (2.12)

The quantum counterpart of the classical L → B transform is denoted BLB

and is such that BLB|ψL〉 belongs to B. Further Balazs and Voros required that

it satisfy the following conditions, which have clear classical motivations:

〈2qn|BLB|ψL〉 =
1√
2
〈qn|ψL〉, for 0 ≤ n ≤ N/2 − 1. (2.13)

and

〈pm|BLB|ψL〉 =
√

2〈2pm|ψL〉, for 0 ≤ m ≤ N/2 − 1. (2.14)

Using the last of these, completeness, and the fact that |ψL〉 belongs to L we have

that

〈pm|BLB|ψL〉 =
√

2

N/2−1
∑

n=0

〈2pm|qn〉〈qnψL〉. (2.15)

We have used only one half of the conditions, but this turns out to be sufficient

and consistent with the other. Since |ψL〉 is an arbitrary vector from L we can

write the operator BLB in the mixed, momentum-position basis as the matrix:

BLB =

(

GN/2 0

0 0

)

(2.16)

Likewise, the mapping from R to T is done and the matrices are added to give
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the mixed representation: (

GN/2 0

0 GN/2

)

. (2.17)

Finally we obtain the N × N unitary matrix B matrix in the position repre-

sentation as

B = G−1
N

(

GN/2 0

0 GN/2

)

(2.18)

This is our main protagonist and object of interest. Balazs and Voros had assumed

periodic boundary conditions on the states and had taken α = β = 0, while

Saraceno made the important observation that α = β = 1/2 is more natural and

fully preserves classical symmetries. But right here it maybe noted that there are

an infinity of quantum baker’s maps corresponding to the two-fold infinity of these

phases.

2.2.3 Symmetries and other properties

The quantum baker’s map B is a product of two noncommuting unitary matrices.

Although the matrices that make up B are only discrete Fourier transforms, this

leads to nontrivial spectral properties for the product as a whole. Surprisingly

this can have a behaviour that is very close to those of random matrices. The

unitarity of B leads to the following eigenvalue problem:

B|ψj〉 = e−iφj |ψj〉 with φj ∈ [0, 2π), j = 0, 1, 2, · · ·N (2.19)

Where |ψj〉 is j−th eigenstate of the quantum baker’s map with eigenvalue equal

to e−iφi, (with modulus equal to 1). The eigen angles φi lie in the interval [0, 2π)

and for the quantum baker’s map they in general take irrational values. It maybe

noted that for the quantum cat maps the eigen angles are in general rational

multiples of 2π due to the periodicity of the map. This non-generic feature is

absent in the quantum baker’s map.

The two important symmetries of the classical baker’s map which has been

already discussed are parity and time-reversal. We now discuss their quantum

counterparts.

1. Parity: The classical parity operatorRcl is such thatRcl(q, p) = (1−q, 1−p).
If Bcl denotes the classical baker’s map, then Bcl◦Rcl = Rcl◦Bcl. The action
of the quantum parity operator RN on the position eigen vectors is given by

RN |n〉 = |N − n− 1〉 (2.20)
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In terms of matrix elements it is given by

〈qn′ |RN |qn〉 = δ(n′ + n+ 1, N) (2.21)

which is zero except for the secondary diagonal which has ones. As with any
parity operator this is idempotent, that is R2

N = IN , where IN is the identity
and the eigenvalues of this are ±1. For the choice of anti-periodic boundary
conditions, that is when α = β = 1/2

[B,RN ] = 0 (2.22)

and the eigenstates can be classified as having even or odd parity. For this
choice of phases there is an important identity:

G2
N = −RN . (2.23)

The original quantization of Balazs and Voros did not respect this particular
parity symmetry. As mentioned earlier this was done by Saraceno shortly
thereafter.

2. Time reversal: The classical baker has another symmetry, that of time
reversal. Corresponding to every orbit, there is one that is reflected across
the secondary diagonal or the line q = p and time reversed. This is most
easily seen using the binary left shift. Let

X = · · ·a−3a−2a−1.a0a1a2 · · ·

be a point in phase space. Then interchanging q and p leads to

X ′ = · · ·a2a1a0.a−1a−2a−3 · · · ,

and further
B−1

cl X
′ = · · ·a3a2a1.a0a−1a−2 · · · .

But this is the forward iterate BclX followed by interchanging q and p. This
overall symmetry is denoted T .

This is classically an anti-canonical symmetry and quantum mechanically the
symmetry is anti-unitary. Quantum mechanically the T symmetric partner
of a state ψ in position representation is the momentum representation of
its complex conjugate. Thus the T symmetry operator is G−1

N K where K
is the complex conjugation operator. If the operator B has time-reversal
symmetry then it must be true that

BG−1
N K = G−1

N KB, (2.24)

which implies that
B = G−1

N

(
B−1

)∗
GN (2.25)

which is easily verified to be true from the definition of B. Note that this
is independent of the phases α and β. This symmetry has the important
implication a global phase can be fixed such that the position and momentum
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representations are complex conjugates of each other.

2.2.4 Schack-Caves quantization

Schack and Caves [60] introduced a class of quantum baker maps that are closely

connected to the left shift and is usually formulated for the case when the dimen-

sion of the Hilbert space is a power of 2, that is N = 2K for some integer K. This

case is of major interest in this thesis. When N = 2K we can consider the Hilbert

space as being isomorphic to that of K qubits. Roughly speaking we make an

“expansion” of the state in this qubit space:

|qn〉 =

K∏

i=1

⊗|xi〉 (2.26)

where xi are 0 or 1 and n = x1x2 · · ·xK =
∑K

j=1 xj2
K−j is the binary expansion of

n. Note that the position is related to this as qn = (n+ 1/2)/N = 0.x1x2 . . . xK1.

Define

|.x1x2 · · ·xK〉 = eiπ/2|qn〉. (2.27)

The position of the dot will have an important meaning in the following and up

to a phase (which is anticipated here due to anti-periodic boundary conditions)

these state are position states only if all the bits are to the right of the dot.

Now we define the momentum states through the Fourier transform: |pn〉 =

G−1
N |qn〉. Thus

|pn〉 =
1√
N

N−1∑

j=0

|qj〉 exp (ipnqj/~) =
1√
2K

∑

x1,...xK

|x1〉 ⊗ · · · ⊗ |xK〉 exp
(
2πiax/2K

)
.

(2.28)

where a = n+(1/2) = a1 . . . aK .1 = 2K pn and similarly x = j+(1/2) = x1 . . . xK .1.

Note that henceforth in this chapter the phase will be α = β = 1/2, the case of

maximal symmetries. These momentum states are then associated with a notation

similar to the “binary expansion” of position states:

|pn〉 = |aK . . . a1.〉. (2.29)

Note that momentum states are such that all the bits are to the left of the dot.

Also note that while the position states are taken to be unentangled qubits, that

is a tensor product form of these is assumed, the momentum states are in general

entangled and are not in the form of complete tensor products.
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The central observation of Schack and Caves in 1998 was that it is useful to

define a partial Fourier transform, F−1
k . We must point out that there are some

notational differences as well as some convention divergence in the literature. For

one, the Fourier transform as used by Balazs and Voros is the inverse of that

used by Schack and Caves. We have been and continue to use the Balazs-Voros

convention. We have also been using GN with the subscript to denote dimension

of the space, while Schack and Caves use the subscript to denote the number of

qubits on which the partial transform acts (as will be explained below). Also often

in the literature F is used to denote the Fourier transform with the phases set to

zero. In the following part of this chapter we adopt the convention that F denotes

a partial Fourier transform and its subscript tells how partial it is.

Schack and Caves defined the partial Fourier transform, F−1
k , acting on the

last K − k bits of a state as follows:

F−1
k |x1〉 ⊗ . . .⊗ |xk〉 ⊗ |a1〉 ⊗ . . .⊗ |aK−k〉

= |x1〉 ⊗ . . .⊗ |xk〉 ⊗
1√

2K−k

∑

xk+1,...xK

|xk+1〉 ⊗ · · · ⊗ |xK〉 exp
(
2πiax/2K−k

)

≡ |aK−k . . . a1.x1 . . . xk〉 (2.30)

where a = a1 . . . aK−k.1 and x = x1 . . . xK−k.1. The final line of the above equation

defines new states that are exactly localized along the position in region of width

1/2k and are fuzzy along the momentum, but with a fuzzy width of 1/2K−k It

is roughly a state localized at phase space point aK−k . . . a1.x1 . . . xk. The partial

Fourier transform is unitary and these set of states are therefore orthonormal. Note

that for k = 0 all the bits are transformed and hence F0 = GN . When k = K none

are transformed, butGN = i IN and hence the state becomes eiπ/2|x1〉⊗. . .⊗|xK〉 =

|.x1 . . . xK〉. This is the reason for the phase in the definition of |.x1 . . . xK〉, and

the origin is the anti-periodic boundary conditions.

We are now ready to construct the quantum baker maps. If B is an operator

such that

B|aK−1 . . . a1.x1〉 = |aK−1 . . . a1x1.〉 (2.31)

it qualifies as a quantum equivalent of the left shift operator. We note that

F−1
1 |x1〉 ⊗ |a1〉 ⊗ . . .⊗ |aK−1〉 = |aK−1 . . . a1.x1〉 (2.32)

while

F−1
0 |x1〉 ⊗ |a1〉 ⊗ . . .⊗ |aK−1〉 = |aK−1 . . . a1x1.〉 (2.33)
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Thus it is follows that

B = F−1
0 F1 (2.34)

We will see below that this is identical to the Balazs-Voros-Saraceno quantum

baker’s map. Thus we have not really achieved any new yet. The other operators

arise because there are many ways to define the initial states for the shift. That

is the generalizations are operators BK,k which are such that

BK,k|aK−k . . . a1.x1 . . . xk〉 = |aK−k . . . a1x1.x2 . . . xk〉 (2.35)

This operator is not to be confused with the BVS quantum baker of dimension

K. The BVS baker of dimension N is written either simply as BN or is the

same as BK,1. There are K such generalized quantum bakers maps and are the

quantizations introduced by Schack and Caves. While BK,1 is spectrally complex,

being just the usual BVS quantum baker map, BK,K is spectrally simple, and is in

fact exactly periodic and has rational eigenvalues. It is very closely allied to the

shift operator. A partial shift operator Sk is defined as a shift on the first k bits:

Sk|x1〉⊗ . . .⊗|xk〉⊗|xk+1〉⊗ . . .⊗|xK〉 = |x2〉⊗ . . .⊗|xk〉⊗|x1〉⊗|xk+1〉⊗ . . .⊗|xK〉
(2.36)

We will now write the generalized baker operator in terms of partial Fourier

transforms and partial shifts. Consider the following actions:

Fk|aK−k . . . a1.x1 . . . xk〉 = |x1〉 ⊗ · · · ⊗ |xk〉 ⊗ |a1〉 · · · ⊗ |aK−k〉. (2.37)

Therefore

Sk Fk|aK−k . . . a1.x1 . . . xk〉 = |x2〉 ⊗ · · · ⊗ |x1〉 ⊗ |a1〉 · · · ⊗ |aK−k〉. (2.38)

Finally we do a partial Fourier transform, but now on the last K − (k − 1) =

K − k + 1 bit:

F−1
k−1Sk Fk|aK−k . . . a1.x1 . . . xk〉 = |aK−k . . . a1x1.x2 · · ·xk〉 (2.39)

Thus we have that the generalized baker map can be written as

BK,k = F−1
k−1 Sk Fk = F−1

k−1 Fk Sk, (2.40)

the last equality follows from the commutativity of Sk and Fk, they acting on

completely exclusive sets of bit. To our knowledge the first explicit form of this
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appeared in a work of Scott and Caves [70]. The complete shift operator, which we

use later in this thesis is SK acting on all the K bits. We have by now introduced

almost all of the principal players in this thesis. In addition the Hadamard trans-

form will play a central role, but we postpone this for later. For now, we stand

back and look at the quantizations BK,k. Their classical limits were analyzed by

Tracy and Scott [71, 72]. Sokalakov and Schack studied the classical limit of the

usual bakers map (or BK,1) in terms of symbolic dynamics [73]. We will however

take a different approach and give a classical meaning or interpretation for the se-

ries BK,k. Why do there exist so many quantizations? Is this something special for

the baker’s map, or can we expect such prolificacy from other dynamical systems?

In the process the requirements for the classical limit will become clearer.

2.2.5 Classical interpretation of the Schack-Caves quanti-

zations

We will now write the generalized baker’s maps BK,k in different forms that will

make the classical interpretation possible. First we note that

F−1
k = 12k ⊗G−1

2K−k , (2.41)

which follows from the definition of the partial Fourier transform. Thus we can

write

BK,k =
(
12k−1 ⊗G−1

2K−k+1

)
(12k ⊗G2K−k) × Sk = (12k−1 ⊗B2K−k+1) × Sk. (2.42)

This form was published in [70], and the authors note that this implies that first

a shift is performed on the first k qubits, subsequent to which the last K − k + 1

qubits are subject to the usual BVS quantum baker map (or BK−k+1,1). The next

iteration will see that the most significant qubit that was not ”baked” is baked,

while the most significant qubit that was baked will be shifted out of the region

of baking.

This characterization of the generalized quantum baker’s map is readily sus-

ceptible to a classical interpretation. This part of the work is based on that jointly

done with a M.Sc. student as part of his project [74]. For clarity first consider the

simplest case which is not the usual BVS quantum map, namely BK,2. We write

in this case the partial shift as

S2 = S22 ⊗ 12K−2 (2.43)
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where S22 is the full shift on 2 qubits which is a matrix of dimension 22. But S22

is the simple matrix:








1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1









, (2.44)

therefore we can write BK,2 in a matrix form as

BK,2 =

(

B2K−1 0

0 B2K−1

)









I2K−2 0 0 0

0 0 I2K−2 0

0 I2K−2 0 0

0 0 0 I2K−2









(2.45)

Note that this operator is well defined if N is a multiple of 4. Where 2K occurs

above can be read as the dimensionality of the space N . In general the Schack-

Caves quantum bakers exist not only in spaces of dimensions that are powers of

2. In fact BK,k quantization can be defined where 1 ≤ k ≤ K and where K is the

largest power of 2 that divides N . Thus the optimal number of such quantizations

exist when N is a power of 2, but a smaller number may exist depending on the

divisibility properties of N .

Eq. (2.45) makes clear what happens classically. The matrix with the the

identity matrices tells us to divide the phase space into 4 equal vertical partitions

along the momentum and interchange the second and the third. Consequently

the bakers take over and bake only the first and second partitions, and separately

the third and fourth. But then the second partition was originally the third and

vice-versa. This is completely equivalent to baking the original square. This is

illustrated in Fig. (2.1). This generalizes as quite a remarkable property of the

classical baker map, which to our knowledge is new.

The property is most easily verified to be true practically visually. To see

this, start by dividing the square into 2k equal vertical rectangles. Label these

as 0, 1, 2, . . . , 2k − 1. Then interleave the first half of these partitions with the

rest, in an action that is the same as the riffle-shuffle action on a pack of cards

[75]. This corresponds to the partial shift operator of the generalized or Schack-

Caves quantum baker’s map. Thus after the action, the partitions are in the order

0, (2k−1), 1, (2k−1 + 1), 2, . . . , 2k−1 − 1, (2k − 1). Now bake “locally”, separately

the successive rectangles pairwise [0, (2k−1)], [1, (2k−1 + 1)] etc.. It is clear that

the partitions from the second half with numbers indicated within parenthesis are

boosted up in momentum by one-half, and join smoothly with the others of that
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Figure 2.1: Illustrating the equivalence of the baker’s map to a shift of partitions
followed by “local” baker’s maps. See text for details.

half. The partitions from the first half on the other hand keep to the lower half

and join up smoothly. In fact it maybe said that the 2k−1 such local bakers restore

some order that had been broken by the riffle-shuffle. These local bakers then

together lead to the usual baker. This is the remarkable classical property that

was alluded to. This is clearly very special for the bakers map, and we do not

expect such a property for generic systems. Indeed it is this property that allows

the family of quantizations found by Schack and Caves. This then provides us

with the classical interpretation of BK,k. It is clear that the classical limit will be

the baker’s map if k is fixed and K → ∞.

Thus the family of bakers map can be thought of a riffle-shuffle followed by local

bakers. The quantization of the local bakers is the diagonal block matrix with the

bakers maps B2K−1 in Eq. (2.45). The generalization to BK,k is then immediate.

It is interesting that there was an earlier study that quantized multibaker maps

which required the quantization of many local noninteracting quantum bakers such

as appears here. Lakshminarayan and Balazs [76] quantized these by considering

the phase-space action as a whole and this lead to operators that did not have

the block diagonal form. This then allowed for tunneling between the classically

isolated bakers. If we use these operators here, we will get yet more different

quantizations of the bakers map! It is quite clear that the origin of the prolificacy

of the quantum baker has its roots in the stable and unstable manifolds of the

bakers map being exactly aligned with the canonically conjugate directions.
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2.2.6 The shift operator and the baker’s map

The partial (and complete) shift operator has been introduced above in the context

of Schack and Caves quantization of the baker’s map. It appears along with “local

bakers”. In Chapter 4 we will have occasion to use the shift operator further and

from symmetry adapted eigenstates of the shift operator construct an useful new

orthogonal transform. We note here that the shift operator can be related to the

quantum baker’s map in a completely (apparently) different way [77].

In this subsection we denote the full-shift operator simply S and immediately

generalize to spaces of arbitrary (even) dimension N . This is the most naive

“quantization” of the one-dimensional doubling map x 7→ 2x (mod 1). The action

of S on the position basis (from now written simply as |n〉, rather than |qn〉 is

S|n〉 = |2nmod(N − 1)〉, (2.46)

with S|N − 1〉 = |N − 1〉, rather than |0〉.

