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To whom it may concern: 

Recommendation letter supporting the postdoc application of Shasvath J Kapadia 

Dear colleagues, 

I am writing to express my strongest support for the postdoc application of Shasvath J Kapadia. 
Shasvath is a highly motivated, ambitious and hardworking young researcher, and is one of the 
strongest candidates in his peer group in gravitational-wave (GW) physics and astronomy. 

I have known Shasvath for the last three years. I met him in 2012 at a conference in KITP Santa 
Barbara where he was presenting an interesting poster on floating orbits in extreme-mass-ratio 
inspirals. He asked whether he could with me on a project related to LIGO’s science. Although, I 
tried to brush him aside citing the difficulty of long-distance collaboration (I was moving to 
India at that time), he persisted. After a year or so we actually started working together which 
turned out to be a very fruitful collaboration. I will be basing my letter on the aspect of his work 
that I know the best. However, his PhD work is quite diverse, covering problems related to the 
computation of orbits of extreme-mass-ratio inspirals, use of machine learning algorithms to 
distinguish between real GW triggers and spurious noise-generated triggers in the search for 
GWs from compact binaries using LIGO, etc. I hope that his other referees will elaborate on these 
aspects. 

The project (arXiv:1509.06366) that Shasvath worked with myself and Nathan Johnson-McDaniel 
was on computing the effective higher order terms in the post-Newtonian (PN) expansions of the 
gravitational binding energy and GW energy flux from inspiralling compact binaries. In the 
adiabatic PN approximation, the phase evolution of GWs from inspiralling compact binaries is 
computed by equating the change in binding energy with the GW flux. This energy balance 
equation can be solved in different ways, which result in multiple “approximants” of the PN 
waveforms. Due to the poor convergence of the PN expansion, these approximants tend to differ 
from each other during the late inspiral. Which of these approximants should be chosen as 
templates for GW detection and parameter estimation is not obvious. We computed some 
effective higher order (beyond the currently available 4PN and 3.5PN) non-spinning terms in the 
PN expansion of the energy and the flux that minimize the difference of multiple PN 
approximants (TaylorT1, TaylorT2, TaylorT4, TaylorF2) with effective one body waveforms 
calibrated to numerical relativity (EOBNR). We showed that PN approximants constructed using 
the effective higher order terms show significantly better agreement (as compared to 3.5PN) with 
the inspiral part of the EOBNR. For non-spinning binaries with component masses 1.4 -- 15 M⊙, 
most of the approximants have a match (faithfulness) of better than 99% with both EOBNR and 
each other. Although these effective terms are not the same as actual higher order terms, they find 
immediate practical use in GW searches. PN waveforms employing these effective higher order 
terms can be used in LIGO/Virgo searches for compact binaries as computationally inexpensive 
surrogates of EOBNR waveforms in the “low-mass” region of the parameter space. We are in the 
process of extending this computation to the case of spinning binaries, where this work is of 
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1919: Eddington’s observation of gravitational light bending 
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Arthur Eddington Eddington's photograph of the total 
solar eclipse of 29 May 1919

https://en.wikipedia.org/wiki/Solar_eclipse_of_29_May_1919


Triumph of Einstein’s theory 

�3

New York Times 
Nov 10, 1919

Saha’s article on 
Eddington’s observation 
The Statesman (Calcutta) 

13 Nov 1919 



Gravitational lensing  
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Gravitational lensing: A powerful tool for astronomy 
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Gravitational Lensing 49

Figure 13. The galaxy cluster 1E 0657�558 (the bullet cluster) whose galaxies and dark matter
(left panel) are displaced from the X-ray gas (right panel). (from [80])

to describe the lensing data very well [85, 300]. When based on weak lensing alone,
NFW concentration parameters tend to be somewhat lower than theoretically expected
[86, 200, 228, 301], which may be due to intrinsically triaxial cluster halos [86]. However,
there is an increasing number of clusters for which NFW profiles with reasonably high
concentration parameters are deduced (e.g. [85, 5]). [83] find the more massive of six
high-redshift clusters less concentrated than the less massive ones, which is also expected
from theory. [97] fit the generalised NFW profile to six massive clusters at z ' 0.3,
finding a central double-logarithmic slope ↵ = �0.9 . . . � 1.6 at 68% confidence. Assuming
↵ = �1, the concentration parameters are well in the expected range, i.e. 5 . . . 10 depending on
cluster mass. The overconcentration problem mentioned earlier persists in many cases when
constraints from strong and weak gravitational lensing are combined.

Large-scale structure in front of and behind galaxy clusters is projected onto them and
can a↵ect weak-lensing mass determinations. Using large-scale structure simulations, [338]
estimate that weak-lensing mass estimates exceed real cluster masses by several tens of
per-cents due to the added large-scale structure. [196] estimated that projected large-scale
structure approximately doubles the error budget for weak-lensing cluster mass estimates.
However, cluster mass profiles are a↵ected by cluster substructures and asymmetries only at
the per-cent level [251, 81].

We have seen in the discussion of strong cluster lensing that clusters at moderate and
high redshifts, z & 0.8, are already remarkably e�cient strong lenses. The first weak-
lensing mass map of a cluster at such high redshift (MS 1054�03 at z = 0.83) was produced
by [283]. The weak-lensing signal of many similarly distant clusters was measured since,
typically confirming the presence of well-developed, massive and compact clusters at that
epoch [84, 148, 281, 307, 227], but also frequently indicating violent dynamical activity in
cluster cores [199, 209, 228].

Occasionally, detections of clusters with very high mass-to-light ratios (e.g. [119, 129])
are claimed and raise the question whether cluster-sized dark-matter halos may exist which
are so ine�cient in producing stellar or X-ray emission that they are invisible for anything but
gravitational lensing. [115] detected a peak in the weak-lensing signal 7 arc minutes south

• Evidence of  dark matter.  

• Mapping out dark matter distributions.  

• Constraining the fraction of  compact dark 
matter (MACHOs).  

