Some important probability distributions.

(1) The normal (Gaussian) distribution:

\[p(x) = \frac{1}{(2\pi \sigma^2)^{\frac{1}{2}}} \exp\left(-\frac{(x-\lambda)^2}{2\sigma^2}\right) \]

The characteristic or the moment generating function is:

\[p(k) = \int_{-\infty}^{\infty} dx \ e^{ikx} p(x) = \int_{-\infty}^{\infty} dx \ e^{\frac{1}{2}(2\pi \sigma^2)^{\frac{1}{2}}} \ e^{-\frac{(x-\lambda)^2}{2\sigma^2}} \]

\[= \frac{1}{(2\pi \sigma^2)^{\frac{1}{2}}} \int_{-\infty}^{\infty} dx \ e^{-\frac{1}{2}(x-\lambda+\frac{ik\sigma^2}{2})^2 - \frac{\lambda^2}{2\sigma^2} + \frac{(\lambda-ik\sigma^2)^2}{2\sigma^2}} \]

\[= \frac{1}{(2\pi \sigma^2)^{\frac{1}{2}}} \int_{-\infty}^{\infty} dx \ e^{-\frac{1}{2}ik\lambda - \frac{k^2\sigma^2}{2}} (2\pi \sigma^2)^{\frac{1}{2}}, \text{ using } \int_{-\infty}^{\infty} e^{-\frac{ax^2}{2}} \sqrt{\pi} \]

\[= e^{-\frac{1}{2}ik\lambda - \frac{k^2\sigma^2}{2}} \]
The cumulant generating function is
\[\ln p(k) = -i k \lambda - \frac{k^2 \sigma^2}{2}. \]

1st Cumulant: \(\langle x \rangle_c = \left. \frac{\partial}{\partial (-i k)} \ln p(k) \right|_{k=0} = \lambda \)

2nd Cumulant: \(\langle x^2 \rangle_c = \left. \frac{\partial^2}{\partial (-i k)^2} \ln p(k) \right|_{k=0} = \sigma^2 \)

All higher cumulants are zero \(\langle x^n \rangle_c = 0, \text{ if } n > 2 \)

"Thus the normal distribution is completely specified by its two first cumulants." In fact, it is the only distribution in nature to have only the first two cumulants.

Moments of the normal distribution are thus easily calculated:
\[\langle x \rangle = \lambda \]
\[\langle x^2 \rangle = \sigma^2 + \lambda^2 \]
\[\langle x^3 \rangle = 3 \sigma^2 \lambda + \lambda^3 \]
The normal distribution is one of the most important distributions in physics. The vanishing of all higher order cumulants beyond the order 3 implies that all graphical computations of moments require only the products of one point and two point propagators.

(2) Binomial distributions: Consider a random variable with two possible outcomes (say Head or Tail) A and B. The respective probabilities are \(p_A \) & \(p_B \) with the requirement: \(p_A + p_B = 1 \). Now, the probability that in \(N \) trials, the event A will occur exactly \(N_A \) times is

\[
P_N(N_A) = \binom{N}{N_A} p_A^{N_A} p_B^{N-NA}
\]

No. of possible orderings of event A

Next, we look at the characteristic function of this distribution.
\[p_N(k) = \langle e^{-ikN_A} \rangle = \sum_{N_A=0}^{N} \frac{N!}{(N-N_A)!N_A!} \left(p_A^N p_B^{N-N_A} e^{-ikN_A} \right) \]

\[= (p_A e^{-ik} + p_B)^N \]

Recalling the binomial expansion

\[(x+y)^N = \sum_{n=0}^{N} \binom{N}{n} x^n y^{N-n} \]

The cumulant generating function is thus given as,

\[\ln p_N(k) = N \ln (p_A e^{-ik} + p_B) = N \ln p_1(k) \]

\[\therefore p_N(k) = p_A e^{-ik} + p_B \]

Since \(\ln p_1(k) \) is the cumulant generating function for a single trial, above relation tells us that the cumulants after \(N \) trials are simply \(N \) times the cumulants after the first trial.