The relevance of this operator to Shor’s factoring algorithm is that its general-

ization is the modular exponentiation. The required generalization of S, replaces

the factor 2 by any integer that is coprime toN−1. It is the operator whose “phase

estimation” leads to the solution of the order-finding problem [78]. The multiplica-

tive order of 2 modulo N−1 is the smallest integer r such that 2r = 1 mod(N−1),

which is the quantum period also as Sr = 1. We are guaranteed that such a number

exists as Euler’s generalization of Fermat’s little theorem implies that φ(N − 1)

is such that 2φ(N−1) ≡ 1 mod(N − 1), thus r is either φ(N − 1) or is a divisor of

it. φ(n) is the Euler totient function, being the number of positive integers less

than n and coprime to it. Finding the multiplicative order is the route of the

quantum factoring algorithm of Shor. Thus it is interesting that this well-known

quantum algorithm makes critical use of an operator that could be thought of as

a quantization of the fully chaotic left-shift, or at least very nearly, as evidenced

already by the appearance of the shift operator in the Schack-Caves quantization

as well as more directly in the quantization below.

We first look at what the action of S on coherent states is, and this should

make clear that its classical limit is not the bakers map. While the structure of S

in the position basis is that of a permutation, its action on the momentum basis

is found easily [77]:

〈m′|S|m〉 =
1

N

− sin [π(m′ + 1/2)/N ] + (−1)m+1 cos [π(m′ + 1/2)/N ]

sin [π(m− 2m′ − 1/2)/N ]
(2.47)
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Figure 2.2: The correlation |〈qp|Sk|q0, p0〉|2 as function of (q, p) for the case of
N = 256, where |qp〉 is a toral coherent state localized at (q, p). On further
applying S to the last figure produces the first as in this case S8 is the identity.

Here |m〉 are momentum eigenstates |pm〉. For an initial momentum m, there are

two momentum values around which the final state is spread, namely [m/2] or

[m/2]±N/2. The action of S on coherent states would be roughly a combination

of its actions on position and momentum states, and therefore splits an initial state

while performing appropriate scaling. Thus S creates two well-separated localized

states: it takes a state localized at (q, p) to two that are localized at (2qmod 1, p/2)

and (2qmod 1, (p + 1)/2). Repeated action by S on an initial coherent state is

illustrated in Fig. (2.2), and exact revival occurs for the same reason that a deck

of cards under the perfect riffle-shuffle reorders.

As S has almost the right properties of the quantum baker, it was just pro-

ducing two copies of which only one was classically viable. The presence of the
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other gave rise to quantum interference effects that made S exactly periodic. Thus

wielding the knife of projectors we can construct the quantum baker’s map with

S [77]. The action of choosing the left or right vertical partition is done by the

projectors P1 and P2 = IN − P1, where

P1 =

(

IN/2 0

0 0

)

. (2.48)

The action of stretching and compression is implemented by S. In addition though

as noted above and illustrated in the picture, it produces an extra copy, shifted in

momentum by one-half. Thus this is in the other horizontal partition that divides

momentum into two equal halves. Thus we once again use projectors, now in

momentum space which is G−1
N PiG

−1
N to erase the extra copy and complete the

action. Thus the full quantum baker built around S is then written as:

BS =
√

2G−1
N (P1GNSP1 + P2GNSP2) . (2.49)

The factor of
√

2 is essential to restore unitarity after the projecting actions. Note

that unlike the BVS quantization it does not have explicitly Fourier transforms

over half the Hilbert space. However, thankfully, this is not yet another quantum

baker’s map since closer inspection shows that it is indeed very close to the usual

baker’s map in. This is seen on rewriting BS as a matrix:

BS = G−1
N




G

( 1

2
, 1
4
)

N/2 0

0 i G
( 1

2
, 3
4
)

N/2



 (2.50)

Here the superscripts refer to the phase α and β. If there are no superscripts

then these are the usual values of 1/2 each. That the usual quantum baker’s map

is capable of generalizations, including arbitrary phases as boundary conditions

and relative phases between the two blocks in the mixed representation is well-

known [19]. Not all of these modified baker’s respect the symmetries of parity and

time-reversal. The operator BS however shows the explicit relationship between a

quantum baker’s map and the solvable operator S, whose action on the position

basis is practically the doubling map restricted to the integers. It is worth em-

phasizing that even in BS we are using anti-periodic boundary conditions. The

phases of 1/4 and 3/4 in the GN/2 blocks (as well as the factor of i =
√
−1) is a

direct consequence of the structure using projection operators and are such that

the operator obeys parity symmetry. This follows from the fact that RN commutes
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with GN and that

RN/2G
( 1

2
, 1
4
)

N/2 = i G
( 1

2
, 3
4
)

N/2 RN/2, (2.51)

which can be proved using a simple calculation [77].

Lakshminarayan then went on to invert this and write the shift operator in

terms of baker’s maps [79] (to be precise, two of them). This step then showed

that the modular exponentiation, a subroutine of the Shor algorithm, is very

closely related to this paradigmatic model of a quantum chaotic system, and led

to questions of the hypersensitivity of these operators. We will study this more

explicitly in the final chapter of this thesis. There has been a detailed study of

the Shor algorithm’s sensitivity to unitary perturbations in [63]. That the Shor

algorithm was related to quantum chaotic operators was perhaps first pointed out

in [80] where it was shown that the symmetry reduced Shor operator had spectral

statistics that coincided quite well with that of the unitary ensembles, the GUE

or the CUE.

This ends our brief survey of the construction of the quantum bakers map.

Once constructed we are interested in its spectral properties. Before looking at

specific states, let us first look at the statistical properties they display.

2.3 Statistical properties of eigenfunctions of the

quantum bakers map

We are interested in the eigenfunctions of the quantum baker’s map which pre-

serves all the symmetries of the classical baker’s map given by the Eq. (2.18).

This is B of the BVS quantization. Studies by O’ Connor and Tomsovic showed

that the intensities of states were distributed in a manner that was close to but

different from those of the eigenstates of random matrices. First we recall the re-

sults from RMT concerning the distribution of intensities of eigenstates, then show

such distributions for the quantum baker’s map in the case when N is a power of

2 and also when it is not. In contrast with earlier studies we concentrate on the

tail of the distributions and show, apparently for the first time, that these can be

heavy-tailed. Also for the first time we present results about the distribution of

the extreme intensities and compare with those that are universal, and predicted

by RMT.
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2.3.1 Intensity Distributions

RMT requires that the states have no other correlations except those that arise

from state normalization. In an arbitrary fixed orthogonal basis , |i〉 let a state

by given by |ψ〉 =
∑N

i=1 zi|i〉. The components zi are in general complex (case of

the GUE) and if this is the case D = 2N , real numbers exists. Else if the state

is real then D = N (case of the GOE). Thus the joint probability distribution of

the components is

P (z1, . . . zN ) =
(D/2 − 1)!

πD/2
δ

(
D∑

j=1

|zi|2 − 1

)

. (2.52)

Here the factorial is interpreted as the Gamma function if the argument is not an

integer. Based on this j.p.d.f. a number of interesting results have been derived

[81], including distribution of the extreme intensities [66].

The j.p.d.f. of l < D components can be exactly calculated. If l = 1 this gives

us the distribution of single component’s intensity y as follows. First if the state

is real then y = z2 and ρ(y) is

ρGOE(y) = π−1/2 Γ(N/2)

Γ

(
N − 1

2

)
(1 − y2)

(N−3)/2

√
y

(2.53)

and for the complex or unitary case y = |z|2 and

ρGUE(y) = (N − 1)(1 − y)N−2. (2.54)

From unit normalization of the intensities in follows in either case that the average

value of y is 1/N . Thus it is convenient to consider the scaled intensities x = y N

which are distributed in the following simple ways for N → ∞.

PGOE(x) =
1√
2πx

e−x/2

PGUE(x) = e−x

(2.55)

The GOE distribution of intensities which is χ2 is also known as the Porter-Thomas

distribution and the GUE distribution is a simple exponential. Thus these two

distributions are well distinguished from one another. These results of GOE and

GUE apply the circular ensembles such as those to which the unitary operators

belong.
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First we look at the distribution of the eigenvalues, via the distribution of the

eigen angles. In Fig. (2.3) we have shown the nearest neighbour spacing (NNS)

distribution of the eigen angles for N = 4096 (K = 11), and nearby non-powers

of 2, N = 4094 and N = 4098. Also shown is the RMT distribution, the Wigner

surmise. We have plotted the distribution after reducing the parity to either even

or odd. From the figure we can clearly see that although the distribution shows

deviations from the RMT results the deviation is significantly more in the case

when N is a power of 2. It is quite remarkable how the small change in the

dimensionality of a large matrix, by about 0.2% in this case, can completely alter

the behavior of the spectral statistics. It is perhaps worth mentioning that a

similar phenomena has been observed for the quantum cat map [82]. The case

when N = 4096 shows a rather weak level repulsion and has the appearance of

the NNS of a system with a mixed phase space, or one where several weakly

broken symmetries have been mixed together. The earlier study by O’ Connor

and Tomsovic [64] also notes the differences between N that are powers of 2 and

otherwise. They have used not the NNS but other RMT measures such as the

spectral rigidity.

0 1 2 3 4
s

0

0.2

0.4

0.6

0.8

1

P(
s)

N=4094
N=4096
N=4098
RMT

Figure 2.3: Nearest neighbour spacing distribution for the quantum baker’s map
along with RMT distribution (blue line), values of Hibert space dimension are
denoted in the inset.

The sudden change with N is true not only for the distribution of eigenvalues

but also for the eigenvector intensity distribution as well. Fig. (2.4) shows the
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Figure 2.4: Intensity distribution of the eigenvectors for the quantum baker’s map
along with RMT distribution, values of Hibert space dimension are given in the
inset.

intensity distribution from an ensemble containing all the eigenstates of the quan-

tum baker’s map for N = 4096, N = 4094 and 4098. It is clear that there are

large deviations from that of the PGOE, the Porter-Thomas distribution, for both

these values of N . When N is not a power of 2, such as when N = 4094, 4098

the distribution is closer to that expected for GUE, the simple exponential. This

has been noted earlier [64], and is somewhat surprising, considering that there is a

time-reversal symmetry here, although the time-reversal operator is not the usual

one. Note that we have not used a time-reversal adapted basis that would make

the eigenfunctions real. The case when N is a power of 2 shows marked differences

from either of the RMT distributions and in a log-log plot it is plausible that the

tail of the distribution is a power law in this case. Thus when N is a power of

2 we observe that the intensity distribution is a heavy tailed power law one. It is

possible that there is more than one exponent in this case.

Newman [65] has reviewed many aspects of such heavy tailed power law distri-

butions in a very readable way. These are also known as Zipf’s law or the Pareto

distribution, and as he notes these arise in a wide variety of contexts, from In

the context of the eigenstates of the baker’s map, as indeed elsewhere, this signals

that there is scale invariance, at least over some wide variety of scales. The typical

intensity of eigenstates is of the order of 1/N , and this sets the scale. However

when N is a power of 2, the larger intensities are of much larger magnitude and

as these form the tail of the density distribution it is interesting that there is a
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Figure 2.5: Intensity distribution of the eigen vectors for the quantum baker’s
map along with RMT distribution, values of Hibert space dimension are given in
the inset.

power law over several decades. In Fig. (2.5) we see this illustrated for two values

of N , 4096 and 2048. In both of these cases we get an approximate tail exponent

of 1/x3.3. Thus the heavy tail is such that the mean, the variance and the third

moment exists. This does not seem to be the case when N are non-powers of

2, although the distributions are still heavy tailed they cannot be said to have

power laws. We will see in the next chapter that when N is a power of 2 the

eigenfunctions are in fact multifractal.
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CHAPTER 3

The Thue-Morse sequence and eigenfunctions of

the quantum baker’s map

The further removed from usefulness or practical application, the more

important. – Axel Thue

The eigenfunctions of quantum chaotic systems, such as the hydrogen atom in

a strong magnetic field, or the abstract quantum baker’s maps discussed in the

previous chapter are of immense interest. They carry a lot of information, yet, they

are rather poorly understood even today. It maybe true that individual states may

not be of that much interest as in some collective behavior of states close in some

sense such as energy. This is due to the high density of states in the semiclassical

limit. Nevertheless there can be classes of states that stand out in the spectrum

and can be of physical significance. For example, highly scarred states occur in

many systems, and these can form a series with similar properties. Short time

periodic orbits that never become very unstable can support such families. For

example anharmonic oscillators (hydrogen atom in a magnetic field is equivalent

to such a Hamiltonian) have periodic orbits on which states can be localized and

described by some adiabatic theory [83]. In completely chaotic systems such as

the baker’s map this seems less likely to occur.

Saraceno [20] was the first to calculate and display the eigenfunctions of the

quantum baker’s map. He made the observation that most of the states supported

rather simple phase-space densities, that could often be associated with classical

periodic orbits and their homoclinic excursions. In addition he found from au-

tocorrelation functions some near periodicities. O’Connor, Tomsovic and Heller

studied the quantum baker’s map and used semiclassical methods to reconstruct

autocorrelation functions and from these eigenstates. This was also a remarkably

successful program, but limited in the sense that it did not give rise to any hint of

the analytical structure that may underlie the states. Considering that the classi-

cal baker’s map is exactly solvable, the question is, is there any simple underlying

mechanism that may generate the eigenstates? As far as we know, the answer to

this is still unknown, and definitely the thesis does not claim to solve this. But in

this chapter we will discuss a finding that answers this definitively for a class of



states. This is itself quite interesting and provided a passage, if narrow, into the

somewhat mysterious world of eigenfunctions of chaotic systems. Just as one as-

sociates the Gaussian and Hermite polynomials with the eigenfunction structure

of the most ubiquitous of Hamiltonians, the harmonic oscillator, so we wish to

associate an automatic sequence and its variants as underlying the mathematics

of the eigenstates of the quantum baker’s map.

An eigenstate is simplest in the eigen basis, but to know this basis is the

crux of the problem. Transforms sometimes help us in coming close to the basis.

It is surprising that a standard transform used in digital signal processing (for

data compression, including video files such as MPEG ones), namely the Walsh-

Hadamard transform is of use to the quantum baker’s map eigenfunctions. This

transform is also referred to sometimes simply as the Hadamard transform. It had

a remarkable effect on the eigenstates of the quantum baker’s map’s eigenfunctions

when N is a power of 2. We will assume that such is the case for the rest of this

chapter.

3.1 Compression using the Walsh-Hadamard ba-

sis

Both the Fourier and the Hadamard transforms are standard tools, widely used in

science and signal processing [23]. The relative importance of the two transforms

may be judged to be a factor of thirty in favour of the Fourier transform if one

were to go by a “google” search which returned over five million webpages for this

transform. Both these transforms can be implemented with fast algorithms that

reduce their implementation on N data points from N2 to N log(N) operations.

The fast Fourier transform (FFT) and the fast Hadamard transform essentially

rely on the factoring of the transform into operators acting on product vector

spaces. The Hadamard transform though is a real transform which only adds or

subtracts the data and is therefore widely used in digital signal processing. The

Fourier transform conjugate spaces are familiar ones (“time-frequency”, “position-

momentum”) etc., while the corresponding Hadamard transforms are not so well

understood. Nevertheless the Hadamard transform has also received great atten-

tion in the recent past due to its uses in quantum computing, with the Hadamard

gate being a central construct [84]. Our first step in identifying special states is

to Walsh-Hadamard (WH) transform [23] eigenstates.

The Hadamard transform that we use maybe written in several ways, firstly

44



as a tensor or Kronecker product, secondly via a recursion and finally via their

matrix elements. Let N a power of 2, i.e., N = 2K , for some integer K. If

H2 =
1√
2

(

1 1

1 −1

)

(3.1)

then

H2K = H2 ⊗H2 ⊗ · · · ⊗H2
︸ ︷︷ ︸

K times

= ⊗KH2. (3.2)

Equivalently

H2i+1 =
1√
2

(

H2i H2i

H2i −H2i

)

, (3.3)

and H20 = 1. Also in terms of matrix elements

(HN)m,n =
1√
N

(−1)a·b (3.4)

where a · b =
∑K

i=1 ai bi and m =
∑K

i=1 ai2
i−1, n =

∑K
i=1 bi2

i−1, that is a and b

are vectors whose entries are the binary expansions of the matrix positions (m,n).

Note that HN is such that H2
N = I, while G4

N = I, where I is the identity, and

GN is the discrete Fourier transform introduced in the previous chapter and with

either periodic or antiperiodic boundary conditions (α = β = 0 or α = β = 1/2).

therefore the spectrum of both these transforms, Hadamard and the Fourier are

highly degenerate (±1 for HN , ±1,±i for GN).

Also notice that we can enumerate the columns of HN (or rows, as it is a

symmetric matrix) as outer products of

v0 =
1√
2

(

1

1

)

, v1 =
1√
2

(

1

−1

)

(3.5)

If n = aK−1aK−2 · · ·a0 is its binary representation (0 ≤ n ≤ 2K − 1), the nth

column Vn is the outer product

Vn = vaK−1
⊗ vaK−2

⊗ · · · ⊗ v0. (3.6)

While the first column V0 is simply an uniform string of 1s, the last one VN−1 is

the K-th generation of the Thue-Morse sequence, which will be defined shortly

below.