• Detection of  exoplanets.  

• Estimation of  cosmological parameters.  

• …. 



2015: Birth of gravitational-wave astronomy  
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10 BBH + 1 BNS detections from the first two observing runs (LVC analysis)
Additional events from independent analyses of the data.   

~50 BBH, BNS and NSBH candidates from the ongoing third observing run (1 BNS published)



Gravitational lensing of GWs: A new frontier   

•Small fraction (~0.4%) of detectable 
BBH mergers could be strongly lensed 
by intervening galaxies ⟹ multiple 
images, separated by hours to weeks. 
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Time-domain IMR test

• 3G detectors (ET, CE etc) ~ 10x sensitivity to 2G 
detectors
• Lot more BBH mergers
• Much high SNRs

• Isolate ringdown: fit a QNM spectrum and estimate 
final mass and spin directly from the ringdown

• Constrain possible deviations from GR by using early 
inspiral and ringdown
• Eliminate merger phase altogether
• Put limits on the energy and angular momentum 

lost during merger.

• Statements on Hawkings area theorem, etc.
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Gravitational lensing of GWs: A new frontier   
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A hundred years after Eddington’s observation of 
the bending of light, we are in the verge of 

detecting the gravitational bending of GWs! 

•Small fraction (~0.4%) of detectable 
BBH mergers could be strongly lensed 
by intervening galaxies ⟹ multiple 
images, separated by hours to weeks. 



Identifying lensed images is challenging

•Need to identify pairs of lensed events 
among thousands of unrelated events.
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Identifying lensed images is challenging

•Need to identify pairs of lensed events 
among thousands of unrelated events. 

•Galaxies are the dominant lenses. 
Geometric optics regime                    . 
Signals are only magnified; without 
affecting their shape. 
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Identifying lensed images is challenging

•Need to identify pairs of lensed events 
among thousands of unrelated events. 

•Galaxies are the dominant lenses. 
Geometric optics regime                    . 
Signals are only magnified; without 
affecting their shape. 
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hi
+,×(t) = μi h+,×(t)

(λGW ≪ Mlens)

Distance is degenerate with 
magnification. Estimated distance 

will be biased; so will be the 
estimated redshift and source-

frame masses. 

dobs =
dL

μ

zobs = z(dobs)

Mobs =
Mz

1 + zobs



Identifying lensed images is challenging

•Bayesian model selection: From a pair of 
events compute the odds ratio of the 
two hypotheses (lensed vs unlensed) 
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FIG. 1: 95% credible regions of the marginalized posteriors of the redshifted masses mz
1,m

z
2 (left) and sky location cos↵, � (right) of lensed

images of a sample binary black hole merger event. Black stars show the actual injected parameters.

The odds ratio betweenH
l

andH
u

is the ratio of the posterior
probabilities of the two hypotheses. That is,

Ol
u

=
P(H

l

|{d1, d2})
P(H

u

|{d1, d2})
, (3.6)

Using Bayes theorem we can rewrite the odds ratio as

Ol
u
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P(H
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P({d1, d2}|Hl)
P({d1, d2}|Hu)

= Pl
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u

(3.7)

Here Pl
u

:= P(H
l

)
P(H

u

) is the ratio of prior odds of the two hypothe-
ses while the Bayes factor Bl

u

:= Z
l

/Z
u

is the ratio of the
marginalized likelihoods, where the marginal likelihood of the
hypothesis A is ZA := P({d1, d2}|HA) with A 2 {l, u}. Under
the assumption of d1 and d2 being independent, the marginal
likelihood of the “null” hypothesis equals the product of the
marginal likelihoods from individual events, i.e.,

Z
u

= P(d1) P(d2), (3.8)

where P(di) is the marginal likelihood from event i, defined
in Eq. (3.3). Now, we rewrite the marginal likelihood of the
lensing hypothesis in terms of the likelihoods of d1 and d2 as

Z
l

=

Z
d~✓ P(~✓) P(d1|~✓) P(d2|~✓) . (3.9)

Using Eq. (3.2), we can rewrite this as

Z
l

= P(d1) P(d2)
Z

d~✓
P(~✓|d1) P(~✓|d2)

P(~✓)
(3.10)

Combining Eqs. (3.8) and (3.10), we obtain the following
expression for the Bayes factor:
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u
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Z
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Z
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Z
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P(~✓|d1) P(~✓|d2)
P(~✓)

. (3.11)
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Thus, the Bayes factor is the inner product of the two posteriors
that is inversely weighted by the prior. This has an intuitive
explanation: if d1 and d2 correspond to lensed signals from a
single binary black hole merger, the estimated posteriors on ~✓
would have a larger overlap, favoring the lensing hypothesis
(see, e.g., Fig. 1). The inverse weighting by the prior helps
to down-weight the contribution to the inner product from
regions in the parameter space that are strongly supported by
the prior. The large overlap of the posteriors here is less likely
to be due to the lensing but more likely due to the larger prior
support to the individual posteriors.

While the odds ratio developed above checks for the consis-
tency between the estimated parameters of two GW signals,
the time delay between them can also be used to develop a
potential discriminator between lensed and unlensed events.
This however, would require certain assumptions on the distri-
bution of lenses (i.e., galaxies) and the rate of binary mergers.
If we assume that binary merger events follow a Poisson pro-
cess with a rate of n events per month, one can compute the
prior distribution P(�t|H

u

) of time delay between pairs of
unlensed events (see Fig. 2). The prior distribution of the time
delay between strongly lensed signals, P(�t|H

l

), would have
a qualitatively di↵erent distribution, which can be computed
using a reasonable distribution of the galaxies and a model of
the compact binary mergers (see Sec. IV for details). Follow-
ing Eq.(3.3), the marginal likelihood for the lensed/unlensed
hypothesis can be computed from the time delay between two
events d1 and d2 as