Also, in a single trial \(\langle N_A^k \rangle = \frac{\partial^k}{\partial(-ik)^k} p_1(k) \bigg|_{k=0} = p_A^k \).
The first two cumulants after \(N \) trials are:

\[
\begin{align*}
\langle N^2 \rangle_c &= \langle N^2 \rangle = N p_A \\
\langle N^2 \rangle_c &= \langle N^2 \rangle - \langle N^2 \rangle = N p_A p_B
\end{align*}
\]

Proof:

\[
\begin{align*}
\langle N^2 \rangle_c &= \frac{\partial^2}{\partial (-ik)^2} \ln p_i(k) \bigg|_{k=0} \\
&= N \left[\frac{1}{p_i(k)} \frac{\partial p_i(k)}{\partial (-ik)} \right]^2 + \frac{1}{p_i(k)} \frac{\partial^2 p_i(k)}{\partial (-ik)^2} \bigg|_{k=0} \\
&= N \left[-k_{\text{m}}^2 + \frac{1}{k_{\text{m}}} \right] \\
&= N p_A p_B \\
\therefore \quad p_A + p_B &= 1
\end{align*}
\]

The binomial distribution is straightforwardly generalized to multinomial distribution, when the several outcomes \{A, B, \ldots, M\} occur with probabilities \{p_A, p_B, \ldots, p_M\}. The probability of finding outcomes \{N_A, N_B, \ldots, N_M\} in a total of \(N_A + N_B + \ldots + N_M = N \) trials is

\[
\begin{align*}
\phi_N(N_A, N_B, \ldots, N_M) &= \frac{N!}{N_A! N_B! \ldots N_M!} p_A^{N_A} p_B^{N_B} \ldots p_M^{N_M}
\end{align*}
\]
Poisson Distribution: A classic example of a Poisson process is radioactive β-decay. Observing the decay process of a radioactive material over a time interval T shows that:

(a) Probability of one and only one event (decay) in the time interval \([t, t+dt]\) is proportional to \(dt\) as \(dt \to 0\)

(b) Probabilities of events at different intervals are independent of each other.

\[
\lim_{\Delta t \to 0} \frac{e^{-\lambda t} (\lambda t)^n}{n!} = \frac{e^{-\lambda} \lambda^n}{n!}
\]

The probability of having \(M\) events in the time interval \(T\) is given by a Poisson distribution.

- Divide entire interval \(T\) into \(N\) parts such that \(dt = T/N\), \(N \gg 1\)
- Probability of having an event in \(dt\) is \(p = \alpha dt\)
- Probability of having no event in \(dt\) is \(q = 1 - p = 1 - \alpha dt\)
as the probability to have more than one event in
dt is too small to consider, the process is equivalent
to a binomial one. Thus, the characteristic function
is,

$$
\phi(k) = \left(pe^{-ik} + q \right)^n = \lim_{dt \to 0} \left(\alpha dt e^{-ik} + (1-\alpha dt) \right)^{T/dt} \\
= \left(1 + \alpha dt (e^{-ik} - 1) \right)^{T/dt} \\
\Rightarrow \quad \phi = \alpha dt \\
q = 1 - \phi = 1 - \alpha dt
$$

Using the result that for large n and small x

$$(1+x)^n \approx e^{nx},$$

we write

$$
\phi(k) = e^{\alpha T (e^{ik} - 1)}
$$

To obtain Poisson PDF, we need to take the
inverse transform of $\phi(k)$

$$
\therefore \quad \hat{f}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{ikx \alpha_T (e^{ik} - 1)}{e^{ikx}} e^{ikx} \, dk \\
= \frac{1}{2\pi} \cdot e^{-\alpha T} \int_{-\infty}^{\infty} \frac{ikx \alpha_T}{e^{ikx}} \, dk
$$
\[p(x) = \frac{e^{-\alpha T}}{2\pi} \int_{-\infty}^{+\infty} dk \ e^{ikx} \sum_{M=0}^{\infty} \frac{(\alpha T e^{-i k})^M}{M!} \]

\[= \frac{e^{-\alpha T}}{2\pi} \sum_{M=0}^{\infty} \frac{(\alpha T)^M}{M!} \int_{-\infty}^{+\infty} dk \ e^{ik(x-M)} \]

Using the result \[\frac{1}{2\pi} \int_{-\infty}^{+\infty} dk e^{ik(x-M)} = \delta(x-M) \] Dirac Delta function

the above equation reduces to

\[p(M) = e^{-\alpha T} \frac{M^M}{M!} \]

\[\text{"This is the probability of having } M \text{ events in a time interval } T \text{ during a Poisson process.}" \]

Clearly the cumulant generating function is

\[\ln p(k) = \alpha T (e^{ik} - 1) \]

\[\therefore \text{the } m^{th} \text{ cumulant becomes,} \]

\[\langle M^m \rangle_e = \frac{\partial^m}{\partial (-ik)^m} \ln p(k) \bigg|_{k=0} = \alpha T \]
Thus all the cumulants have the same value. So, the moments are obtained as

\[
\langle M \rangle = \alpha T \\
\langle M^2 \rangle = \alpha T + (\alpha T)^2 \\
\langle M^3 \rangle = \alpha T + 3(\alpha T)^2 + (\alpha T)^3
\]