If φ is an eigenstate of the quantum baker’s map in the position representa-
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Figure 3.1: The participation ratio of the eigenstates of the quantum baker’s map
for N = 512 in the (a) position basis, and (b) Walsh-Hadamard basis. The states
are arranged in increasing order of the latter number.
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Figure 3.4: Intensities of first 25 eigenstates of the quantum baker’s map for
N = 512 in the WH basis.
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Figure 3.5: Intensities of second 25 eigenstates of the quantum baker’s map for
N = 512 in the WH basis.
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tion we study it’s Hadamard transform HNφ. Very significant simplifications are

seen in this basis for almost all states. To quantify this “simplification” we cal-

culate the number of principal components in the WH transform by means of the

participation ratio PRH which is

1/
∑

i

|(HNφ)i|4 (3.7)

In Fig. (3.1) we compare this participation ratio with that calculated in the origi-

nal position basis. First 50 eigenstates of the quantum baker’s map in the position

basis are given in Fig. (3.2) and Fig. (3.3). Their WH transforms are shown in

Fig. (3.4) and Fig. (3.5). These states are arranged according to their increasing

participation ratio in the WH basis. What these figures show is the remarkable

compression effected by the Hadamard transform on the quantum baker map’s

complicated eigenfunctions. If these were complex signals to be sent, it will make

great sense to first Hadamard transform them. It is quite surprising that the

Hadamard is effective on this quantum chaotic “signal”. The amount of compres-

sion achieved is precisely the participation ratio.

3.2 The Thue-Morse state and an ansatz

For one remarkable class of states that is present for all N , PRH is the smallest

and of the order of unity, for example when N = 1024, PRH = 1.96 for this

state. In contrast the participation ratio in position basis is about 427. That is a

“compression” by a factor about 220! Of course this is the best case scenario. This

class of states seems to have been identified by the original quantum baker’s Balazs

and Voros [19], as the eigenvalue is very close to −i. What we find is that the WH

transform reveals their simplicity and beauty; also enabling an understanding in

terms of automatic sequences. In Fig. (3.2) are examples of these states, for various

N where we also see their near self-similarity. As N increases the states seem to

limit to a distribution. If the corresponding eigenvalue is eiπθtm, the eigen angle

θtm is shown in the Table 3.1. It is remarkable that the eigen angle seem to limit

to −1/2 in the large N limit, again strongly providing evidence for convergence

of this particular state. We call these set of states, φtm the “Thue-Morse” states,

as the principal peak in the Hadamard transform corresponds to the overlap with

the final column (or row) of HK which (apart from the factor 1/
√

2K) is the K-th

generation of the Thue-Morse sequence.
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K = 5 (N = 32) to K = 12 (N = 4096). The x-axis is the position eigenvalue
n/N in all cases.

Table 3.1: Eigenangles θtm of the Thue-Morse states

N θtm

32 -0.49985902
64 -0.50020232
128 -0.50002208
256 -0.50002275
512 -0.50000467
1024 -0.50000328
2048 -0.50000111
4096 -0.50000057
8192 -0.50000023
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The Thue-Morse sequence

Sequences, especially integer sequences, have a fascinating variety in them. The

interesting ones often have no apparent order, or their design is not obvious. The

Thue-Morse sequence is one that is at the border of order and randomness, as we

will see later. It was first studied by Axel Thue, a Norwegian mathematician, and

one of the originators of the study of formal languages [85]. In 1906 he proved that

there is an infinite sequence over two alphabets that did not contain three adjacent

identical blocks, namely is cube-free. If the alphabet consists of two letters, say A

and B, Thue showed that the sequence ABBABAABBAABABBA · · · is cube-

free. This is the Thue-Morse sequence and can be generated as follows. Start with

A, and proceed by the following substitution rules: A→ AB and B → BA. Thus

the sequence inflates exponentially, 2n being the number at generation n. The

sequence is the infinite sequence corresponding to n = ∞. It is quite clear the

sequence is not square-free, but Thue showed that this is cube-free, by showing

that it has no overlaps. If w is any word containing a finite number of alphabets,

what Thue showed was that nowhere in the sequence does the string wwa occur

where a is the first letter of w, in this case one of A or B. It obviously follows then

that there are no cubes. The corollary that Thue was interested in was that there

exists an infinite word with three alphabets that is it is square-free; there is no

appearance of a ww anywhere, where w is arbitrary string. Despite the complexity

of the sequence, the fact that it is cube-free implies strong short and long range

correlations.

This sequence of Thue was rediscovered by several people including Marston

Morse in 1921 [86]. It also has a predecessor in the work of the French mathemati-

cian Prouhet who in 1851 posed an arithmetic problem whose solution involved

this sequence. Thus the sequence is also called the “Prouhet-Thue-Morse” se-

quence and a very readable account of this is in the paper [87]. The inflation rules

also make the Thue-Morse sequence a Lindenmayer or L-system. Such rules can

be iterated to ”grow” fractals, tilings and plant like objects [88]. The self-similar

character of the sequence is best revealed by the sequence reproducing itself after

striking off every other member. Replace the alphabet A by 0 and B by 1. The

number

0.0110100110010110 · · ·

interpreted as a binary number is called the Thue-Morse constant. This is clearly a

non-normal number, in the sense that not all strings of 0 and 1, with a fixed length,

occur with equal frequency. It has been proven by Dekking to be a transcendental
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number, and is an indirect indication of the complexity of the sequence.

From the point of view of dynamical systems the Thue-Morse constant gener-

ates an interesting orbit under the shift or doubling map: x 7→ 2x (mod 1). This

orbit is clearly not dense on the interval [0, 1) as it is not generated from a normal

number. Yet it does not asymptote to a periodic orbit. It is an example of a

uniformly recurrent by not ultimately periodic orbit. It is recurrent in the sense

that it returns arbitrarily close to any of its orbit positions in a finite time. In

fact Morse discovered the sequence as the symbolic dynamics of geodesic flows

on surfaces of negative curvature that are recurrent without being ultimately pe-

riodic. This sequence indeed occurs in numerous contexts [87], and is marginal

between a quasiperiodic sequence and a chaotic one. The deterministic disorder of

this sequence is relevant to models of quasicrystals [89] and mesoscopic disordered

systems [90], and as we show here quantum chaos. We believe that this is the

first time it has emerged naturally in a quantum mechanical problem, rather than

being assumed. Much more can be said of this fascinating sequence, but we will

leave this for now and get back to its specific relevance to the quantum baker’s

map eigenfunctions.

The finite generations of the infinite Thue-Morse sequence is of interest to us.

We will use as “alphabets” 1,−1. At generation number K let the Thue-Morse

sequence be the set tk, consisting of elements tk(n) where 0 ≤ n ≤ 2k − 1. The

finite generations are constructed as follows: start with t0 = {1} and generate

t1 = {1, −1} by appending t0 to t0, where the overbar is multiplication by −1,

and we continue to iterate the rule tk+1 = {tk, tk}. At stage K we get tK a string

of length 2K , which we also treat as a column vector whose n-th element we denote

as tK(n). The concatenation rule above is then equivalent to the generating rules:

tK(2n) = tK−1(n), tK(2n+ 1) = −tK−1(n). (3.8)

These generating rules will prove to be crucial below.

The Thue-Morse sequence as an approximate eigen vector

We now prove that tK is an approximate eigen vector of the quantum baker’s map.

We note that while the Thue-Morse sequence is a string of 1 and -1 we would like

to treat it as a normalized vector and so while using it as a vector we will normalize

it with the factor of 1/
√

2K = 1/
√
N . However there are times when we will be

sloppy and talk of this normalized vector as the Thue-Morse sequence. It is useful
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to define the following:

ωnm = e2πi(n+1/2)(m+1/2)/N . (3.9)

Note that this includes the phases due to the anti-periodic boundary conditions.

We have from a direct use of the definition of the BVS quantum baker that

(B tK)l =

√
2

N





N/2−1
∑

n=0

ωln

N/2−1
∑

m=0

ω−2
nmtK(m) +

N−1∑

n=N/2

ωln

N−1∑

m=N/2

ω−2
nmtK(m)



 . (3.10)

In the first part of the above equation as m ranges only up to N/2− 1 tK(m) can

be replaced with tK−1(m), as succeeding generations contain the previous. To be

more precise the first half of generation K is identical to the whole of generation

K−1. In the second part also we wish to shift them index to the range [0, N/2−1].

Hence we use that tK(m + N/2) = −tK(m) valid in this range. The second half

of generation K is the negative of what was in generation K − 1. After shifting

the summations in the second part to the first half and using that N is an even

integer we get after some algebra that

(B tK)l =

√
2

N





N/2−1
∑

n=0

ωln

N/2−1
∑

m=0

ω−2
nmtK−1(m) − eiπ(l+1/2)

N/2−1
∑

n=0

ωln

N/2−1
∑

m=0

ω−2
nmtK−1(m)



 .

(3.11)

Collecting terms and writing explicitly

(B tK)l =

√
2

N
(1 − eπi(l+1/2))

N/2−1
∑

m=0

tK−1(m)

N/2−1
∑

n=0

e2πi(n+1/2)(l−2m−1/2)/N . (3.12)

Doing the n sum and simplifying we get

(B tK)l =
2
√

2

N
× i

2

N/2−1
∑

m=0

tK−1(m)

(
1

sin( π
N

(l − 2m− 1/2))

)

. (3.13)

Till this point there has been no approximations, now we start making some

crude, and uncontrolled, approximations that will serve us well. For large N ,

sin( π
N

(l − 2m− 1/2)) ≈
π
N

(l − 2m− 1/2)

(BtK)l ≈

√
2i

π

N/2−1
∑

m=0

tK−1(m)

(l − 2m− 1/2)
(3.14)

The summand sharply peaks at m = l/2, or m = (l − 1)/2 depending on if l is
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even or odd. There are also significant contributions from the values of m that

are neighbors, which we will ignore. Then using only the single term in the sum

above is equivalent to the approximation that 1/(l− 2m− 1/2) = −2 for m = l/2

and zero elsewhere when l is even and 1/(l− 2m− 1/2) = 2 for m = (l− 1)/2 and

zero elsewhere when l is odd. Hence we get

(BtK)2m ≈ −i2
√

2

π
tK−1(m) = −i2

√
2

π
tK(2m)

(BtK)2m+1 ≈ i
2
√

2

π
tK−1(m) = −i2

√
2

π
tK(2m+ 1)

(3.15)

where crucial use is made finally of the generating rules in Eq. (3.8). Thus indeed

(B tK)m ≈ −i(2
√

2/π) tK(m). (3.16)

The eigenvalue we get has a modulus
∣
∣2
√

2/π
∣
∣ ≈ 0.90. We note that the numeri-

cally obtained eigenvalue of the Thue-Morse state is very close to −i and seems to

converge to in the semiclassical limit. That we get about −0.9i for the eigenvalue

using these crude approximations is quite remarkable.

The Fourier transform of the Thue-Morse sequence

The Thue-Morse sequence (of infinite length) has a Fourier spectrum that is know

to be singular continuous and a multifractal. What has been studied in the lit-

erature so far is the usual Fourier transform. We are interested in the quantum

baker’s map to study the generalized Fourier transform (with phases, especially

with α = β = 1/2) and to study it for finite sequences. This will turn out to

provide an alternate and complementary route. In the process we also note a very

interesting difference between the usual Fourier transform and the generalized

transform of the Thue-Morse sequence.

To begin with we prove a very useful product formula. Our aim is to find

GN tK . We use yet another possible definition of the Thue-Morse sequence as the

parity of integers, namely the parity of the number of 1’s in the binary expansion

of n is tK(n). If n =
∑K−1

j=0 2jaj then

tK(n) =
1√
N

(−1)
PK−1

j=0
aj (3.17)
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(GN tK)m =
1

N

N−1∑

n=0

ω−1
mn(−1)

PK−1

j=0
aj

=
1

N
e−πi(m+1/2)/N

1∑

aK−1=0

· · ·
1∑

a0=0

K−1∏

j=0

e−2πi(m+1/2)2jaj/N (−1)aj .

(3.18)

Now we can interchange the product and the sum and do the sums over each bit

as they do not mix. This leads to

(GN tK)m =
e−πi(m+1/2)/N

N

K−1∏

j=0

(

1 − e−2πi(m+1/2)2j/N
)

= (−1)m+1 (i)K+1
K−1∏

j=0

sin[π2j−K(m+
1

2
)].

(3.19)

As similar product formula without the additional 1
2

in the phase due to the anti-

periodic boundary conditions is well known to limit to a multifractal measure as

K → ∞. It is remarkable that such a simple trigonometric product formula has

such an interesting structure. For a recent historical and mathematical review of

products of sines (“duplicating sines”) we refer to [91] where it is noted that while

the duplicating product of cosines has this simple formula:

cos(x) cos(2x) cos(4x) · · · cos(2nx) =
sin(2n+1x)

2n+1 sin(x)
, (3.20)

no such simple formula exists for the product of duplicating sines.

We return to the quantum baker’s map and in particular to the Thue-Morse

state. We have proven that tK is an approximate eigenstate of the map and hence

is likely to be close to the Thue-Morse state |φtm〉. For example we find numerically

that when N = 29, |〈t9|φtm〉|2/N ≈ 0.74. We now prove that due to time-reversal

symmetry GN tK is as good an ansatz as tK .

G−1
N |φtm〉 = −G−1

N RN |φtm = ±G−1
N |φtm〉 (3.21)

where we have used G2
N = −RN and that |φtm〉 is some definite parity state.

〈φtm|GN tK〉 = ±〈φtm|G−1
N |tK〉 = ±〈φ∗

tm|tK〉, (3.22)

follows from time-reversal symmetry as GN |φtm〉 = |φ∗
tm〉. Since |tK〉 is a real

state it follows that the overlaps have the same modulus. Of course this is true for
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Figure 3.7: The intensity |〈qn|φtm〉|2 of the Thue-Morse state in the position
representation. Shown are the states for N = 512 (plus) and N = 256 (circle)
after the latter state was appropriately scaled. Also shown is the estimate φA

tm for
N = 512 case (line). The left inset is the intensity of the WH transform of the
Thue-Morse state for N = 512, while the right inset shows the same on a different
scale.

any eigenstate of the quantum baker’s map and is not special for the Thue-Morse

state.

Also the product formula in Eq. (3.19) maybe used to prove that tK is an

approximate eigenstate using quite different approximations to get the same result.

We need to prove that

G−1
N

(

GN/2 0

0 GN/2

)

tK ≈ λ tK (3.23)
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for some constant λ. This implies that we need to prove that

(

GN/2 tK−1/
√

2

−GN/2 tK−1/
√

2

)

≈ λGN tK (3.24)

where use has been made of the concatenation property of the Thue-Morse se-

quence. The
√

2 factor comes from the different normalization of tK−1and tK . For

m ≤ N/2 − 1 we get using the product formula that

(GN tK)m = i sin

[
π

2K

(

m+
1

2

)]
(
GN/2 tK−1

)

m
. (3.25)

The varying sin factor in the above equation forces us to make an approximation,

which maybe said to be some kind of adiabatic one. The factor sin
[ π

2K

(
m+ 1

2

)]

varies very slowly with m and has no oscillation as m varies from 0 to 2K−1. Thus

we replace this with its average value in this range:

sin

[
π

2K

(

m+
1

2

)]

≈ 2

∫ 1/2

0

sin(πx)dx = 2/π. (3.26)

We can similarly consider m ≥ N/2 and arrive at the same result. The extra

negative sign gets canceled. It then follows from Eq. (3.24) that λ ≈ −iπ/(2
√

2) =

−1.11i. It is interesting that this approximation is in magnitude exactly the inverse

of the one obtained previously.

The ansatz

While tK and its Fourier transform are approximate eigenstates of the quantum

baker’s map, they dot have the full symmetries of the map. Taking into account

these symmetries helps us do much better. It is easy to see that R tK = (−1)KtK ,

and indeed the parity of the Thue-Morse state flips with each power of two. We

note however that GN tK 6= t∗K and therefore tK as such does not have the cor-

rect time-reversal symmetry. To take advantage of time-reversal symmetry we

construct

φ0 = γ tK + γ∗G−1
N tK (3.27)

which satisfies GNφ0 = φ∗
0. It is straightforward to see that G−1

N tK is also an

approximate eigenstate of B. We determine numerically the complex constant

γ such that φ0 best approximates the state φtm. For example if N = 512, γ is

predominantly real and just φ0 = C (t9 + G512t9) is such that |〈φ0|φtm〉|2 ≈ 0.93,
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that is the state φtm is determined to more than 93% by the Thue-Morse sequence

and its Fourier transform. C is a normalization factor and we have used that

G−1
512t9 = G512t9. Thus the deterministic structural disorder of the Thue-Morse

sequence is seen in a quantized model of a classically deterministic and fully chaotic

system.

We note that we can improve upon the simple ansatz φ0 above, by taking into

account the second rung of peaks in the Hadamard transform of φtm, K easily

identifiable peaks (N = 2K), as seen for example in the right inset of Fig. (3.7).

These second rung of peaks also result from the Fourier transform of the Thue-

Morse sequence, but not exclusively. We introduce the notation t
(r)
k for an 2r-fold

repetition of the Thue-Morse sequence of generation k, for example column number

2K−r − 1 of HK is t
(r)
K−r. The improved ansatz for the Thue-Morse state is then

φA
tm = γ0φ0 +

K∑

k=1

(γk + γ∗k G
−1
N )Sk−1 t

(2)
K−2 (3.28)

where S is the shift operator, and we again determine the complex constants γk

numerically such that the ansatz is closest to the state.

Recall that the shift operator S, acts on the position basis as S|qn〉 = |q2n〉 or

|q2n−N+1〉 depending on if n < N/2 or otherwise. We notice that S is “almost” B,

only there is no momentum cut-off, as 〈pm|B|qn〉 =
√

2〈pm|q2n〉 for n and m both

≤ N/2−1. Apart from other issues, discussed in the previous chapter, it does not

respect time-reversal symmetry, in the sense that G−1
N S∗GN 6= S−1. We can find

γk such that |〈φtm|φA
tm〉|2 ≈ 0.998, this is shown in Fig. (3.7). The emergence of

the shift operator is unsurprising as it commutes with the Hadamard transform

HK , and is close to the quantum baker’s map B. The Thue-Morse sequence tK is

an exact eigenstate of S and is hence a stand-alone state.