P({d1, d2}|HA) =
Z

d�t P(�t|HA) P({d1, d2}|�t,HA),

(3.13)
where A 2 {l, u}. Typical statistical errors in estimating the
time of arrival of a GW signal at a detector are of the order
of milliseconds — much smaller than the typical time delay
between any pair of events. Thus, the likelihood function
P({d1, d2}|�t,HA) of the time delay can be well approximated
by a Dirac delta function at the true value �t0. Thus, the Bayes
factor between the lensed and unlensed hypotheses can be
written as

Rl
u

=
P(�t0|Hl)
P(�t0|Hu)

, (3.14)
Lensing Bayes factorPrior odds

Posterior distributions of binary parameters 
(except the distance) estimated from lensed 

images will be consistent
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FIG. 1: 95% credible regions of the marginalized posteriors of the redshifted masses mz
1,m

z
2 (left) and sky location cos↵, � (right) of lensed

images of a sample binary black hole merger event. Black stars show the actual injected parameters.

• H
l

: The data set {d1, d2} contain lensed signals from a
single binary black hole merger event with parameters
✓1 = ✓2 = ✓.

• H
u

: The data set {d1, d2} contain signals from two inde-
pendent binary black hole merger events with parameters
✓1 and ✓2.
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Thus, the Bayes factor is the inner product of the two posteriors
that is inversely weighted by the prior. This has an intuitive
explanation: if d1 and d2 correspond to lensed signals from a
single binary black hole merger, the estimated posteriors on ✓
would have a larger overlap, favoring the lensing hypothesis
(see, e.g., Fig. 1). The inverse weighting by the prior helps to
down-weight the contribution to the inner product from regions
in the parameter space that are strongly supported by the prior.
The large overlap of the posteriors here is less likely to be due
to the lensing but more likely due to the larger prior support to
the individual posteriors.

While the odds ratio developed above checks for the consis-
tency between the estimated parameters of two GW signals,
the time delay between them can also be used to develop a po-
tential discriminator between lensed and unlensed events. This
however, would require certain assumptions on the distribution
of lenses (i.e., galaxies) and the rate of binary mergers. If we
assume that binary merger events follow a Poisson process
with a rate of n events per month, one can compute the prior
distribution P(�t|H

u

) of time delay between pairs of unlensed
events (see Fig. 2). The prior distribution of the time delay
between strongly lensed signals, P(�t|H

l

), would have a qual-
itatively di↵erent distribution, which can be computed using
a reasonable distribution of the galaxies and a model of the
compact binary mergers (see Sec. IV for details). Following
Eq.(3.3), the marginal likelihood for the lensed/unlensed hy-
pothesis can be computed from the time delay between two
events d1 and d2 as
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• H
l

: The data set {d1, d2} contain lensed signals from a
single binary black hole merger event with parameters
✓1 = ✓2 = ✓.

• H
u

: The data set {d1, d2} contain signals from two inde-
pendent binary black hole merger events with parameters
✓1 and ✓2.
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the assumption of d1 and d2 being independent, the marginal
likelihood of the “null” hypothesis equals the product of the
marginal likelihoods from individual events, i.e.,
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where P(di) is the marginal likelihood from event i, defined
in Eq. (3.3). Now, we rewrite the marginal likelihood of the
lensing hypothesis in terms of the likelihoods of d1 and d2 as
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Thus, the Bayes factor is the inner product of the two posteriors
that is inversely weighted by the prior. This has an intuitive
explanation: if d1 and d2 correspond to lensed signals from a
single binary black hole merger, the estimated posteriors on ✓
would have a larger overlap, favoring the lensing hypothesis
(see, e.g., Fig. 1). The inverse weighting by the prior helps to
down-weight the contribution to the inner product from regions
in the parameter space that are strongly supported by the prior.
The large overlap of the posteriors here is less likely to be due
to the lensing but more likely due to the larger prior support to
the individual posteriors.

While the odds ratio developed above checks for the consis-
tency between the estimated parameters of two GW signals,
the time delay between them can also be used to develop a po-
tential discriminator between lensed and unlensed events. This
however, would require certain assumptions on the distribution
of lenses (i.e., galaxies) and the rate of binary mergers. If we
assume that binary merger events follow a Poisson process
with a rate of n events per month, one can compute the prior
distribution P(�t|H

u

) of time delay between pairs of unlensed
events (see Fig. 2). The prior distribution of the time delay
between strongly lensed signals, P(�t|H

l

), would have a qual-
itatively di↵erent distribution, which can be computed using
a reasonable distribution of the galaxies and a model of the
compact binary mergers (see Sec. IV for details). Following
Eq.(3.3), the marginal likelihood for the lensed/unlensed hy-
pothesis can be computed from the time delay between two
events d1 and d2 as

P�t({d1, d2}|HA) =
Z

d�t P(�t|HA) P({d1, d2}|�t,HA),

(3.12)
where A 2 {l, u}. Typical statistical errors in estimating the
time of arrival of a GW signal at a detector are of the order
of milliseconds — much smaller than the typical time delay
between any pair of events. Thus, the likelihood function
P�t({d1, d2}|�t,HA) of the time delay can be well approximated
by a Dirac delta function at the true value �t0. Thus, the Bayes
factor between the lensed and unlensed hypotheses can be
written as

Rl
u

=
P(�t0|Hl)
P(�t0|Hu)

, (3.13)

[Haris et al 2018]
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FIG. 2: Distribution of the log of the time delay between lensed
event pairs detected by the Advanced LIGO-Virgo network, along
with the distribution from unlensed event pairs. The simulated binary
black hole populations have their component masses (source-frame)
distributed according to two power laws (see text); however, note that
the time delays are practically insensitive to the specific form of the
mass distribution. The redshifts of the mergers are sampled with the
distribution obtained in [40]. We consider strong lensing produced
by intervening galaxies. In order to compute the distribution of the
time delay between unlensed events, we assume that they follow a
Poisson distribution with a rate of 10 mergers per month. The time
delay distributions of unlensed event pairs get skewed towards larger
values as we increase the observation time.

where P(�t0|HA) with A 2 {l, u} is the prior distribution of �t
(under lensed or unlensed hypothesis) evaluated at �t = �t0.
The prior distributions are shown in Figure 2.