Multifractality

It is known that the support of the spectral measure of the infinite Thue-Morse

sequence is a multifractal [92], thus it comes as no surprise that φtm has multi-

fractal properties. We can study these either by comparing Thue-Morse states

at different values of K or for a fixed K, by averaging over different sized bins.

We perform a standard multifractal analysis [93] and see typical f(α) singularity

spectrum. One simple diagnostic is the scaling of the inverse participation ratio

(IPR). If φn denotes the position representation of the state φ, the IPR which is
∑N−1

n=0 |φn|4 scales as N−D2 . When D2, the correlation dimension, is such that
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Figure 3.8: The scaling of the IPR in the position basis as a function of N . Shown
as points are the numerical data, while the smooth curves are the best fit straight
lines. The cases are: (a) the Thue-Morse state, (b) a period−2 scarred state, (c)
fixed-point scarred state after projecting out the uniform state, and (d) average
over all the states. The corresponding f(α) spectrums for the case N = 8192 are
shown in the inset.

0 < D2 < 1, the function is a multifractal, between localized states (D2 = 0)

and random states (D2 = 1). This IPR and multifractal analysis is carried out in

the physically relevant position basis. Either of the two procedures gives for the

Thue-Morse state the dimension D2 ≈ 0.86, indicating its multifractal character.

This scaling along with the full f(α) spectrum is shown in Fig. (3.8).

3.3 Other families of states

The Thue-Morse state is by far not the only one influenced by the Thue-Morse

sequence. We now construct a family of strongly scarred states consisting of K

members. The PRH is low for these states also, for example when N = 512

PRH ∼ 15. We identify this as a “family” based on the similarity of their PRH

and the shared position of the K principal peaks in their WH transform. For up

to N = 213 we have verified that this family exists and has K prominent peaks, at

t
(1)
K−1 and all its K − 1 shifts, Sk t

(1)
K−1. Amongst this family, members are strongly

scarred by period−2, period−4 and related homoclinic orbits. All the members of

this family for N = 512 are shown in Fig. (3.9) and their WH transforms are shown
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Figure 3.9: All members of the period-2 family discussed in the text for N = 512.
Shown are the intensities in the position basis. The states in this family are scarred
by the period-2 orbit, period-4 orbits and their homoclinic excursions.

in Fig. (3.10). We call these family of states as period-2 family of states since its

first member of this family is strongly scarred by period−2 orbit of the classical

baker’s map. Taking time-reversal symmetry into account we may then write an

approximate expression for this family of states based on K vectors, similar to

the one above for the Thue-Morse state. For example for N = 512 this procedure

enables us to reproduce the state strongly scarred by the period−2 orbit up to

more than 95% and most of the family to similar accuracy. The existence of such

families may be indicative of systematics of periodic orbit scarring.

This strongly scarred state and its family members also have multifractal prop-

erties, and indeed D2 ≈ 0.8 for the period−2 scarred state (Fig. (3.8)). We have

identified other families, but we now turn to the state that is strongly scarred by

the fixed point (0, 0) and whose WH transform is strongly peaked, indeed corre-

sponding to t
(K)
0 /

√
2K , that is simply the uniform state. This also forms a series,

for different N , whose eigen angles are close to zero. Since the Fourier transform

of the uniform state given above tends to a constant (independent of N) at the

origin (and at 1), we expect the scarred state to be dominated by this “Bragg

peak”. In order to see any multifractal character even in this state we project
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Figure 3.10: The intensities in the Walsh Hadamard basis for the family displayed
in Fig. (3.9)

t
(K)
0 out of its WH transform and analyze the resultant state (after renormalizing)

in the position basis. This shows that the “grass”, even in this strongly scarred

state, is a multifractal with a value of D2 ≈ 0.45, as shown in Fig. (3.8), where

the f(α) spectrum for the fixed point and period−2 scarred states are also shown

conforming to those expected of multifractals. For a gross measure of the multi-

fractality of the entire spectrum, we averaged the IPR (in the position basis) of

all the states and found a scaling with D2 ≈ 0.9, that is shown in Fig. (3.8).

Phase-space representations of the states

Classical structures in quantum states are clearly seen in their phase-space or

coherent state representations [20] which is shown in Fig. (3.11) for the Thue-

Morse states we have discussed above. Note the self-similarity of the four states

shown here, the two different types of intricate structures arise from the alternating

parity of these states. These states are dominated by the period−2 orbit and its

associated homoclinic and heteroclinic structures. Phase-space representations for

the period−2 family of states, scarred by both the period-2 and period-4 orbits

along with orbits homoclinic to them, are given in Fig. (3.12).
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Figure 3.11: The density plots of |〈qp|ψ〉| on the unit phase-space square for the
Thue-Morse state in the cases N = 128, 256, 512, and 1024 (left to right, top to
bottom).

3.4 The Fourier transform of the Hadamard trans-

form

We indicated earlier that the Fourier transform of the Thue-Morse sequence, along

with the sequence itself was an excellent ansatz for a class of eigenstates in the

quantum baker map, which we called the “Thue-Morse states”. We also found that

the Fourier transform of some other columns of the Hadamard transform played

a crucial role in describing other states, as well as for better approximations to

the Thue-Morse state itself. The Fourier transform of the Thue-Morse sequence

[92, 94], or some of the other columns of HN are not simple functions though, they

could be multifractals [93]. Of course the Fourier transform of the first column V0

is just a localized delta peak (which maybe broadened for nonzero phase factors

in the generalized transform); thus we expect that the Fourier transform of the

Hadamard matrix will result in a mixture of functions or measures with a range

of complexity. This is our primary motivation for studying the product GNHN ,

the Fourier transform of the Hadamard transform. We then connect this to some

further eigenstates of the quantum baker’s map.

The matrix elements of GNHN are evaluated economically as a product of K
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Figure 3.12: The density plots of |〈qp|ψ〉| on the unit phase-space square for the
family of states displayed in Fig. (3.9).
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trigonometric terms. Using the matrix representations of GN and HN we get

(GNHN)kn =
1

N

N−1∑

l=0

e−2πi(k+α)(l+α)/N (−1)
PK−1

j=0
bjaj (3.29)

where l =
∑K−1

j=0 2jbj , and n =
∑K−1

j=0 2jaj . Thus performing the independent sums

over the bj , and after some simplifications, we get

(GNHN )kn = e−iπ(k+α)(N−1+2α)/N e−iπ
PK−1

j=0
aj/2 ×

K−1∏

j=0

cos
[ π

N
(k + α)2j +

π

2
aj

]

(3.30)

Thus we are led to the study of the following class of functions which are power

spectra’s of the columns of the Hadamard matrix: |(GNVn)k|2 = |(GNHN)kn|2 ≡
fn(k)

fn(k) =

K−1∏

j=0

cos2
[ π

N
(k + α)2j +

π

2
aj

]

(3.31)

We view these as a function of k for a fixed n = aK−1aK−2 · · ·a0. They satisfy the

normalization, that follows from the unitarity of GNHN ,

N−1∑

k=0

fn(k) = 1 (3.32)

and we will in fact treat fn(k) as a probability measure. We are interested in the

limit N → ∞ (or K → ∞). If there exist sequences of n that lead to limiting

distributions we are especially interested in these. In the following we use the

notation that (s)m is an m-fold repetition of the binary string s. If n is of this

form we also denote fn(k) as f(s)(k). For instance the case when n = N−1 = (1)K

leads to the power spectrum of the Thue-Morse sequence that is well-known to

limit to an multifractal measure [92]. In this case

f(1)(k) =
K−1∏

j=0

sin2
[ π

N
(k + α)2j

]

. (3.33)

This has been particularly studied when α = 0 and found to limit to a multifractal

with a correlation dimension D2 = 0.64 [92].
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3.5 The participation ratio or the correlation di-

mension

To probe the limiting functions, if they exist, for multifractality we test for the

scaling relation

P−1
n =

N−1∑

k=0

f 2
n(k) ∼ N−D2 . (3.34)

The left hand side of this is also interpreted as the inverse participation ratio, its

inverse, Pn, being the effective spread of the power spectrum, an estimate of the

number of “frequencies” (k) that participate in it. If D2=0, the frequencies are

localized (Bragg peaks of crystallography), if D2=1, it is a situation expected of

power spectra’s of random sequences. In the intermediate range are multifractals,

with structures at many scales.

Consider the class of functions that result asK tends to ∞ along even numbers,

and n = (01)K/2. Equivalently n = (N − 1)/3, and the functions are f(01)(k). We

also simultaneously consider the closely related functions f(10)(k). Both these

tend to multifractal measures as K → ∞ with D2 ≈ 0.57. The principal peaks

of f(10)(k) are at 1/5, 4/5, while those of f(01)(k) are at 2/5, 3/5. Taken together

these peaks constitute a period-4 orbit of the doubling map x 7→ 2x (mod1). The

peaks of the Fourier transform of the Thue-Morse sequence, or of f(1)(k) are at

the period-2 orbits of the doubling map, i.e. at 1/3, 2/3. We see these and a few

other such functions in Fig. (3.13). The scaling of the participation ratio of these

measures and the corresponding correlation dimension are shown in Fig. (3.14),

which shows that indeed these measures are multifractals. In the case of strings

of the form (001) for instance, K is taken to be multiples of 3 and so on. One

interesting observation from this figure is that it appears that the more 1 there

are in the string s, the more is the dimension D2, so that the power-spectrum of

the Thue-Morse sequence may have the maximum possible D2 value in this class

of multifractals. Of course the string (0)K is not a multifractal at all, and D2 = 0

in this case.

For a given N , the participation ratio Pn of the Fourier transform for the

various columns n, has a range of values that indicates the localization in the

conjugate basis. We show in Fig. (3.15) the participation ratios for the case

N = 1024 and α = 1/2. We see here the intricate way in which the columns of the

Hadamard matrix are arranged. The largest participation ratio occurs for the last

column of the Hadamard matrix which corresponds to the Thue-Morse sequence.
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Figure 3.13: The fractal measures f(1), (f(01), f(10)), f(1110), (f(001), f(010), f(100)) are
plotted clockwise. K = 10 in the first case and K = 12 in the others, while α = 0
uniformly. We have grouped some functions and shown them in different styles in
the figure.
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Figure 3.15: The participation ratio Pn vs n for N = 1024 and α = 1/2.
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We find a similar behaviour for other values of α, as well as other measures of

localization such as the entropy. We include this parameter as for the application

we have in mind, namely the quantum bakers map, α = 1/2 is pertinent.

We now briefly discuss the sequence whose power spectrum is f(01)(k). Re-

call that the corresponding sequence for f(1)(k) was the Thue-Morse sequence

{1,−1,−1, 1,−1, 1, 1,−1, · · · }. The n-th term of this sequence is tn = (−1)
PK−1

i=0
ai

where again the ai are bits of the binary expansion of n. Similarly the n-th term

of the sequence whose power spectrum is f(01)(k) is

tn = (−1)
P

i=0,2,... ai . (3.35)

The first few terms of this sequence are {1,−1, 1,−1,−1, 1,

− 1, 1, 1,−1, 1,−1,−1, 1,−1, 1,−1, 1,−1, 1, . . .}. To write an concatenation rule

we use the fact that this is formed by repeated outer product of (1,−1, 1,−1)T

and get

S(k + 1) = S(k)S(k)S(k)S(k) (3.36)

Where S(k) is the k-th generation of the sequence, with S(0) = 1, and S(k) is

the complementary set where 1 and −1 are interchanged. While we found similar

rules and sequences elsewhere [95], we did not find this exact one. It also appears

that the inflation rules A→ ABAB, B → BABA produces this sequence.

3.6 Connections to quantum baker’s map

So far we have introduced the measure and discussed some of their mathematical

properties. Here we make explicit their relevance to quantum baker’s map. Above

we have proposed a few ansatz for a variety of eigenstates of quantum baker’s

map based upon the Thue-Morse sequence and its Fourier transform. Recall that

these could sometimes reproduce states to more than 99%. Now we point to other

measures such as f(01) that also play a role in the spectrum of the quantum baker’s

map.

In Fig. (3.16) we see two examples of states of the quantum baker’s map in

the position basis for N = 1024, along with their Hadamard transforms. The

Hadamard transforms are particularly simple, the Thue-Morse state, ψtm, being

the first. We show it here for comparison with another state whose Hadamard

transform has distinct peaks at around N/3 and 2N/3 implying that it is likely

that the measures f(01) and f(10) discussed above are relevant for these states.
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There are usually more than one such state, we show here a particularly “clean”

state, in terms of its Hadamard transform, and for the purpose of this thesis call

it ψ(01).

Indeed we can construct the ansatz

φ = (γ1 + γ∗1G
−1
N )V(N−1)/3 + (γ2 + γ∗2G

−1
N )V2(N−1)/3 (3.37)

where N are powers of 4. This includes both the columns at (N − 1)/3 and

2(N − 1)/3, along with their Fourier transforms. The latter are included due to

the presence of time-reversal symmetry. In fact they dominate the state and is

the motivation for our study. This ansatz has two complex constants γ1 and γ2

which we determine numerically so that its overlap with the actual state ψ(01) is

the maximum. For instance in the case N = 64, we were able to find γ such

that the overlap |〈φ|ψ(01)〉|2 ≈ 0.75. A comparison of the spectral measures for

the Thue-Morse sequence, as well as f(01) and f(10) in Fig. (3.13) with the actual

eigenfunctions in Fig. (3.16) show the similarity between them. Notice that the

actual wave function is more closely related to the Fourier transforms of a linear

combination of the columns of the Hadamard matrix. The peaks of this wave

function can be identified with the period-4 orbit starting from (q = 1/5, p = 4/5),

and has been noted earlier the q part of this corresponds to the peaks in the

measures f(01) and f(10).

We have concentrated on convergent measures as n = (s)m tends to infinity

and s is a bit string repeated m times. We can have other sequences of n that

lead to convergent measures, in particular those whose binary expansions ends in a

string of 1 or 0. In the former case we have already used such measures to describe

a family of states of the bakers map that are scarred by period-2, period-4 and

associated homoclinic orbits. As spectral measures they are different depending

on the finite string that precedes the infinite string of 1; however their correlation

dimension D2 seems to be the same as that of the spectrum of the Thue-Morse

sequence, namely 0.64. As we noted earlier this seems to be consistent with our

view that more the 1, more the dimension D2. If the string ai is itself not periodic,

say when n is tending to infinity such that n/2K tends to an irrational number,

there does not seem to be any convergent measures.
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Figure 3.16: The Thue-Morse state ψtm (top left) and a state called in the text
ψ(01) (bottom left), along with their corresponding Hadamard transforms (right).
In this case N = 1024 and the peaks of the Hadamard transform of ψ(01) occur at
(N − 1)/3 and 2(N − 1)/3.
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CHAPTER 4

A new transform nearly solving the Quantum

baker’s map

4.1 Introduction

We have pointed out in the last chapter that the Walsh-Hadamard (WH) trans-

form (or simply the Hadamard transform) [23] simplified the eigenstates of the

quantum baker’s map considerably, the so-called “Thue-Morse” state being a par-

ticularly good, even spectacular, example of this. Further, it has been shown

that the exactly solvable shift permutation operator, viewed as the quantization

of cyclic shifts, was useful in constructing a relevant basis [77], especially for cases

when N is not a power of 2. We connect these two observations here and ex-

plicitly point out the rationale for the emergence of the Hadamard transform in

the context of the quantum baker’s map, and therefore are able to go beyond by

constructing a transform based on the Hadamard that simplifies the eigenstates

of the quantum baker’s map much more significantly. It is quite likely that the

new unitary transform finds use in broader contexts since it combines the widely

used discrete Fourier transform and the Hadamard transform in a novel manner.

Lakshminarayan studied S, zero-th order operator for the quantum baker’s

map, although there is no classical integrable “zero-th order” system for the baker’s

map [77]. As described in Chapter 2 it was also shown here how one can construct

a quantum baker’s map BS that is very closely allied to the BVS quantum baker

B, using S, thereby explaining this closeness. It may therefore be expected that

the eigenstates of S form a basis in which the eigenstates of the quantum baker’s

map appear simple. Thus we seek to diagonalize the shift operator and use this

as a basis to expand the eigenstates of the quantum baker’s map.

However the spectrum of S is typically highly degenerate, especially when N

is a power of 2, therefore we have multiple choices for the eigenstates. In [77]

the N values studied were such that this lead to the smallest degeneracy possible.

Specifically those N whose order modulo 2 is the largest possible value, N − 2,

have a nondegenerate spectrum save for two states with unit eigenvalues. The case

when N is a power of 2 is however very interesting, as the eigenfunctions are well



simplified in light if the findings described in Chapter 3. Therefore it is natural

that we seek to understand this case from the point of view that uses the shift

operator essentially. To do this we make use of the symmetries of the shift opera-

tor especially the parity and time-reversal to “reduce” the eigenstates. The use of

quantum symmetries is of course natural, and we note that in the case of quan-

tum cat maps [15] the complete use of all quantum symmetries results in exactly

solvable states that are ergodic and these have been called Hecke eigenfunctions

[96].