The Bayes factors Bl
u

and Rl
u

could be combined to improve
the discriminatory power between lensed and unlensed events.
Figure 3 shows a scatter plot of Bl

u

and Rl
u

computed from
simulated pairs of lensed and unlensed events. As one can
see, combining Bl

u

and Rl
u

improves the discriminatory power.
Note that, since the fraction of binary black hole mergers that
are expected to produce strongly lensed signals is very small,
the ratio of prior odds Pl

u

is a small number (< 1%). Hence, we
need large values for the Bayes factors to confidently identify
strongly lensed pairs of signals.

IV. TESTING THE MODEL SELECTION

In this section we test the e�cacy of our Bayesian model
selection method to identify strongly lensed GW signals from
binary black hole merger events. We simulate a population of
coalescing binary black holes and compute the e↵ect of strong
lensing on the GW signals that they radiate. The binary black
hole mergers are distributed according to the cosmological
redshift distribution given in [40]. We use two di↵erent mass
distributions proposed in [27] to sample component black hole
masses m1 and m2:

1. Masses following a power-law P1(m1,m2) ⇠ 1
m1

1
m2

with
m1,m2 � 5M� and m1 + m2  100M�.

2. Masses following a power-law P2(m1) = m�2.35
1 on the

mass of the larger black hole, with the smaller mass

FIG. 3: Scatter plot of the two Bayes factors Bl
u

and Rl
u

computed
from the unlensed (cyan dots) and lensed (black stars) event pairs. The
Bayes factors computed from the posterior distribution of the binary’s
parameters (Bl

u

) and that computed from the time delay distribution
(Rl
u

) are in general correlated. However, they can be combined to
improve our ability to distinguish lensed pairs from unlensed pairs.
In this simulation, the component masses are distributed according to
the second power law given in the text.

distributed uniformly in mass ratio m1/m2 and with
5M�  m1 + m2  100M�.

Figure 4 shows the redshift and mass distributions of the in-
jections. The spin magnitudes �1 := ||�i|| of component black
holes are distributed uniformly between 0. and 0.99, with ran-
dom directions with respect to the orbital angular momentum.
The binaries are distributed uniformly in the sky (i.e., uniform
in ↵ and sin �), and the inclination and polarization angles are
sampled uniformly from polarization sphere (i.e., uniform in
cos ◆ and  ). Note that the GW signals will be redshifted due to
the cosmological redshift, and we infer the redshifted masses
mz

1,2 := m1,2(1 + z) through parameter estimation.
Multiple images dominantly arise due to galaxy lenses [41].

We assume that the galaxy lenses are well modeled by singu-
lar isothermal ellipses [39, 41]. The lens parameters, namely
velocity dispersion � and axis-ratio q, are sampled from distri-
butions modeled from the SDSS population of galaxies [42].
A detailed account on the lensing probability, sampling of lens
galaxies and computation of the magnification factor and time
delays is provided in Appendix A. We simulate two populations
of GW signals:

• Lensed: Pairs of events with same parameters ✓, with
parameter distributions as described above. We apply
the lensing magnifications and time delays according to
the prescription given in Appendix A.

• Unlensed: Pairs of events with random parameters ✓1
and ✓2, with parameter distributions as described above.

Identifying lensed images is challenging

•Bayesian model selection: 
Additional information from the 
time delay between events.  

�13
Prior distributions of  time delay expected 

from lensed and unlicensed events. 
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FIG. 1: 95% credible regions of the marginalized posteriors of the redshifted masses mz
1,m

z
2 (left) and sky location ↵, sin � (right) of lensed

images of a sample binary black hole merger event. Black stars show the actual injected parameters.

• H
l

: The data set {d1, d2} contain lensed signals from a
single binary black hole merger event with parameters
✓1 = ✓2 = ✓.

• H
u

: The data set {d1, d2} contain signals from two inde-
pendent binary black hole merger events with parameters
✓1 and ✓2.

The odds ratio betweenH
l

andH
u

is the ratio of the posterior
probabilities of the two hypotheses. That is,

Ol
u

=
P(H

l

|{d1, d2})
P(H

u

|{d1, d2})
, (3.6)

Using Bayes theorem we can rewrite the odds ratio as

Ol
u

=
P(H

l

)
P(H

u

)
P({d1, d2}|Hl)
P({d1, d2}|Hu)

= Pl
u

Bl
u

(3.7)

Here Pl
u

:= P(H
l

)/P(H
u

) is the ratio of prior odds of the two
hypotheses while the Bayes factor Bl

u

:= Z
l

/Z
u

is the ratio
of the marginalized likelihoods, where the marginal likelihood
of the hypothesis A is ZA := P({d1, d2}|HA) with A 2 {l, u}.
Under the assumption of d1 and d2 being independent, the
marginal likelihood of the “null” hypothesis equals the product
of the marginal likelihoods from individual events, i.e.,

Z
u

= P(d1) P(d2), (3.8)

where P(di) is the marginal likelihood from event i, defined
in Eq. (3.3). Now, we rewrite the marginal likelihood of the
lensing hypothesis in terms of the likelihoods of d1 and d2 as

Z
l

=

Z
d✓ P(✓) P(d1|✓) P(d2|✓) . (3.9)

Using Eq. (3.2), we can rewrite this as

Z
l

= P(d1) P(d2)
Z

d✓
P(✓|d1) P(✓|d2)

P(✓)
(3.10)

Combining Eqs. (3.8) and (3.10), we obtain the following
expression for the Bayes factor:

Bl
u

:=
Z
l

Z
u

=

Z
d✓

P(✓|d1) P(✓|d2)
P(✓)

. (3.11)

Thus, the Bayes factor is the inner product of the two posteriors
that is inversely weighted by the prior. This has an intuitive
explanation: if d1 and d2 correspond to lensed signals from a
single binary black hole merger, the estimated posteriors on ✓
would have a larger overlap, favoring the lensing hypothesis
(see, e.g., Figure 1). The inverse weighting by the prior helps to
down-weight the contribution to the inner product from regions
in the parameter space that are strongly supported by the prior.
The large overlap of the posteriors here is less likely to be due
to the lensing but more likely due to the larger prior support to
the individual posteriors.