4.2 Eigenfunctions of the Shift operator

We will denote the position eigenkets |qn〉 simply as |n〉 and use this as a basis

unless otherwise stated. We recall some properties of the shift operator S. By

definition, it acts on the position basis as

S|n〉 =

{

|2n〉 0 ≤ n < N/2

|2n−N + 1〉 N/2 ≤ n ≤ N − 1.
(4.1)

Let n = aK−1aK−2 · · ·a0 be the binary expansion of n, so that

|n〉 = |aK−1〉 ⊗ |aK−2〉 ⊗ · · · |a0〉, (4.2)

where now the “qubit” states |0〉 and |1〉 are orthonormal basis states. In the

standard representation

|0〉 .=
(

1

0

)

, |1〉 .=
(

0

1

)

. (4.3)

Of course the state |0〉 is not to be confused with the state |n = 0〉 which is actually

⊗K |0〉. In the following we will not work with individual qubits states as such for

this confusion to arise.

The action of the shift operator is then transparent:

S|n〉 = |aK−2〉 ⊗ |aK−3〉 · · · |a0〉 ⊗ |aK−1〉. (4.4)

Thus the quantum operator S embodies the left-shift action, by cyclically shifting

the states from one qubit to its left “neighbour”. It however re-injects the most

significant bit at the least significant position, due to periodic boundary conditions,

which ultimately naturally leads to periodicity. It is also helpful to think of S as
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acting on the space {0, 1}K consisting of binary strings of length K, which we

denote generically by σ: S(aK−1aK−2 · · ·a0) = aK−2aK−3 · · ·a0aK−1.

The parity operator R introduced earlier, can be written as a pure K-fold

tensor product on this space, so that it can be thought of as local action on the

individual qubits.

R = ⊗KR, where R =

(

0 1

1 0

)

. (4.5)

Thus the action on individual qubits is that of a flip. When considered as action on

binary strings, R(aK−1aK−2 · · ·a0) = aK−1aK−2 · · ·a0, where 0 = 1 and 1 = 0 are

bit-flips. It is easy to see that S commutes with R. While there are uncountably

many operators that commute with S (any operator of the form ⊗KA, where A
is a 1-qubit operator, will commute with S), R also commutes with the usual

quantum baker’s map B, and is thus an important symmetry for constructing

a basis that is close to that of the eigenfunctions of the quantum baker’s map.

The classical limit of the unitary operator S has been discussed earlier [77] and

summarized in Chapter 2. It can also be thought of as quantizing a multivalued

mapping that is hyperbolic [77], similar interpretations have been proposed for

toy models of open bakers in [27]. However we continue to use it here only in so

far as it enables us to understand the eigenstates of B.

It is particularly simple to diagonalize S in the case when N = 2K . Let d be a

divisor of K (including 1 and K). Let σ = s1s2 · · · sd be a primitive binary string

of length d, representing strings consisting of all its cyclic shifts. For example there

are 12 primitive strings of length 4, consisting of three cycles. We represent these

three cycles with the strings 0001, 0011, and 0111, chosen for convenience, to be

the smallest when the cycle elements are evaluated as numbers. Let σ denote the

string σ repeated K/d times and its value evaluated as a binary representation be

k.

Then one set of eigenstates of S constructed from these cycles are:

|φ̃k
l 〉 =

1√
d

d−1∑

m=0

e−2πilm/d Sm|k〉, 0 ≤ l ≤ d− 1 (4.6)

and the corresponding eigenvalue is e2πil/d [77]. If there are p(d) such primitive

representative strings of length of d, then
∑

d|K d p(d) = 2K , hence using the
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Mobiüs inversion formula,

p(n) =
1

n

∑

k|n

µ
(n

k

)

2k. (4.7)

Here µ(n) is the Mobiüs function [97], µ(n) = 0 if n has a repeated prime in

its prime factorization, otherwise it is (−1)r, where r is the number of primes in

its factorization, and µ(1) = 1. Thus |φ̃k
l 〉 form a complete and orthonormal set.

Clearly there is degeneracy and this set is not unique. There is also freedom in the

choice of the representative string σ, we will choose this to be the smallest integer

when treated as a binary expansion. The eigen vectors arranged in columns of

a matrix constitute an unitary transform which consists of direct sums of p(d)

Discrete Fourier Transforms (DFTs) of dimension d each. It may be written as:

Tf =
⊕

d|K

⊕

p(d)

Fd (4.8)

where Fd is a DFT of dimension d. For example if K = 3, the divisors are only 1

and 3, there are two subspaces of dimension 1 and two of dimension 3 correspond-

ing to the cycles 0, 1, 001, 011. If the basis is arranged in the order 000, 001, 010,

100, 011, 110, 101, 111, we have chosen the first member of the cycle to be the

smallest, the others are got by consecutive left-shifts, Tf = F1

⊕
F3

⊕
F3

⊕
F1.

4.2.1 Simultaneous eigenstates of parity and the shift op-

erator

The vectors |φ̃k
l 〉 are however not eigenstates of parity R. In order to construct

this we find an unitary operator H of the form ⊗KH, so that it commutes with

S, and such that H diagonalizes R. This fixes

H =
1√
2

(

1 1

1 −1

)

, (4.9)

and H as the Walsh-Hadamard transform. It follows that

RH = Ht, t = diag(1,−1,−1, 1, . . .), (4.10)

t is a diagonal matrix whose entries are the Thue-Morse sequence. We recall that

its n-th term is tn = (−1)r, where r =
∑

j aj and aj are the bits in the binary
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expansion of n, and they satisfy the iterative rule:

t2n = tn, t2n+1 = −tn, t0 = 1. (4.11)

Stated otherwise, the columns of the Walsh-Hadamard matrix H have parities

that are arranged according to the Thue-Morse sequence.

Consider the orthonormal complete set |φk
l 〉 = H|φ̃k

l 〉. Since S and H com-

mute, this is clearly an eigenstate of the shift S. That it is also a parity eigenstate

follows from:

R|φk
l 〉 =

1√
d

d−1∑

m=0

e−2πilm/d SmRH|k〉 =
1√
d

d−1∑

m=0

e−2πilm/d SmHt|k〉 = tk|φk
l 〉.

(4.12)

where we have used that R commutes with S and tk is the kth member of the

Thue-Morse sequence. Thus:

S|φk
l 〉 = e2πil/d|φk

l 〉, R|φk
l 〉 = tk|φk

l 〉, (4.13)

We will also presently adapt these eigenstates to “time-reversal”, however before

that we notice that the plain Walsh-Hadamard transform shares some common

rows with 〈φk
l |n〉. For instance when k = 0 (σ = (0)) and when k = N−1 (σ = (1))

the rows 〈φ0
0|n〉 and 〈φN−1

0 |n〉 consisting of all ones, and the row with the Thue-

Morse sequence respectively are common to the Hadamard matrix. Indeed since

the Thue-Morse and closely allied sequence dominate the eigenfunctions of the

quantum baker’s map, the Hadamard transform works well in this context.

To be more explicit about the proposed transform we again illustrate with the

case K = 3. Using the ordering described above, the structure of the transform is

1/
√

23 × 3 ×


















1 1 1 1 1 1 1 1

1 −1 1 1 −1 1 −1 −1

1 1 −1 1 −1 −1 1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 −1 1 −1 −1 −1

1 −1 1 −1 −1 −1 1 1

1 1 −1 −1 −1 1 −1 1

1 −1 −1 −1 1 1 1 −1





































√
3

1 1 1

1 ω ω2

1 ω2 ω

1 1 1

1 ω ω2

1 ω2 ω √
3



















where ω = e2πi/3. The second matrix is what we called Tf , the first is essentially
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the Walsh-Hadamard matrix, but for the rearrangement of the columns according

to cycles. Thus this transform which appears to be new, combines the DFT and

the Hadamard transforms in an interesting way.

4.2.2 Time-reversal adapted states of the shift operator

The time-reversal symmetry of the quantum baker’s map [20] is not the same as

that of the shift S as GNSG
−1
N 6= S−1. Therefore we cannot have the eigenstates

of S to be such that its Fourier transform is identical to its complex conjugate.

However there is an analogous symmetry:

b0Sb0 = S−1, b0 |aK−1aK−2 · · ·a0〉 = |a0a1 · · ·aK−1〉. (4.14)

Here b0 is the bit-reversal operator, it reverses the significance of the bits in a

binary string. Clearly b
2
0 = 1. Its emergence is linked to the fact that the periodic

points of the baker’s map, are such that the position and momentum are bit-

reversals of each other. Its connection to the Fourier transform is made even more

closer in the context of the baker’s map when we note that

B = (G−1
N )0 (1⊗ (GN/2)1) (4.15)

where the additional subscripts on the Fourier transform refer to the number of

most significant bits that are left out while performing the transform, which is

therefore a “partial Fourier transform” as defined by [60]. In particular (GN)0 is

the full transform all the qubits and is therefore of dimensionality N = 2K , while

(GN/2)1 transforms the K − 1 least significant bits and has the dimensionality

N/2 = 2K−1, the first qubit is left unaltered. Analogously it is easy to see by

acting on bit strings that

S = b0 (1⊗ b1) (4.16)

where bk bit reverses the L− k least insignificant bits, for example b0 reverses the

whole string.

The time-reversal symmetry of S then implies that eigenstates |ψ〉 of S may

be chosen such that b0|ψ〉 = |ψ∗〉, where the complex conjugation is done in the

standard position basis. Now the state |φk
l 〉 need not be of this kind, therefore it is

necessary to multiply by suitable phases or take appropriate linear combinations

of them. Towards this end we define two bit strings σ and σ′ shift-equivalent

(σ ∼ σ′) if one is the result of repeatedly applying the cyclic shift operator S

to the other. There are two kinds of binary strings, we label them type-A and
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type-B. If σ is a string of type-A then b0σ ∼ σ, and it is otherwise of type-B. It is

somewhat surprising that the smallest binary string of type-B is of length 6 and

that there are only 2 of them: 110010, 110100, apart from their cyclic shifts. It is

easy to see that if σ is of type-B then Smσ is also of type-B for any integer m.

If σ (value k) is a string of type-A then there exists an integer p such that

Spσ = b0σ. Also we note that b0 commutes with the Hadamard matrix H . Using

these facts, a short calculation shows that if

|ψk
l 〉 = eiπlp/d|φk

l 〉, then b0|ψk
l 〉 = |ψk ∗

l 〉. (4.17)

Thus type-A strings give rise to states that are time-reversal adapted up to mul-

tiplication by a phase. If σ is of type-B, and its bit-reversal b0σ evaluates to k′,

we note that b0|φk
l 〉 = |φk′ ∗

l 〉 and b0|φk′

l 〉 = |φk ∗
l 〉. Therefore we can construct the

linear combinations:

|ψk±
l 〉 =

e−iα±

√
2

(

|φk
l 〉 ± |φk′

l 〉
)

, (4.18)

where α+ = 0 and α− = π/2, which are orthogonal and such that b0|ψk±
l 〉 =

|ψk±∗
l 〉. Thus this way we can construct a transform whose elements are 〈ψj |n〉,

where j labels all the parity and time-reversal adapted states of the shift-operator

S. In practice we order binary strings in the following way: 0, 1, 10, 100, 110, 1000,

1100, 1110, 10000, 10100, . . . , such that if σ and σ′ are two members on the list

then σ or b0σ are not shift-equivalent to σ′. Among the possible representatives we

choose that which is largest when treated as a binary representation of an integer.

Choosing the largest, as opposed to the smallest as in the previous case, gives us an

unique increasing sequence that appears to be new. Given any N = 2K , we choose

from this list strings whose length are divisors of K. These would include strings

of both type-A and type-B, in either case we construct a set of states based on the

algorithm outlined above, finding p by inspection in the case of type-A strings.

In Fig. (4.1) we show ten of these states for the case N = 32, showing the sim-

plest uniform state, the Thue-Morse sequence and eight other states that involve

appropriate combinations of Fourier transforms of the columns of the Hadamard

matrix.
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Figure 4.1: Ten basis states |ψ〉 that are simultaneous eigenfunctions of the shift
operator, parity (bit-flip) and time-reversal (bit-reversal) for the case N = 32.
Shown in the first and third columns are the intensities (|〈n|ψ〉|2) while the second
and fourth columns have the corresponding phases. The first state is the uniform
state, while the last has the Thue-Morse sequence as the components.
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4.3 The eigenstates of the quantum baker’s map

in the new basis

If |Φk〉 is an eigen vector of B then we refer to its representation in the position

basis as basis-0 (〈n|Φk〉), in the Hadamard basis as basis-1 (〈n|H|Φk〉), in the

parity adapted basis of the shift operator as basis-2 (〈φσ
l |Φk〉), in the parity and

time-reversal adapted basis of the shift operator as basis-3 (〈ψj |Φk〉).

In Fig. (4.2) we show 10 most simplified eigenfunctions for N = 29 = 512 using

the new representations. For comparison we show the states in both basis-0 (po-

sition) and in basis-2. We found that for these states basis-3 did not yield further

significant simplifications, we will presently quantify the degree of simplification

across the spectrum. The state that is most simplified continues to be the Thue-

Morse state which we have discussed in the previous chapter. Its transformation

whether using the Hadamard or the new transformations continues to be domi-

nated by the Thue-Morse sequence tk. As we have pointed out earlier this state is

well described by the ansatz tK +GN tK , where tK is the normalized Thue-Morse

sequence of length 2K = N treated as a vector. In other words the Thue-Morse

sequence and its Fourier transform dominates the state.

The structure of the eigenstate is dominated by the Fourier transform of the

Thue-Morse sequence, the peaks being much larger than 1/
√
N . The peaks occur

at the period - 2 orbit of the doubling map at (1/3, 2/3) and at points corre-

sponding to homoclinic orbits of this point. Since the Thue-Morse states form a

sequence for increasing N , and N → ∞ is the classical limit, it maybe expected

that the Thue-Morse state is related to some classical invariant measure of the

classical baker’s map. We now show that this is indeed the case.

Since we are dealing with the position representation of the states, and since the

baker’s map is such that its position coordinate evolves (in the forward direction)

independently of the momentum according to the doubling map (x 7→ 2x (mod 1)),

the invariant density is simply that of this one-dimensional map. If ρ(x) is an

invariant density of this map, we must have that:

ρ(x) =
1

2
ρ
(x

2

)

+
1

2
ρ

(
x+ 1

2

)

. (4.19)

If ρ(x) =
∑∞

k=0 tk exp(2πikx) then it is easy to see, using the recursion relation we

have stated earlier namely t2k = tk, that it satisfies the requirement of an invariant

density. Since the Thue-Morse state is close to the Fourier transform of the Thue-
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Figure 4.2: Ten eigenstates of the quantum baker’s map for N = 512 that are most
simplified on using basis-2 or basis-3. Shown in columns 1 and 3 are the intensities
of the states in the position basis. Columns 2 and 4 show the corresponding
intensities on using basis-2 (along with the “grass” in the insets), this basis having
states that are simultaneous eigenstates of the shift operator and parity. The
Thue-Morse state is the first one.
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Morse sequence, it is suggestive that ρ(x) is relevant to the classical limit of such

states. Thus we believe we have a concrete example of a set of states of a quantum

chaotic system that limits to a classical invariant measure that is not the ergodic

measure, which would be uniform in this case. Instead it is a multifractal measure

that is strongly peaked at period - 2 periodic orbits and all their homoclinic

excursions. This is opposed to known examples where the limit is either ergodic

or have delta-peaks corresponding to classical periodic orbits [18, 98]. While we

have given evidence of this without establishing it rigorously, this is an interesting

deviation from quantum ergodicity that is allowed by Schnirelman’s theorem [25].

It is very likely that many other eigenstates of the quantum baker’s map are also

of this kind, limiting to classical invariant measures that are non-ergodic and are

multifractal. That the eigenfunctions are multifractal we have already indicated

in the previous chapter.

It is pertinent here to connect with the works of Nonennmacher and co-workers,

who have studied the quantum cat maps [18, 98] and the Walsh-quantized baker’s

map [99], which is an exactly solvable toy model of the bakers map. Among other

things they have found two types of states in the Walsh-quantized bakers map, the

first which they call “half-scarred” has in the semiclassical limit part of its measure

on classical periodic orbits and part is equidistributed in the Lebesgue measure.

Such states have also been constructed by them for the quantum cat maps [18, 98].

The tensor-product states found for the Walsh-quantized bakers map [99] have

semiclassical measures that are singular Bernoulli measures and were constructed

as tensor products of states of the underlying “qubit” space (when N is a power

of 2 as in this thesis, but have been generalized to other powers). The Thue-

Morse states of the quantum bakers map (“Weyl” quantized) under discussion

seem to be closer to the tensor-product states than the ”half-scarred” ones. For

one, there is strong evidence that the measure is multifractal in the semiclassical

limit, and also the scarring can be unambiguosly associated with short period

periodic-orbits and homoclinic ones. Moreover the Thue-Morse state is ”close”

to the simple tensor product ⊗K(|0〉 − |1〉)/
√

2 for N = 2K , which indeed is the

finite Thue-Morse sequence. This can be measured in terms of the modulus of the

inner-product and while this does decrease with N , it does so slowly. Numerical

calculations not shown here indicate a decay of N−0.1. Note that typical inner-

products with random states will scale as N−0.5. A more accurate representation

of the Thue-Morse state as a superposition of the above product and its Fourier

transform is such that their inner product decays even more slowly to zero (as

N−0.08). We must however say that the resolution of the semiclassical measure of

the Thue-Morse state and in general other states of the quantum bakers map into
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Figure 4.3: The participation ratio of the eigenstates of the baker’s map in the
position basis (basis-0), the Walsh-Hadamard basis (basis-1), the basis that is
parity reduced eigenstates of S (basis-2), and in the basis that is also time-reversal
symmetry adapted (basis-3). The states are arranged in the increasing order of the
PR in basis-3. This is for the case N = 512, and the lower figure is a magnification
of details for the first hundred states.

singular-continuous, pure-point and continuous components is not yet clear.

To quantify the extent to which the eigen vectors |Φk〉 of B are simplified we

evaluate the participation ratios (PR). Recall that when a complete orthonormal

basis {|αi〉, i = 0, . . . , N − 1} is used the PR is defined as

(
N−1∑

i=0

|〈αi|Φk〉|4
)−1

, (4.20)

and the PR is an estimate of the number of |α〉 basis states needed to construct

the vector |Φk〉, here chosen to be one of the eigenstates of B. We calculate the

PR in (1) the position basis (basis-0, |α〉 = |n〉), (2) the Hadamard basis (basis-1,

|α〉 = H|n〉), (3) the basis that consists of parity reduced eigenstates of S (basis-2,

|α〉 = |φk
l 〉), and (4) the basis that has both parity and time-reversal symmetry

reduced eigenstates of S (basis-3, |α〉 = |ψj〉).

From Fig. (4.3) we indeed see that the eigenstates of S, properly symme-
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try reduced simplify the eigenstates of the quantum baker’s map B significantly.

This does considerably better than the previously used Walsh-Hadamard trans-

form. The difference is only however marginal for the Thue-Morse state, as the

last column of the Walsh-Hadamard transform, the Thue-Morse sequence of finite

generation, is anyway a parity and time-reversal symmetric eigenstate of the shift

operator S. We see from the figure that for N = 512, there are about hundred

states that can be constructed from ten or fewer eigenstates of the shift operator as

we have constructed them above. We also notice that while there is considerable

difference between using the basis-2 and the Hadamard basis (basis-1), there is not

that much simplification due to the use of basis-3 over basis-2. This is understand-

able as parity symmetry (R) is the same for both S and B, while the time-reversal

symmetries are different. In Fig. (4.4) we have given the magnitude of the B in

WH basis and basis-2 for N = 64. In the position representation the magnitude

of B has structure similar to that of the doubling map (x 7→ 2x (mod 1)). In

the WH basis the baker operator has a similar structure, indicating that this is

still far from diagonal. However in basis-2, we can see a block diagonal form for

the matrix element which implies that the basis-2 almost diagonalizes the baker

operator.

Due to the simplicity and efficacy of basis-2, we will discuss this further. We

first point out that the dual or momentum basis GN |φk
l 〉 is exactly as effective

as the original basis for studying the eigenfunctions of the baker’s map, due to

time-reversal symmetry. To prove this notice that

GN |φk
l 〉 = −G−1

N R |φk
l 〉 = −tkG−1

N |φk
l 〉 (4.21)

where we have used G2
N = −R (for example see Saraceno in [20]), and Eq. (4.13).

Using time-reversal of the eigenstates of B (GN |Φ〉 = |Φ∗〉) implies that

〈Φ|G−1
N |φk

l 〉 =

(
∑

n

〈Φ|n〉〈n|φk
l 〉∗
)∗

= 〈Φ|φk
l′〉∗ (4.22)

where l′ = d− l unless l = 0, in which case l′ = 0 as well. Hence finally

〈Φ|GN |φk
l 〉 = −tk〈Φ|φk

l′〉∗. (4.23)

Thus while the overlaps of the eigenstates of the quantum baker’s map in a basis

which is the the Fourier transform of the basis-2 are not the same as originally,

they are upto a sign, complex conjugates of overlaps with some other basis states

with a different value of l in general. Clearly this leads to identical participation
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Figure 4.4: Magnitude of the matrix elements of B (|〈n′|HBH|n〉|) in WH basis
and basis-2 (|〈φk′

l′ |B|φk
l 〉|) for N = 64(top to bottom).

ratios. Thus the Fourier transform of basis-2 is also of interest, indeed as we

have already indicated, many of the eigenstates of the baker’s map look like them,

the foremost being the Thue-Morse state where the momentum representation of

|φ(N−1)
0 〉 is of relevance. Thus we have a natural way of generalizing this class of

functions. We do not pursue this further here, but note that the other Fourier

transforms are also of relevance to the spectrum of the quantum baker’s map, and

they also have multifractal characters. A few related functions have been studied
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by us as the “Fourier transform of the Hadamard transform” and presented in the

previous chapter. It is also reasonable to expect that a combination of basis-2 and

its Fourier transform maybe even closer to the actual eigenstates of the quantum

baker’s map than even basis-2. For instance in the case of the Thue-Morse state,

such a combination does better than either the Thue-Morse sequence or its Fourier

transform taken individually as shown in the previous chapter.

To summarize, in this chapter we have constructed eigenfunctions of the shift

operator that have additional symmetries of bit-flip or parity and bit-reversal or

time-reversal. Using these we have seen why the Walsh-Hadamard transform sim-

plifies states of the quantum baker’s map, as well as shown that these transforms

are capable of doing significantly better. The use of these transforms in other

contexts, other than the quantum baker’s map, is possible. It combines elements

of both the Fourier and the Hadamard transforms in an interesting way. Using

these transforms helps us study the eigenfunctions of the baker’s map in a more

detailed manner, and further work on this is warranted. Operators akin to the

shift operator have been used as toy models of open quantum bakers to study

fractal Weyl laws [27]. It is also interesting that the same cocktail of the shift

operator, the Fourier transform and the Hadamard transform appears essentially

in Shor’s quantum algorithm for factoring, a fact also previously pointed out in

[77]. A very recent work makes a significant contribution by constructing suitable

basis sets for N that are not powers of 2 [26].
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CHAPTER 5

Application of the transforms to other quantum

baker’s maps

In this chapter we discuss the applications of transforms using basis-1 (Walsh

Hadamard, or WH, basis) and the transform we developed in the previous chapter

and called “basis-2” on the eigenfunctions of a few generalized quantum baker’s

maps. These generalizations are selected to include first a closed map that still

has dimensions of powers of 2, and stable and unstable manifolds parallel to the

canonically conjugate directions, namely the quantization of a tetradic baker’s

map. Secondly we will still have two partitions but choose a map whose stable

and unstable manifolds are not uniformly parallel to only one of the conjugate

directions, and has in it the geometric action of rotation in addition to hyperbol-

icity, although the map remains fully chaotic. This is one of the so-called lazy

baker’s map [100]. Finally we study quite a different kind of system, one which

is an open quantum map. The classical limit of this corresponds to a dissipative

system, with a fractal hyperbolic repeller.

The nature of this chapter is exploratory and largely numerical and we limit its

scope to mainly studying how effective the Hadamard and basis-2 transforms are

in contexts other than the standard dyadic quantum baker’s map. In particular,

we do this by calculating the participation ratios (PR) of the eigenfunctions of the

generalized quantum baker’s maps mentioned above in the position basis (basis-

0) and comparing it with the participation ratios calculated in the basis−1 and

basis−2. We only touch upon some details of the nature of the eigenfunctions.

5.1 A closed tetradic baker

Generalized closed, area-preserving, baker’s maps with many vertical rectangu-

lar partitions of different sizes undergoing pure stretch in the horizontal and

compression in the vertical directions to horizontal rectangular partitions con-

stitute Bernoulli systems, fully chaotic deterministic systems. Balazs and Voros

[19] showed how the methodology of quantizing the standard dyadic baker’s map

can be carried over to these cases practically by visual inspection. In fact actions



other than stretching can also be accommodated easily. For instance if there are

rotations of some rectangles then this can also be quantized. We will discuss this

case further below. Here we consider the simplest generalization that still has

Hilbert space dimensions that are powers of 2, as the transforms we are interested

in are defined only in these cases. Note that this rules out the triadic bakers with

three partitions. The next simplest is the “tetradic baker”.

p

1 1

00 1/4 1/2 3/4 1 1

1/4

1/2

3/4

q

0 0

p
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Before After

Figure 5.1: Pictorial representation of classical tetradic baker’s map.

The classical tetradic baker’s map we study is defined as follows

Ttetradic(q, p) =







(
4q,

p

4

)
if 0 ≤ q < 1/4

(
4q − 1,

p+ 1

4

)
if 1/4 ≤ q < 1/2

(
4q − 2,

p+ 2

4

)
if 1/2 ≤ q < 3/4

(
4q − 3,

p+ 3

4

)
if 3/4 ≤ q < 1

(5.1)

The phasespace of the tetradic baker’s map is an unit square and it is a trans-

formation of the unit square onto itself. Unlike the usual baker’s map now the

unit square is divided into four partitions and they are stretched along the posi-

tion direction by a factor of 4 and compressed along the momentum direction by

a factor of 4 in compensation and portions exceeding the unit square is cut and

brought back to the unit square. The action of the map is given in Fig. (5.1). It

clearly has uniform hyperbolicity and its (positive) Lyapunov exponent is log(4).

Thus this map has twice as much chaos as the dyadic baker’s map. We note that

there is a close connection between the standard baker’s map iterated two times
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and this tetradic baker’s map, however they are different. We will say more on

this presently.

Its quantization with anti periodic boundary conditions is given by[19]

Btetradic = G−1
N









GN/4 0 0 0

0 GN/4 0 0

0 0 GN/4 0

0 0 0 GN/4









(5.2)

The quantum map exists for all values of N which are divisible by 4 by con-

struction. We consider the case N = 2K with K taking values from 4 to 11.

In Fig. (5.2) we show participation ratios in the position basis, WH basis and

basis-2 for the values of N mentioned above for the eigenstates of the quan-

tum map Btetradic. The states are arranged according to increasing participa-

tion ratio in the basis-2. From the figure we can clearly see that whenever N

is 22K (K = 2, 3, 4 and 5, left column) , basis-2 simplifies almost all the eigen-

states significantly. When N is 22K+1 (K = 2, 3, 4 and 5, right column) basis−2

simplifies the eigenstates marginally well in comparison to WH basis.

Again we pay attention to the states that are most compressed by the WH

or basis-2 transforms. We could identify special class of eigenstates for Btetradic

whenever N is 22K+1, that is an odd power of 2. There are two family of eigen-

states, one which has convergence towards the eigenvalue −i and other one which

has convergence towards the eigenvalue −1. We identified these two family of

states by calculating the ratio between PR in position basis and WH basis. These

convergent states are the ones which are maximally compressed in the WH basis,

and hence have the largest values of such a ratio. In Fig. (5.3) and Fig. (5.4) we

show these family of states for various values of N .

The family which has convergence towards eigenvalue −i has the principal peak

in the WH basis at (2N −1)/3. This column of the Hadamard transform does not

correspond to the Thue-Morse sequence. The sequence is found by noting that in

base 2 the number (2N − 1)/3 is

(
2N − 1

3

)

2

= 1010 · · ·10
︸ ︷︷ ︸

2K

1 (5.3)
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which then implies that the sequence is

K⊗









1

1

−1

−1









⊗
(

1

−1

)

. (5.4)

This sequence is quite different from the Thue-Morse sequence. We expect the

eigenfunction to again be well approximated by the sequence along with its Fourier

transform. Such sequences were also studied in chapter 3 where the Fourier trans-

form of the Hadamard transform is discussed.

The family which has convergence towards eigenvalue −1 (See Fig. (5.4)) has

principal peak in the WH basis at N − 1. This implies that these states are

dominated by the Thue-Morse sequence, as in the Thue-Morse states of the usual

baker’s map. In fact though this state looks different from the Thue-Morse state

they are quite akin to each other. This is reasonable as the tetradic baker we are
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Figure 5.3: A family of eigenstates of the Btetradic which converges to the eigen-
value −i. Intensities in the position basis are given in the left column along with
their eigenangle, PR and the Hilbert space dimension N , their corresponding WH
transform are given in the right column along with their PR and N .

considering if sightly rearranged is another tetradic baker whose quantization is

a semiquantum baker’s map [19, 57, 101], which is the quantization of the dyadic

baker map after two time steps. This corresponds to interchanging the partitions

2 and 3 in the Fig. (5.1) after the baking. In fact the eigenvalue is very close to the

square of the eigenvalue of the usual Thue-Morse state, recall that the eigenvalue

there was −i while here it is −1.

We note a curious fact that we found for many baker’s maps, that N = 128

is somewhat anomalous. For instance for the tetradic quantum baker’ map under

current discussion, the eigenstate with eigenvalue close to −1 shows deviation from

other members of the family in terms of the PR in the WH basis (which is of the

order of 6 while for other members of the family it is of the order of 2 or 3) as well

as in terms of the nature of the intensities in the position basis.
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Figure 5.4: A family of eigenstates of the Btetradic which converges to the eigenvalue
−1. Intensities in the position basis are given in the left column along with their
eigen angle, PR and the Hilbert space dimension N , their corresponding WH
transform are given in the right column along with their PR and N .

5.2 A lazy baker

Now we turn to a closed baker’s map which involves stretching as well as rotation

about the center of the square. Several families of these have been studied under

the epithet “lazy” baker’s map as they were to be the simplest models of mixed

system, systems with both regular and chaotic orbits[100]. Actually they can

range from maps with a cantor set of chaotic orbits of measure zero to fully

chaotic maps through mixed phase spaces. The example which we consider is a

fully chaotic system called the SR map[100]. For this map baking of the square

in the left vertical rectangle is same as that of the usual classical baker’s map

with stretching and compression by a factor of 2 along position and momentum

direction respectively. This is the map from L to B in Fig. (5.5). The action on

the right half (R to T ) is a rotation with respect to the center of the square by

ninety degrees, as in Fig. (5.5). This map does not possess parity symmetry. The
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evolution of the map is defined as follows

TL(q, p) =







(
2q,

p

2

)
if 0 ≤ q < 1/2

(
1 − p, q

)
if 1/2 ≤ q < 1

(5.5)

B

TL R

q

1

1/2

1

00 0
q

1/2 1 10

pp

Before After

Figure 5.5: Pictorial representation of lazy baker’s map.

Some classical properties of this map are that it is an ergodic and mixing

system on the whole unit square. The positive Lyapunov exponent is log(2)/2,

half that of the usual baker’s map (hence lazy). The dynamics has been shown to

be one of a subshift on three symbols. The Markov partitions are the left vertical

rectangle and the bottom and top halves of the right vertical rectangle [102]. The

topological entropy is about log(1.46), which is slightly larger than the Lyapunov

exponent as the map is non-uniformly hyperbolic. Note that for the usual baker’s

map these numbers all coincide with log(2). In terms of symmetries, while it

possesses time reversal symmetry, it does not have parity symmetry.

Its quantization is given by

BL = G−1
N

(

GN/2 0

0 IN/2

)

(5.6)

This follows as rotation by 90◦ in the mixed p − q representation is the identity

matrix.

The quantum map exist for all even values of integer N . In Fig. (5.6) we show
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Figure 5.6: Participation Ratio vs. State Number for BL for various values of
N . The values of N are given as legends. Participation ratios in the position
basis, WH basis and basis-2 are given by the curves in black, red and blue color
respectively. The states are arranged in increasing order of PR in the basis-2.

participation ratios in the position basis, WH basis and basis-2 for the values of

N mentioned above for the eigenstates of the quantum map BL. From the figure

we can clearly see that the basis-2 simplifies almost all the eigenstates. Unlike

the quantum version of the tetradic baker’s map where the basis-2 is marginal

in comparison to the WH basis in simplifying the eigenstates, here it does much

better than that of the WH basis, as in the case of the usual dyadic baker’s map.

Like the usual baker’s map which has a remarkable family of eigenstates (the

Thue-Morse state) which has eigenvalue convergence towards −i whenever N is

power of two, for the SR lazy baker’s map also we could find a similar family which

has convergence to the eigenvalue −i. However they are occurring only when N is

power of 4 and even among them there are two families based on whether the power

of 4 is an even or odd integer. We have verified these for the values of N equal

to 16, 64, 256 and 1024. Since the classical map does not possess parity symmetry

these family of eigenstates does not have parity symmetry in comparison to that

of the usual quantum baker’s map. In Fig. (5.7) and Fig. (5.8) we show these
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family of states for N which is 4 power an even integer or odd integer respectively.

We identified these states based on their maximal compression in the WH basis,

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0 4 8 12 16
0

0.08

0.16

0.24

0.32

0 0.2 0.4 0.6 0.8 1
0

0.009

0.018

0.027

0.036

0 64 128 192 256
0

0.07

0.14

0.21

0.28

N = 16

N = 256

N = 16

N = 256

θ/π = −0.50656750

θ/π =  −0.500030026 

PR = 9.39

PR = 88.38 PR = 22.87

PR = 5.34

Figure 5.7: Intensities of eigenstates of BL with eigenvalue close to −i for N = 16
and 256. Intensities in the position basis is given in the left column along with
their eigenangle, PR and the Hilbert space dimension N while their corresponding
WH transform is given in the right column along with their PR and N .

by means of calculating the ratio between PR in position and WH basis. When N

is an even power of 4 (N = 2K , with K being multiples of 4) the principal peak in

the WH basis occurs at (N − 4)/2, apart from another major but smaller peak at

N − 1. In contrast the Thue-Morse state in the usual quantum baker’s map has

only one major peak which is at N − 1.

The peak at (N − 4)/2 corresponds to the following sequence. As

(
N − 4

2

)

2

= 011 · · ·1
︸ ︷︷ ︸

K−2

0, (5.7)

the sequence is

(

1

1

)
K−2⊗

(

1

−1

)
⊗

(

1

1

)

=

(

tK−2

tK−2

)
⊗

(

1

1

)

. (5.8)

Thus the sequence is the twofold repetition of padded Thue-Morse sequences of

length 2K−2. The padding duplicates every 1 and −1. This is similar to but not
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Figure 5.8: Intensities of eigenstates of BL with eigenvalue close to −i for N = 64
and 1024. Intensities in the position basis is given in the left column while their
corresponding WH transform is given in the right column along with their PR and
N .

identical with the secondary peaks of the Thue-Morse state.