While the odds ratio developed above checks for the consis-
tency between the estimated parameters of two GW signals,
the time delay between them can also be used to develop a po-
tential discriminator between lensed and unlensed events. This
however, would require certain assumptions on the distribution
of lenses (i.e., galaxies) and the rate of binary mergers. If we
assume that binary merger events follow a Poisson process
with a rate of n events per month, one can compute the prior
distribution P(�t|H

u

) of time delay between pairs of unlensed
events (see Figure 2). The prior distribution of the time delay
between strongly lensed signals, P(�t|H

l

), would have a qual-
itatively di↵erent distribution, which can be computed using
a reasonable distribution of the galaxies and a model of the
compact binary mergers (see Sec. IV for details). Following
Eq.(3.3), the marginal likelihood for the lensed/unlensed hy-
pothesis can be computed from the time delay between two
events d1 and d2 as

P�t({d1, d2}|HA) =
Z

d�t P(�t|HA) P({d1, d2}|�t,HA),

(3.12)
where A 2 {l, u}. Typical statistical errors in estimating the
time of arrival of a GW signal at a detector are of the order
of milliseconds — much smaller than the typical time delay
between any pair of events. Thus, the likelihood function
P�t({d1, d2}|�t,HA) of the time delay can be well approximated
by a Dirac delta function at the true value �t0. Thus, the Bayes
factor between the lensed and unlensed hypotheses can be
written as

Rl
u

=
P(�t0|Hl)
P(�t0|Hu)

, (3.13)
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FIG. 2: Distribution of the log of the time delay between lensed
event pairs detected by the Advanced LIGO-Virgo network, along
with the distribution from unlensed event pairs. The simulated binary
black hole populations have their component masses (source-frame)
distributed according to two power laws (see text); however, note that
the time delays are practically insensitive to the specific form of the
mass distribution. The redshifts of the mergers are sampled with the
distribution obtained in [40]. We consider strong lensing produced
by intervening galaxies. In order to compute the distribution of the
time delay between unlensed events, we assume that they follow a
Poisson distribution with a rate of 10 mergers per month. The time
delay distributions of unlensed event pairs get skewed towards larger
values as we increase the observation time.

where P(�t0|HA) with A 2 {l, u} is the prior distribution of �t
(under lensed or unlensed hypothesis) evaluated at �t = �t0.
The prior distributions are shown in Figure 2.

The Bayes factors Bl
u

and Rl
u

could be combined to improve
the discriminatory power between lensed and unlensed events.
Figure 3 shows a scatter plot of Bl

u

and Rl
u

computed from
simulated pairs of lensed and unlensed events. As one can
see, combining Bl

u

and Rl
u

improves the discriminatory power.
Note that, since the fraction of binary black hole mergers that
are expected to produce strongly lensed signals is very small,
the ratio of prior odds Pl

u

is a small number (< 1%). Hence, we
need large values for the Bayes factors to confidently identify
strongly lensed pairs of signals.

IV. TESTING THE MODEL SELECTION

In this section we test the e�cacy of our Bayesian model
selection method to identify strongly lensed GW signals from
binary black hole merger events. We simulate a population of
coalescing binary black holes and compute the e↵ect of strong
lensing on the GW signals that they radiate. The binary black
hole mergers are distributed according to the cosmological
redshift distribution given in [40]. We use two di↵erent mass
distributions proposed in [27] to sample component black hole
masses m1 and m2:

1. Masses following a power-law P1(m1,m2) ⇠ 1
m1

1
m2

with
m1,m2 � 5M� and m1 + m2  100M�.

2. Masses following a power-law P2(m1) = m�2.35
1 on the

mass of the larger black hole, with the smaller mass

FIG. 3: Scatter plot of the two Bayes factors Bl
u

and Rl
u

computed
from the unlensed (cyan dots) and lensed (black stars) event pairs. The
Bayes factors computed from the posterior distribution of the binary’s
parameters (Bl

u

) and that computed from the time delay distribution
(Rl
u

) are in general correlated. However, they can be combined to
improve our ability to distinguish lensed pairs from unlensed pairs.
In this simulation, the component masses are distributed according to
the second power law given in the text.

distributed uniformly in mass ratio m1/m2 and with
5M�  m1 + m2  100M�.

Figure 4 shows the redshift and mass distributions of the in-
jections. The spin magnitudes �1 := ||�i|| of component black
holes are distributed uniformly between 0. and 0.99, with ran-
dom directions with respect to the orbital angular momentum.
The binaries are distributed uniformly in the sky (i.e., uniform
in ↵ and sin �), and the inclination and polarization angles are
sampled uniformly from polarization sphere (i.e., uniform in
cos ◆ and  ). Note that the GW signals will be redshifted due to
the cosmological redshift, and we infer the redshifted masses
mz

1,2 := m1,2(1 + z) through parameter estimation.
Multiple images dominantly arise due to galaxy lenses [41].

We assume that the galaxy lenses are well modeled by singu-
lar isothermal ellipses [39, 41]. The lens parameters, namely
velocity dispersion � and axis-ratio q, are sampled from distri-
butions modeled from the SDSS population of galaxies [42].
A detailed account on the lensing probability, sampling of lens
galaxies and computation of the magnification factor and time
delays is provided in Appendix A. We simulate two populations
of GW signals:

• Lensed: Pairs of events with same parameters ✓, with
parameter distributions as described above. We apply
the lensing magnifications and time delays according to
the prescription given in Appendix A.

• Unlensed: Pairs of events with random parameters ✓1
and ✓2, with parameter distributions as described above.

Identifying lensed images is challenging

•Combine the Bayes factors to 
discriminate between lensed & 
unlicensed events.  

• ~66% of the lensed events can be 
identified with a false alarm probability 
of 10-5. 
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No evidence of lensing… yet. 

•Performed the first search for 
lensing effects in the binary BH 
observations during the first 2 
observing runs.  

• No evidence of multiple images. 
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estimation of the significance, we have taken into account the
effect of the “trials factor” due to 45 event pairs produced by
the 10 events—if p is the probability of an unlensed pair to
have a Bayes factor greater than a given threshold (that we
estimate from the simulations), the probability of at least one
among N unlensed pairs to randomly cross this threshold is

p Np1 1 N- - �( ) , assuming that each pair is independent.
The event pairs GW170104−GW170814 and GW150914−

GW170809 show the highest Bayes factors 198U
L� ~ and

29—their posteriors overlap at a reasonable confidence level to
suggest a possible explanation of them as double images of a
single source based on waveform similarity (see Figures 4 and
5 in the Appendix). However, galaxy lenses are unlikely to
produce time delays as long as 7 or 23 months between the
images(Haris et al. 2018), resulting in a small 4 10U

L 3* ~ ´ -

and 10−4 for both pairs. If galaxy clusters were a viable lensing
source, then one could expect time delays of a few months
(Smith et al. 2018a, 2018c). However, the rate of strongly
lensed binary black hole mergers by galaxy clusters at current
sensitivity is around 10−5 per year (Smith et al. 2018b),
disfavoring this scenario. On the other hand, the time delay
between GW170809 and GW170814 is consistent with galaxy
lenses ( 3.3U

L* ~ ). While the projected one-dimensional
posterior of, e.g., chirp mass overlap within 90% confidence
(Broadhurst et al. 2019), this is mainly caused by correlation
with other intrinsic parameters, e.g., effective spin. The
posteriors in higher dimensions do not show similar overlap
(see Figure 6 of the Appendix), implying that these waveforms
can be discriminated from each other with reasonable
confidence. Indeed, a full higher-dimensional consistency

check between the estimated parameters from this pair does
not significantly favor lensing ( 1.2U

L� ~ ). The joint Bayes
factors U

L
U
L� *´ for these pairs are 0.9 (GW170104−

GW170814), 4 10 3´ - (GW150914−GW170809) and 4
(GW170809−GW170814). In summary, we do not see any
strong evidence for the hypothesis that any of the pairs of
binary black hole signals are lensed images of the same merger
event. We have also repeated the same calculation employing
the waveform family SEOBNRV3(Pan et al. 2014; Taracchini
et al. 2014; Babak et al. 2017). The Bayes factors that we
obtain from this analysis are consistent with those presented in
Figure 2.
We also compute the Bayes factor of the hypothesis that

there exists at least one multiply imaged event in the entire
catalog of events observed by Advanced LIGO-Virgo in the
first and second observing run (without specifically identifying
that pair). Considering the fact that the probability for
observing more than two lensed images of a single merger is
negligible, the joint Bayes factor p pp pairs U

L
U
L� *å Î ( ) ( ) is equal

to 5.2, and is not highly significant.

4. No Evidence of Wave Optics Effects

When a gravitational wave propagates around an object of
size similar to its wavelength, interesting wave optics effects
are produced due to the superposition of several lensed
wavefronts with variable magnifications and time delays
(Ohanian 1974; Bliokh & Minakov 1975; Bontz & Haugan
1981; Thorne 1983; Deguchi & Watson 1986; Nakamura 1998;
Takahashi & Nakamura 2003; Christian et al. 2018). In such a
scenario, the observed waveform will have characteristic
beating patterns detectable in LIGO and Virgo(Cao et al.
2014; Lai et al. 2018), if the lensing object’s mass
M M10L

51 :, e.g., that of intermediate-mass black holes. Such
lensing effects could be detected if the lens lies close to a
caustic and its effective Einstein radius is expanded (see Lai
et al. 2018, for more details). We search for such lensing effects
in the LIGO-Virgo detections, assuming point-like lenses such
as those considered in Lai et al. (2018).
The effect of lensing may be solved from the Einstein field

equations, when the gravitational potential is too weak to
change the polarization of the wave (U 1� ), and when the
gravitational wave can be separated from the background
spacetime(Nakamura 1998; Takahashi & Nakamura 2003).13

Such an approximation is valid when the lensing object’s size
is comparable to, or larger than the wavelength of the
gravitational wave. The result in the point mass lens
approximation yields a frequency dependent magnification
factor F f M y; ,z

L( ) that is a function of the redshifted lens mass
ML

z and source position y D DL 0 Sh x= in the lens plane, where
DL and DS are angular diameter distances of the lens and the
gravitational wave source, respectively, η is the distance to the
source from the line of sight of the lens and 0x is the lens’
Einstein radius(Nakamura 1998; Takahashi & Nakamura
2003; Lai et al. 2018). The magnification factor transforms
an unlensed waveform h f ; l( ) to a lensed waveform
h f M y h f F f M y; , , ; ; ,z z

L L Ll l( ) ≔ ( ) ( ), where l is the set
of parameters describing the unlensed waveform, including the

Figure 2. Scatter plot of the log10 Bayes factors U
L� computed from the

consistency of posteriors of signal parameters estimated from each pair of
binary black hole events and Bayes factors U

L* computed from the time delay
between pairs of events. The significance of these Bayes factors is shown by
dashed lines (in terms of Gaussian standard deviations). This is estimated by
performing simulations of unlensed events in simulated Gaussian noise and
estimating the probability of unlensed events producing Bayes factors of this
value. In summary, we do not see any strong evidence for multiply lensed
images in LIGO-Virgo binary black hole detections. Note that, out of 45 event
pairs, only those pairs with log10 Bayes factors greater than −2 are shown in
the plot. We have taken into account the effect of the trials factor due the 45
event pairs.