However when N is 4 power an odd integer the principal peak in the WH basis

occurs at N−1, corresponding to the Thue-Morse sequence, and indeed the states

resemble very much the Thue-Morse states except for the symmetry, which must

be broken due to contributions from the secondary peaks, with conflicting parities.

5.3 An open tetradic baker

We turn now to a quite a different kind of system, where the quantum map is

non-unitary. This corresponds to classical open systems. Phase space points

“escape” or are annihilated. In any case the remaining phase space trajectories

are of successively smaller measure and model scattering or dissipative systems

with shrinking phase-space volume. In the presence of chaos it is well known that

usually the limiting attractor or underlying repeller, depending in whether the

system is dissipative or scattering is a fractal. The models we consider are more like

scattering systems where trajectories escape to infinity except for a strange set of

measure zero. For example a three-disk scatterer is such a system[103, 104]. Thus
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the quantum systems have “resonances” in place of eigenstats and the eigenvalues

which are inside the unit circle are related to the lifetime of these resonances.

The first study of such quantum systems, to our knowledge, was by Valle-

jos and Saraceno [105] when they studied a quantization of the Smale horseshoe

map[13] using a simple modification of the baker’s map quantization of Balazs and

Voros. They have been extensively used in the recent past, especially to study the

conjecture about fractal Weyl law stemming from the works of Sjostrand[106] and

Zworski[107]. Recall that Weyl’s law semiclassically associates each bound quan-

tum state with a phase space volume of (2π~)d where d is the number of degrees

of freedom of the system. Thus if H is the classical Hamiltonian, the number of

levels between E1 and E2 is semiclassically

N(E1, E2) =
vol(E1 ≤ H ≤ E2)

(2π~)d
. (5.9)

For an open, scattering system the trajectories at energy E escape except possibly

a set of measure zero, the fractal repeller KE . The fractal Weyl law states that the

scaling of the the density of resonances with Planck’s constant is determined not

by the actual number of degrees of freedom, but by the fractal dimension D(KE)

of KE . To be more precise, if the resonances are E− iγ, then the number of these

with E1 < E < E2 and 0 < γ < ~ scales as ~
−(D(KE)+1)/2. Note that if the system

limits to a closed one, D(KE) = 2d−1, the dimension of the energy shell and this

reduces to the usual Weyl law. The fractal Weyl law has been extensively studied,

for example there is evidence of it in a scattering system with a potential consisting

of three Gaussians[108, 109]. The study of this law will require a knowledge of the

quantum resonances as well as the classical invariant set. Naturally simple models

such as open baker’s maps are then attractive models for this, and there has been

studies on this, for example [27, 110, 111, 112, 113]

We restrict ourselves to a somewhat superficial and cursory look at what the

Hadamard and basis-2 transform do to the resonances of an open tetradic quan-

tum baker’s map. Recall that the nature of structures of open chaotic systems in

phase-space is characterized by the forward and backward trapped sets, namely

the trajectories which are trapped on the fractal sets in the far future and the

distant past respectively, and their intersection is the classical repeller. In the

present study we consider an open version of the tetradic baker map we studied

first in this chapter. This is obtained by removing second and third vertical strips

of the baker’s map with 4 partitions Ttetradic. In Fig. (5.9) we give a pictorial rep-

resentation of the map, the horizontal middle two partitions are removed after the
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Figure 5.9: Open tetradic baker’s map with second and third vertical stripes being
removed.

iteration, the trajectories have scattered to never reappear again. The forward

trapped set for this map is given by C1/2 × [0, 1) and backward trapped set is

[0, 1) × C1/2 [27]. Where C1/2 denotes the cantor set obtained by iteratively re-

moving the central half of each line segment, just as the standard one-third Cantor

set is obtained by removing the middle-thirds. The fractal dimension of C1/2 is

log(2)/ log(4) = 1/2. The Lyapunov exponent on the trapped set is log(4). We

study this rather than the often used open triadic baker’s map as we wish still to

deal with spaces that have dimensions that are powers of 2.

The evolution equations are given as follows

T̃tetradic(q, p) =







(
4q,

p

4

)
if 0 ≤ q < 1/4

(
4q − 3,

p + 3

4

)
if 3/4 ≤ q < 1

(5.10)

Its quantization is given by

B̃tetradic = G−1
N









GN/4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 GN/4









(5.11)

The open quantum system is obtained by setting the second and third block of the

diagonal matrix of Btetradic, corresponding to the two openings equal to zero. The
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quantum system is now non- unitary, the left and right eigenstates are neither

equal nor orthogonal. The eigenvalues λi are complex with modulus less than

or equal to one. |λi|2 = e−Γi ≤ 1, Γi is the decay rate. There are ‘short-lived’

and ‘long-lived’ eigenstates which are differentiated in terms of decay rates. The

long-lived eigenstates are concentrated on the classical repeller in the semiclassical

limit[110].

There are N/2 exact null eigenvalues and the corresponding eigenstates are

position eigenstates belonging to the interval [1/4, 3/4). Being of a trivial nature

these are ignored. The kinematics of the open tetradic baker’s map is such that

position representation of the right eigenstates is same as that of the momentum

representation of the left eigenstates. The long-lived right eigenstates are charac-

terized by the backward trapped set and long-lived left eigenstates are character-

ized by the forward trapped set for the open baker’s map[110]. Thus momentum

representation of the long-lived right eigenstates and position representation of

the left eigenstates has support on the Cantor set C1/2 in the semiclassical regime.
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Figure 5.10: Participation Ratio vs. State Number for B̃tetradic for various values
of N . Participation ratios in the position basis, WH basis and basis-2 are given
by the curves in black, red and blue color respectively. The states are arranged in
increasing order of PR in the basis-2.
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We consider the position representation of the right eigenstates of the open

tetradic baker’s map in order to see whether it simplifies after the Hadamard

as well as the new transform developed in the previous chapter. The plot of

participation ratio versus state number is given in Fig. (5.10). From Fig.(5.10),

we can see that the Hadamard transform simplifies almost all the right eigenstates

of B̃tetradic. Surprisingly the plain Hadamard transform does better than the basis-

2, which incidentally was comparable or marginally better off than the Hadamard

transform for the closed tetradic baker map, see Fig. (5.2). It is not clear to us

presently why this must be so. We now turn to see the structure of the most

compressed resonances.

In Fig. (5.11) we show first eight right eigenstates (or resonances) in the posi-

tion representation which are arranged according to the ratio of the participation

ratios between the position basis and basis-2 in descending order. This ratio is a

measure of the efficiency of the transforms to compress the states.
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Figure 5.11: Intensities in the position basis for eight right eigenstates, which
are arranged according to descending order of ratio between PR in position basis
(PRq) and basis-2 (PR2). The modulus of eigenvalue (|λ|) and PRq, PRH (PR
in WH basis) and PR2 are given as legends.

We see the optimally compressed states are pretty long-lived, and the new

transforms can compress by factors ranging from about 80 to 15 in this range.

101



Thus it is very interesting that these transforms continue to do quite a good job

even for these open quantum maps and resonances. However these open baker’s

maps offer us an interesting possibility that was not present for the maps studied

hitherto in this thesis. This is the fact that the momentum and position represen-

tations are essentially different. This means that the much used Fourier transform

is now going to produce something very different. Thus in Fig. (5.12) we show

their intensities in the momentum basis. For the usual quantum baker’s map(B)

because of the time-reversal property position and momentum representation of

the eigenstates are just complex conjugates thus participation ratios in momentum

and position are same. But for the open baker’s map the momentum representa-

tion of the right eigenstates are not same as that of the position representation of

the right eigenstates and they are supported (semiclassically) on a cantor set.
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Figure 5.12: Intensities in the momentum basis for the right eigenstates shown in
Fig. (5.11)

Thus one would expect that participation ratios of the right eigenstates in

their momentum representation to be small in comparison to that of the position

basis. In Fig. (5.13) we show the participation ratio of the right eigenstates in
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Figure 5.13: Participation Ratio vs. State Number for B̃tetradic for N = 1024. The
states are arranged in increasing order of PR in momentum basis.

momentum basis, WH basis and basis-2 for the right eigenstates of B̃tetradic for

N = 1024. From the figure we see clearly that the participation ratio of the right

eigenstates is compressed most in the momentum basis in comparison to that of

WH basis and basis-2 except for few exceptions. What is interesting is that the

Hadamard transform does comparably well with the momentum representation.

This begs the question of if there is a physical interpretation of the Hadamard

transform which we have so extensively used here.

In this chapter we have studied the applicability of the new transform (basis-2)

which we discussed in the last chapter as a transformation for simplifying the eigen-

states or resonances of generalized quantum baker’s map both open and closed.

We have done this by means of calculating PR for the eigenstates of the general-

ized quantum baker’s maps in position basis, WH basis and basis-2. In the process

we found several special family of states based on their maximal compression in

WH basis or basis-2, with which we could associate sequences akin to the Thue-

Morse one. More work on these states has to be done, and it is possible that the

transforms will shed further light on especially the structure of resonances in open

systems.
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CHAPTER 6

Hypersensitivity to perturbation

The usual markers of classical chaos, such as the Lyapunov exponent, Komogorov-

Sinai or topological entropy etc., are not of use in quantum chaos, as the very

arena of phase-space does not exist. Therefore the independent characterization of

quantum chaos is one of the important challenges present. Many systems do not

have obvious classical limits, such as spin systems, but can have spectral properties

that are those of RMT [114]. Thus from a statistical point of view they are

quantum chaotic. Hypersensitivity [115] is an interesting attempt at characterizing

quantum chaos, using concepts from information theory. In this chapter, which is

again exploratory and numerical in nature, hypersensitivity to perturbations for

the operators related to quantum baker’s map and Shor’s factoring algorithm has

been studied. These are precisely the main players in this thesis so far, namely the

Fourier and Hadamard transforms, the combined Fourier of Hadamard transform

and the shift operator. We have already noted in chapter 2 that the close link

between the shift operator and the baker’s map, implies a close link between Shor’s

algorithm and the quantum baker’s map, as the shift operator is a special case of

the modular exponentiation operator.

The physics of information plays an important role in current times with the

very active developments in quantum information and computation [84]. The

roots of this are to be found in the Maxwell’s demon [116] and its resolution by

Szilard [117] and Bennett [118] using notions of information stored in the demon’s

mind. This in turn has made use of the Landauer principle which states that for

every bit of information that is erased the entropy of the universe increases at

least by kB log(2) [119] (with an equal decrease in the system entropy that can be

converted to useful work), where kB is Boltzmann’s constant. Hypersensitivity to

perturbations implies that this erasure cost is much higher than the consequent

reduction in the system entropy. Schack and Caves found using several model

systems, including the baker’s map and the lazy baker’s map that quantum chaotic

systems qualified as being hypersensitive. As the notions of entropy play a crucial

role in classical chaos, this approach is very interesting.



6.1 Description of the algorithm

We will first describe the algorithmic definitions of hypersensitivity as developed by

Schack and Caves. Given an unitary operator U , whose hypersensitivity we are go-

ing to find, the procedure is as follows. An initial state |ψ0〉 is at Un|ψ0〉 after time

n in the absence of perturbation. We assume that after each time step one of the

two possible perturbations (Π̂ and Π̂−1, both unitary operators close to identity),

occurs randomly with equal probability. Then at time n there are N = 2n possible

perturbation histories, which are vectors of the set
{
|ψ1〉, |ψ2〉, · · · |ψN〉

}
. In the

absence of any information about the perturbation, these perturbation histories

are assigned equal apriori probability and the state at time n is the mixture:

ρ̂s =
1

N

N∑

i=1

|ψi〉〈ψi|. (6.1)

The entropy of this mixture is ∆Hs = −Tr(ρ̂s log2 ρ̂s). Now we try to reduce

this entropy by gaining information about the perturbation sequence. We do this

by grouping the vectors
{
|ψi〉

}
according to their distance from each other defined

in terms of the Hilbert space angle

φ = cos−1(|〈ψi|ψj〉|) , [0 ≤ φ ≤ π/2]. (6.2)

We bin the interval [0, π/2] into intervals of width ∆φ. Each interval hasNr vectors

and there are

[
π

2∆φ

]

such groups , r = 1, 2, · · ·
[

π

2∆φ

]

. ∆φ is a measure of how

finely we resolve the state and hence get information about the environment’s

perturbation. The conditional entropy of the rth group is ∆Hr = −Tr(ρ̂r log2 ρ̂r)

where

ρ̂r =
1

Nr

Nr∑

i=1

|ψr
i 〉〈ψr

i | (6.3)

and the average conditional entropy is

∆H =
∑

r

(
Nr

N

)

∆Hr =
∑

r

pr∆Hr , pr =
Nr

N
. (6.4)

The entropy reduction due to the process of grouping is ∆Hs − ∆H . This

is accomplished by gaining information about the perturbation histories. This is

equal to ∆I = −∑r pr log2 pr. In the extreme case ∆φ = π/2, minimum resolution

case, Nr = N and pr = 1,∆I = 0, ∆H = ∆Hs. When ∆φ = 0, the perturbing

environment is known exactly and pr = 1/N,∆I = log2N and ∆H = 0, the state
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is one of the possible 2N pure states (whose Von-Neumann entropy is zero). Schack

ad Caves [115] then defined hypersensitivity to be the condition
∆I

∆Hs − ∆H
≫ 1,

which is to be interpreted as the information required for a reduction in the entropy

is much greater than the change in entropy itself. By determining the entropy ∆H

and the information ∆I as functions of the resolution angle φ, a detailed picture

of how the vectors are distributed in the Hilbert space emerges. The distribution

g(φ) of Hilbert space angles φ between all pairs of vectors is calculated as an

additional criterion.

6.2 Hypersensitivity study for the operators GN ,

HN and GNHN

We now subject the Fourier transform GN , the Hadamard transform HN , and

their product GNHN to the test of hypersensitivity. In fact an earlier study of

Braun [28] involved hypersensitivity calculations for Grover’s algorithm and for

the Fourier transform. He concluded that the Fourier transform had signatures

of integrable dynamics, which indeed is to be expected as it can be treated as a

ninety degree rotation in the classical limit. To our knowledge this has not been

done for HN which is so crucially applied in all of quantum computation. The

classical limit of HN is far from clear, if such a limit indeed exists. Its square is

the identity, yet its effect of coherent states (treating HN as a unitary quantum

map) is quite disruptive. This can well be imagined as the “zero” state |00 · · ·0〉
is mapped to an equal superposition of all states. In fact our study will show

that where HN can be replaced by the Fourier FN this will be more robust to

perturbations.

Coming to the particulars of the calculation, to investigate if a quantum system

shows hypersensitivity to perturbations or not, we first compute a list of vectors

corresponding to different perturbation histories. Then, for about 50 values of the

angle φ ranging from 0 to π/2 we group the vectors in the nearly optimal way as

described in the introduction. For each grouping and thus for each chosen angle

φ, we compute the information ∆I(φ) and ∆H(φ). We also compute the angles

between all pairs of vectors in the list and plot them as a histogram approximating

the distribution function g(φ). As a preliminary step we used the perturbation

operator used by Schack and Caves [115] and reproduced the results obtained

by them for the quantum baker’s map. We have taken the initial state to be

a coherent state centred at the origin. We made use of the same perturbation
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Figure 6.1: Plot of g(φ) vs. φ, ∆I(φ),∆H(φ) vs. φ and ∆I(φ) vs. ∆H(φ) for the
quantum baker’s map with an initial coherent state |ψ0〉 = |1/2D, 1/2D〉. D = 16,
α = 0.005, all 214 vectors after 14 steps.(top) D = 256, α = 0.005, all 213 vectors
after 13 steps.(bottom)

operator and initial state to investigate the hypersensitivity to perturbation for

the operators GN , HN and GNHN . The perturbation operator(Π) in the position

basis is given by

Πkj =







δkje
2πijα if 0 ≤ j < D/2

δkje
2πi(D−j−1)α if D/2 ≤ j < D

(6.5)

Here, α ≥ 0 is the magnitude of the momentum shift (Dα is the magnitude of

momentum shift in units of the separation between momentum eigenstates). We

restrict ourselves to Hilbert spaces with an even dimension D. A perturbed time

step consists of first applying the unperturbed time-evolution operator T , followed

either by the perturbation operator Π or by its inverse Π−1 both representing a

momentum shift, chosen randomly. After n perturbed time steps, the number of

different perturbation histories equals to 2n, all occurring with equal probability.

By comparing Fig. (6.1) with Figs. (6.2, 6.3, 6.4) we can make the following

observations. In the case of the quantum baker’s map and GNHN the distri-

bution function g(φ) has no stharp peaks, except for the bunching around π/2

indicating a random distribution of vectors [115], where typical vectors are nearly

orthogonal.The ∆I(φ) vs. ∆H(φ) curve has a steep slope near ∆HS, a signature
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Figure 6.2: Plot of g(φ) vs.φ (first row), ∆I(φ), ∆H(φ) vs. φ (second row) for
the Fourier transform with an initial coherent state |ψ0〉 = |1/2D, 1/2D〉. ∆I(φ)
vs. ∆H(φ) is plotted in the inset (second row). α = 0.005, all 212 vectors after 12
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Figure 6.3: Same as Fig. (6.2) but for the Hadamard transform. D = 16, 64 and
256 left to right, all 212 vectors after 12 steps.
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Figure 6.4: Same as Fig. (6.2) but for the Fourier transform of the Hadamard
transform. D = 16, 64 and 256 from left to right, all 212 vectors after 12 steps.

of hypersensitivity to perturbation. The hypersensitivity of the quantum baker’s

map is well known. The hypersensitivity of the GNHN is consistent with the ob-

servation that its spectrum has RMT fluctuations[80]. This operator was studied

by Maity and Lakshminarayan as it is part of a symmetry decomposition of the

Shor algorithm unitary operator (before the measurement step). They concluded

that its spectral statistics was close to that the CUE (or GUE). Just as there is

no known classical limit of HN there is no classical limit known for GNHN .