13 When the wavelength of the gravitational wave is much larger than the
object’s size and the wave travels near the object, the wave may no longer be
separated from the background and wave scattering occurs (see, e.g., Takahashi
et al. 2005). We do not consider this effect.
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No evidence of lensing… yet. 

•Performed the first search for 
lensing effects in the binary BH 
observations during the first 2 
observing runs.  

• Observed source properties are 
consistent with expectations 
without invoking lensing 
magnification. 
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with time delays of minutes to weeks between multiple
images(Haris et al. 2018). About 0.4% of the black hole
mergers are expected to produce detectable (S/N>8) multiple
images in the Advanced LIGO-Virgo network at design
sensitivity(Haris et al. 2018). In this geometric optics regime,
lensing only magnifies/demagnifies the lensed signals without
affecting their frequency profile. Thus, posterior distributions
of the intrinsic parameters that determine the frequency
evolution of the signal (such as the redshifted masses and
dimensionless spins of the black holes), estimated from
multiple images, will be consistent with each other. Also,
because the sky location of multiple images will be within the
uncertainties of the gravitational wave sky localization, we can
safely assume that the sky location estimated from multiple
images will also be consistent, as will the estimated inclination
angle of the binary and the polarization angle. However, the
estimated luminosity distance from the two images will in
general be inconsistent because the distance is fully degenerate
with the (unknown) magnification of the signal.

From each pair of binary black hole signals detected by
LIGO and Virgo, we compute the ratio of the marginalized
likelihoods (Bayes factor) of the competing hypotheses: (1) that
the pair of signals are strongly lensed images of a single binary
black hole merger, and (2) that they are produced by two
independent mergers. This Bayes factor can be written
as(Haris et al. 2018)

d
P d P d

P
, 3U

L 1 2� ò q q q
q

=
( ∣ ) ( ∣ )

( )
( )

where q denotes the set of parameters that describes the signal
(excluding the luminosity distance and arrival time), P q( )
denotes the prior probability distribution of q, while P d1q( ∣ )
and P d2q( ∣ ) describe the posterior distributions of q estimated
from the data d1 and d2 containing the pair of signals under
consideration.

The measured time delay Δt0 between two signals can also
be used to compute the likelihood ratio of the two hypotheses.
The Bayes factor between the lensed and unlensed hypotheses
can be written as(Haris et al. 2018)

P t
P t

, 4U
L 0 L

0 U
*

 
 

=
D
D

( ∣ )
( ∣ )

( )

where P t A0 D( ∣ ) with A L, UÎ { } is the prior distribution of
Δt (under the lensed or unlensed hypothesis) evaluated at

t t0D = D . The prior P t0 U D( ∣ ) of the unlensed hypothesis is
computed assuming that binary merger events follow a Poisson
process. We use 714 days10 as the observation time for
computing P t0 U D( ∣ ). The prior distribution P t L D( ∣ ) of the
time delay between strongly lensed signals is computed from
an astrophysical simulation that employs reasonable distribu-
tions of galaxy lenses, mass function of binary black holes, and
redshift distribution of mergers, following Haris et al. (2018).
We compute U

L� from a pair of binary black hole signals by
integrating the posterior distributions of the binary’s parameters
released by the LIGO-Virgo Collaboration(Abbott et al.
2018a; LIGO Scientific Collaboration 2018). These posteriors
are estimated by the LALINFERENCENEST(Veitch et al. 2015;
LIGO Scientific Collaboration & Virgo Collaboration 2017)
code using the gravitational waveform family IMRPHENOMPV2.
We use the joint posterior distributions of the following
parameters m m a a, , , , cos , cos , , sin ,z z

a a J1 2 1 2 1 2 Nq q q a d q≔ { },
where m m,z z

1 2 are the redshifted component masses, a a,1 2 are
the dimensionless spin magnitudes, ,a a1 2q q are the polar angle
of the spin orientations (with respect to the orbital angular
momentum), , sina d denote the sky location, and JNq is the
orientation of the total angular momentum of the binary (with
respect to the line of sight).11 The Bayes factor in Equation (3)
is computed by numerically integrating the products of the
Gaussian kernel density estimates of the posterior distributions
of q from each pair of events, after marginalizing them over all
other parameters using standard priors in the LIGO-Virgo
parameter estimation(Abbott et al. 2018a).
Figure 2 presents a scatter plot of the Bayes factors U

L� and
U
L* computed from binary black hole event pairs observed by

LIGO and Virgo during the first two observation runs. Since
the U

L� and U
L* are computed using unrelated information, we

can compute a joint Bayes factor by multiplying U
L� and U

L* ,
which is used to determine the significance for each pair(Haris
et al. 2018). Figure 2 also shows the significance of these Bayes
factor values, U

L
U
L� *´ , in terms of Gaussian standard

deviations. The significance is estimated from simulations of
unlensed binary black hole events in Gaussian noise with
power spectra of the Advanced LIGO-Virgo network with
design sensitivity, presented in Haris et al. (2018).12 In the

Figure 1. Expected fraction of strongly lensed (magnified) over unlensed
binary black hole mergers as a function of the observed redshift zobs and
redshifted chirp mass z% in O2 sensitivity, obtained by forward modeling. The
sharp transition from low fraction to unity at the high mass end is a
consequence of the hard cutoff in intrinsic masses. The white region indicates
no detection of lensed or unlensed events outside the detector horizon.
Contours of 50% and 90% confidence intervals of the posteriors of the binary
black hole events from the first two observation runs of LIGO and Virgo are
overlaid. The lensing probability is negligible ( 10 21 - ) in the region spanned by
these posteriors, suggesting that these events are unlikely to be lensed.