For the Fourier transform which represents ninety degree rotation in the phase

space, the g(φ) distribution has many pronounced peaks indicated a propensity

of vectors to bunch rather than explore available Hilbert space freely. Also ∆HS

is always less than 1 irrespective of the Hilbert space dimension D. We do not

see any smooth relationship between ∆I(φ) and ∆H(φ). We conclude that it is

not hypersensitive to perturbation and believe this is consistent with the previous

study [28] and the fact that its classical limit is integrable.

In the case of the Hadmard transform,HN , we do not see hypersensitivity to

perturbation for D = 16, 64 from both the g(φ) distribution as well as ∆I(φ) vs.

∆H(φ) plots. But for D = 256, the g(φ) distribution has a peak that is tending to

π/2, but the width of the distribution is broad in comparison to that of quantum

baker’s map. The ∆I(φ) vs. ∆H(φ) curve shows a steep slope near ∆HS, a

signature of hypersensitivity. Thus we conclude that the Hadamard transform is

more sensitive than the Fourier to perturbations, but is not as sensitive as chaotic

maps such as the quantum baker’s map.

109



6.3 Hypersensitivity of the shift operator

In Shor’s factoring algorithm [78], given an integer M , we try to find another

integer p between 1 and M that divides M . The algorithm consists of two parts.

A reduction of the factoring problem to the problem of order-finding, which can be

done on a classical computer, and a quantum algorithm to solve the order-finding

problem. The crucial ingredient in the order-finding part of the algorithm is the

modular exponentiation operator which is defined as follows

Ux|k〉 = |xk mod M〉 for 0 ≤ k ≤M − 1 (6.6)

Ux|k〉 = |k〉 otherwise

Here M is the integer we wish to factor and x is an integer that is co-prime to it.

If we take x = 2 and M to be an odd integer, we are guaranteed that an integer

r exists such that 2r = 1 mod M , where r is the order we are seeking. Note that

when M = 2K − 1 it is the full-shift operator S for which the order is equal to K,

where K is an integer.

The unitary part of Shor’s factoring algorithm when desymmetrized in terms

of the eigenstates of S is known have signatures of quantum chaos and the desym-

metrized operators are relevant to the usual quantum baker’s map [80]. In order

to study hypersensitivity of U2 (since x = 2), which is what we studied earlier

as the shift operator, we use binary perturbations of the form ΠG = GNΠG−1
N

and Π−1
G = GNΠ−1G−1

N which models a shift in the position basis. We use this

particular operator since U2 shifts the position basis states. The shift operator

treats position states specially as it permutes them. Therefore perturbations that

are diagonal in the position basis are bound to be special. Thus to restore some

semblance of a generic perturbation we chose to study the momentum space rep-

resentation of the original perturbation used in the previous section.

The initial state is taken as |ψ0〉 = |1〉 which is relevant to the Shor’s factoring

algorithm. For a given D we take different values of M and compare the results

with that of the full-shift operator for which M = 2K − 1. We do this since it

is known that BK,K (extreme member of the Schack-Caves quantization of the

baker’s map which we mentioned in chapter 2) which is closely related to the shift

operator is not hypersensitive [120]. In Fig (6.5) for D = 16 we have given the

g(φ) distribution, information (∆I(φ)), and entropy (∆H(φ)) plots for M = 11, 13

and 15, whose orders are 10, 12 and 4 respectively. From the g(φ) distribution we

can see that the case with M = 15 has more pronounced peaks in comparison to
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Figure 6.5: Plot of g(φ) vs.φ (first row), ∆I(φ), ∆H(φ) vs. φ (second row) for the
shift operator (U2) with an initial state |ψ0〉 = |1〉. ∆I(φ) vs. ∆H(φ) is plotted
in the inset (second row). α = 0.005, all 212 vectors after 12 steps. D = 16 and
M = 11, 13 and 15 from left to right.

other values of M . We could not see much difference from the ∆I(φ) vs. ∆H(φ)

in terms of a steep slope near ∆HS.

In Fig (6.6) for D = 64 we have given the g(φ) distribution, information

(∆I(φ)), and entropy (∆H(φ)) plots for M = 55, 59 and 63, whose orders are

20, 58 and 6 respectively. From the g(φ) distribution we can see that the case

with M = 63 is broader in comparison to other values of M and we could see

a smooth relationship from ∆I(φ) vs. ∆H(φ) for M = 55 and 59. In Fig (6.7)

for D = 256 we have given similar plots for M = 227, 239 and 255, whose orders

are 226, 119 and 8 respectively. From g(φ) distribution we could not differentiate

the hypersensitivity of U2 with respect to the full-shift operator. However the

∆I(φ) and ∆H(φ) plot we could not see a steep slope near ∆HS for M = 255 in

comparison to other values of M . Thus we could differentiate the hypersensitivity

of U2 in comparison to the full-shift operator which has an order of value K.

However we could not find much difference between U2 with different orders.

111



0 0.4 0.8 1.2 1.6
0

1

2

3
g

(φ
)

0 0.4 0.8 1.2 1.6
0

1

2

3

0 0.4 0.8 1.2 1.6
0

0.8

1.6

2.4

0 0.5 1 1.5 2
0

5

10

15

20
∆Η(φ)
∆Ι(φ)

0 0.5 1 1.5 2
0

5

10

15

20
∆Η(φ)
∆Ι(φ)

0 0.5 1 1.5 2
0

5

10

15

20
∆Η(φ)
∆Ι(φ)

0 1 2 3 4
0

5

10

0 1 2 3 4
0

5

10

0 1 2 3 4
0

5

10

Hilbert-space angle  φ

Figure 6.6: Same as Fig. (6.5), for D = 64 and M = 55, 59 and 63 from left to
right.
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Figure 6.7: Same as Fig. (6.5), for D = 256 and M = 227, 239 and 255 from left
to right.
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Figure 6.8: Time evolution of a coherent state placed at |q0, p0〉 = |1/3, 2/3〉 for
the shift operator, S with perturbation ΠG for the case of N = 256.

In Fig. (6.8) we have given the time evolution of a coherent state for the shift

operator with the perturbation ΠG up to 12 times for N = 256. The sequence

of the binary perturbations are chosen randomly namely ΠG or Π−1
G . For the full

shift operator without the perturbation the coherent state will recur after 8 time

steps which is the order of the shift operator (see Fig. (2.2)) . When we compare

the two cases we can see that up to 4 time steps the influence of the perturbation

is small, however the differences between start to build up subsequently and there

no recurrence to the initial coherent state after 8 time steps, for the case with the

perturbation. Thus the full- shift operator shows sensitivity to perturbation for

large time steps. In Fig. (6.9) and Fig. (6.10) we have given time evolution of a
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Figure 6.9: Time evolution of a coherent state placed at |q0, p0〉 = |1/3, 2/3〉 for
the Fourier transform, GN with perturbation Π for the case of N = 256.

coherent state for the Fourier transform and Hadamard transform operator with

the perturbation Π up to 8 times for N = 256. Here also we have chosen the

case with a random sequence but with binary perturbations Π or Π−1. We have

used Π instead of ΠG since we used the perturbation Π for the hypersensitivity

calculations for GN and HN . From the figure we can clearly see that the Fourier

transform does not show any sensitivity to perturbation and it comes back to the

initial coherent state after 4 times which is consistent with the property of the

Fourier transform which qauntizes a 90◦ rotation. However for the Hadamard

transform which has the property H2
N = I does not show full revival except for all

even times where they recur not exactly as a single wave packet but with extra

copies of them which are also produced in the process of evolution. These figures

are given to give a more concrete idea of the effect of the perturbations on the

various operators.
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Figure 6.10: Same as Fig. (6.9) but for the Hadamard transform, HN .

In conclusion in this chapter we have studied the hypersensitivity of various op-

erators relevant to the usual quantum baker’s map and Shor’s factoring algorithm.

The Fourier transform operator is not hypersensitive to perturbation. But Fourier

transform of the Hadamard transform (GNHN ) is hypersensitive to perturbation.

The Hadamard transform and the full-shift operator shows intermediate level of

sensitivity to perturbation. While the modular exponentiation operator U2 seems

to show hypersensitivity to perturbation.
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CHAPTER 7

Conclusions

This thesis has primarily been on the quantum baker’s map. The quantum baker’s

map has been extensively studied and used since its first appearance around 1989.

As the arguably simplest model of quantum chaos it deserves to be better un-

derstood than what we currently do, especially in terms of an analytical under-

standing of its spectrum. The simple structure of the quantum baker’s map in

terms of finite or discrete Fourier transform makes it plausible that we maybe

able to do so. The connection to the Fourier transform also makes possible an

implementation using qubits and algorithms for the quantum Fourier transform.

Indeed an experimental realization of the quantum baker has relied on this [44].

The qubit implementation naturally requires a Hilbert space that is a power of

2. For this case, we find that the eigenfunctions are almost exactly solvable and

we have shown in this thesis that there are analytically explicit bases that almost

diagonalize the quantum baker’s map.

One of the significant results of this thesis maybe summarized by saying that

the analytical structure of quantum chaotic eigenfunctions, of the baker’s map,

are made of sequences. Thus rather than any simple algorithmic procedure that

constructs ordinary functions, these functions are built from sequences that have

simple algorithmic generating rules, but which nevertheless produce rather random

looking sequences. The sequence dominating the proceedings was the Thue-Morse

sequence, first studied in the context of Languages by Thue [85] and later by

Morse in the context of geodesic flows on surfaces of negative curvature [86]. A

very large literature exists on the Thue-Morse sequence [87], which is known to

be “automatic”, but we believe that this thesis represents the first time it has

appeared naturally in a physics related model. We showed that this sequence is

an approximate eigenstate of the quantum baker’s map.

This sequence and other related ones were uncovered in the work presented

in this thesis for the first time with the use of the Hadamard transform. This

transform that is used only second to the Fourier transform, especially in signal

processing, works almost “magically” for the quantum baker’s map. Taking states

that are spread all over in the position space, it transforms them to very sharp

peaks. We have quantified the simplification using the well-known measure of



participation ratio (PR) which measures how many states of a basis is used in the

construction of a state. We found many states with a PR of around N/2 = 2K−1

in the position basis have a PR of the order of K after the Hadamard transform.

Thus in some sense the Hadamard transform compresses many states of the baker’s

map exponentially. The best example of this, and for every K, is a loner we called

the “Thue-Morse” state as it was by far dominated by the Thue-Morse sequence.

The Fourier transform of the Thue-Morse sequence has been much studied and

is a well-known example of a multifractal measure[92]. This thesis showed that

due to the time-reversal invariance of the quantum baker’s map, the Fourier trans-

form was equally important, and hence we showed that the Thue-Morse state was

practically reconstructable using only the Thue-Morse sequence and its Fourier

transform. This state which looks quite complicated in the position (or momen-

tum) representation was shown to have multifractal properties, however the ex-

ponents are quite different from those of the Fourier transform of the Thue-Morse

sequence. In fact we went on and showed that apart from the Thue-Morse state

there were other families that were similarly simplified and also that there are

generalizations of the Thue-Morse sequences that are important.

The Fourier transform of the Hadamard transform turns out to be an important

mathematical construct and we have studied for the first time in this thesis the

multifractal measures that arise out of this and their relevance to the baker’s map

has been pointed out. It is worth noting that all of these eigenstates have very

prominent scars, but primarily only due to period 2, period 4, the fixed point and

their associated homoclinic orbits. It is very interesting that scarred states are

constructed out of sequences such as the Thue-Morse and especially out of their

Fourier transform. It is possible that some general feature of scarring may then

be revealed in such simple mathematical objects.

A natural question that arose was why the Hadamard transform was special

for the quantum baker’s map. Significant work in this direction has been done by

Ermann and Saraceno [26] who constructed operators such that their perturbations

yield the quantum baker’s map. We had taken a somewhat similar route and

reasoned that the shift operator which is very close to the quantum baker’s map

ought to play an important role. The virtue of the shift operator is that it can

be exactly analytically solved for all values of N . In fact we have presented

in Chapter 2 the shift operator and used it to construct the quantum baker’s

map. The spectrum of the shift operator for N a power of 2 is however highly

degenerate, and we used the two symmetries of the quantum baker’s map to reduce

the ambiguity in the choice of the eigenstates. These symmetries were the parity
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and the time-reversal. Thus symmetry adapted eigenstates of the shift operator

were used to construct a novel unitary transform, as detailed in Chapter 4. This

we called as “basis-2” and showed that this does even better than the Hadamard

transform in simplifying the eigenfunctions of the quantum baker’s map. This

also revealed why the Hadamard transform worked as the new transform is in

fact a very interesting marriage between the standard Fourier and Hadamard

transforms. We speculate that this new transform may have wider uses, including

in signal processing.

Having studied the usual dyadic quantum baker’s map we turned our attention

to seeing how effective such methods are for other cases. The case of N = 3K

was studied by us and a straightforward generalization of the binary Thue-Morse

sequence to the triadic context was done and found to be somewhat successful.

However we have not pursued this fully here and have not presented the results

in this thesis. The results we do present continue to use the power of 2 theme,

and the Hadamard and the new transform. Thus it was natural for us to skip the

triadic and move on to the tetradic maps with 4 partitions. We found that these

transforms continued to give “uniform satisfaction” and indeed did reduce the PR

for most states considerably. We found states that are similar to the Thue-Morse

state and other families as well, including other sequences. Somewhat surprisingly

we found that even for a lazy baker map the transforms do remarkably well. This

is surprising as the partitions of the lazy baker’s map cut the phase space into

unequal vertical and horizontal rectangles, are non-uniformly hyperbolic, does not

possess parity symmetry, and instead of being a simple shift, is a subshift on

three symbols[100]. Despite these the transforms do well, and we have uncovered

actually two families of states that are akin to the Thue-Morse state. In a very

different application we also studied an open baker’s map, opening up the tetradic

baker’s map we have studied earlier. It shows that even the resonances of these

maps are considerably simplified by the Hadamard transforms. All these are

presented in Chapter 5, which as we have noted earlier is of an exploratory nature

and we expect to use this for more in-depth studies of the systems mentioned.

In Chapter 6 we have taken up quite a different question. The thesis actually

makes use of many operators that are somehow akin to the quantum baker’ s map.

These have been uncovered over a period of time, and the quantization family of

Shack and Caves [60] has an important role to play in this, by way of introduction

of partial Fourier transforms and partial shifts. In fact we believe that we have

a classical interpretation of these varied quantizations in terms of a very peculiar

symmetry of the classical baker’s map. This is outlined in Chapter 2. In that
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same chapter we had introduced the operator soup that we encounter in this

thesis. Somewhat strangely perhaps it is the same set of operators that appear

in Shor’s famous factoring quantum algorithm. The close connections between

Shor’s operator and quantum chaos has indeed been studied [80, 62]. In Chapter

6 we have tried to test for hypersensitivity of these operators. Hypersensitivity

which had been introduced by Schack and Caves [115] as an autonomous method of

determining if a system has quantum chaos relies on information theoretic notions.

In fact they had shown earlier that the quantum baker’s map is hypersensitive.

An earlier work had also shown that the Fourier transform was not hypersensitive

and most likely Grover’s search algorithm was not.[28]

Considering the close connections between the quantum baker’s map and Shor’s

algorithm, it was natural to ask if the operators that go into this are hypersensitive.

The crucial operators are the Hadamard transform, and the modular exponenti-

ation operator. The latter operator is a generalization of the shift operator we

have studied in this thesis, for example in Chapter 4. We note that perturbations

may occur in may forms, as single qubit ones, or as multi-qubit ones and it is

desirable that there is no special relation between the operator whose sensitivity

we are testing and the perturbation itself. With this in mind we have chosen our

perturbation schemes in Chapter 6. We find, consistent with earlier work that the

Fourier transform is not hypersensitive. We find somewhat surprisingly that the

Hadamard transform has “intermediate” level of sensitivity. This measure remains

somewhat subjective and while we can say that the Hadamard is qualitatively dif-

ferent from the Fourier it is still not as sensitive as the baker’s map. Thus it would

seem desirable to replace Hadamard transforms by Fourier transforms, especially

when there is a chance of the qubits having residual interactions. For instance in

the case of Shor’s factoring algorithm, while it is standard to use the Hadamard

transform [84] it is possible to replace this with the Fourier. Even more interesting

is the crucial modular exponentiation part which we study as the shift operator.

If we have to order these we would place this between the Hadamard and the

baker’s map, more towards the bakers’ map, and hence quite hypersensitive. All

this indicates that Shor’s algorithm may indeed have a very nontrivial level of

hypersensitivity. Shor’s algorithm has long been studied for effects of decoherence

[121], and more recently for unitary perturbations [63]. We believe that our results

add to the understanding of these studies.

Future directions include a more detailed understanding of the eigenstates.

We believe that this thesis has opened a few possibilities especially for model

systems that are based on the baker’s map. As exceptional states, that violate
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quantum ergodicity, they are primarily scarred by various classical orbits and

are also multifractal. More detailed analytical work that perhaps classifies how

families arise maybe possible. The application to open quantum systems, such

as the open tetradic baker’s map in understanding long-lived resonances is still

mostly open. We have begun their study in this thesis, and merely skimmed the

surface. There is a more broader and difficult question of whether we can find

transforms that are as effective as the Hadamard was to maps other than the

baker’s map, such as for example the standard map. Finally it may of interest to

see the properties of the new transform found in this thesis and explore possible

applications.
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