10 This is the total duration from the beginning of O1 to the end of O2. In
reality, the data is not available for the entire 714 days due to the limited duty
cycle of the Interferometers. We do not expect a significant change in the prior
distribution even if we include this correction.
11 Dai & Venumadhav (2017) have discovered that, if we neglect the effects of
spin precession and nonquadrupole modes, multiple images are related to each
other by specific phase shifts. Hence the consistency of the coalescence phase
fc and polarization angle ψ, which is degenerate with fc can also be used to
determine the consistency of multiple images. However, we are using a more
general waveform family that includes spin precession, where such a
relationship does not hold. Hence we do not check the consistency of f0 and ψ.
12 The significance of lensed event pairs will be even lower if we used the
actual O1–O2 noise spectra, due to the lower sensitivity. Hence this is an
optimistic estimate of the significance of these Bayes factors.
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component masses, spins, location, and orientation of the
binary, and the time and phase of coalescence.

We search for signatures of point mass lenses within a range
of source positions y 0.1, 3Î [ ] and redshifted mass of the lens
M M M1,z

L maxÎ :[ ] in all O1 and O2 detections using nested
sampling (LALINFERENCENEST) and lensed IMRPHENOMPV2
waveform family h f M y; , ,z

L Ll( ), as implemented in Lai et al.
(2018). Indeed, lensing deformation could be partially
mimicked by higher order effects in the unlensed waveform
(e.g., due to spins); however, sufficiently large lensing
deformation could be identified by our search, as illustrated
in Lai et al. (2018). Our upper bound for the lens mass, Mmax, is
chosen so that the time delay between the two lensed images
is large enough for the lensed waves to be well-separated
(Takahashi & Nakamura 2003), and we assume agnostically
that the lens can be in any mass range and hence choose a
uniform prior in Mlog z

10 L. Furthermore, we cut off the source
position y at 3, because the lensing effects beyond this point are
unmeasurable, while at y 0.11 the lensing probability is small.
The prior p y yµ( ) is chosen based on geometrical argument
and isotropy, i.e., the probability distribution for the line-of-
sight distance goes as p 2h ph< µ( ) , and we have verified that
this prior is largely unaffected by the assumption for the
astrophysical distribution of lenses. For additional details of the
lensing formalism and the choice of prior, refer to Lai et al.
(2018).

We then compute the ratio of the Bayesian evidences L2 and
U2 of the lensed and unlensed hypotheses (using lensed and

unlensed waveforms, respectively) obtained from the two
nested sampling sets:

P M y P d M y d dM dy

P P d d

, , , ,
. 5

z z z

U
L L

U

L L L�
2
2

ò
ò

l l l

l l l
= =

~ ( ) ( ∣ )
( ) ( ∣ )

( )

Figure 3 shows the posterior distributions of redshifted lens
mass ML

z (violin plots) that is marginalized over y as well as the
source parameters l. The figure also shows the Bayes factors
between the lensed and unlensed hypothesis U

L
�
~

for each
gravitational wave event. The posterior distributions do not
peak at zero lens mass due to the free source position variable
y, which at higher values reduce the lensing effect, causing the
lens mass posterior to be broad instead. Note that for the
GW151012 event we have made the prior broader as the peak

of the posterior was otherwise not captured. We find that the
Bayes factor log 0.210 U

L
� <
~

for all events. Hence, we find no
evidence to support the lensing hypothesis by smaller point-like
lenses.

5. Outlook

We have searched for lensing effects in the binary black hole
observations by LIGO and Virgo during the observing runs O1
and O2, finding no strong evidence of gravitational lensing. In
particular, we looked for three effects. First, we searched for
evidence of high lensing magnification in the observed signals
by comparing the chirp mass—redshift distribution of observed
binary black holes to the statistically predicted populations of
lensed and unlensed signals. Second, we looked for evidence of
multiply imaged signals by investigating the consistency of the
estimated parameters among all pairs of events. Third, we
looked for evidence of wave optics effects in the observed
signals by point-like lenses. None of these investigations
revealed any lensing effects in the observed signals.
While the probability of lensed gravitational waves is low, in

the future, as detector sensitivities improve further, it will
become increasingly possible to observe strong lensing
(Ng et al. 2018). Since Advanced LIGO and Virgo are
expected to observe hundreds of binary black hole mergers as
they reach their design sensitivity, according to current
estimates, more than one strongly lensed signal will be
observable per year. Apart from verifying a fundamental
prediction of general relativity using a messenger that is different
from electromagnetic waves, such an observation might enable
precision localization of the merger when combined with optical
observations of the lens galaxy(A. K. Mehta et al. 2019,
in preparation). Since the fraction of lensed events will be small,
we do not expect lensing to introduce significant biases in
population analysis.
Detecting wave optics effects, e.g., by intermediate-mass

black holes, could be possible at least in the future third
generation detectors(Christian et al. 2018; Lai et al. 2018), but
detection rates are highly uncertain in the current ground-based
detectors. However, it is worth noting that the time-resolution
of LIGO would be able to probe lensing that are below the
typical angular resolution of optical or radio telescopes, and
hence could uncover hidden lens populations that could have
been missed. The prime targets for weak lensing are likely to be
smaller substructures that would be enhanced by the galaxies’
potential, which have been observed in the optical band(Diego
et al. 2018). Indeed, lensing observations of gravitational
waves are likely to become a powerful tool for astronomy in
the coming years.

We thank the LIGO Scientific Collaboration and Virgo
Collaboration for providing the data of binary black hole
observations during the first two observation runs of Advanced
LIGO and Virgo. P.A.’s research was supported by the Science
and Engineering Research Board, India through a Ramanujan
Fellowship, by the Max Planck Society through a Max Planck
Partner Group at ICTS-TIFR, and by the Canadian Institute for
Advanced Research through the CIFAR Azrieli Global
Scholars program. S.K. acknowledges support from national
post doctoral fellowship (PDF/2016/001294) by Scientific and
Engineering Research Board, India. O.A.H. is supported by the
Hong Kong Ph.D. Fellowship Scheme (HKPFS) issued by the

Figure 3. Posterior distribution of redshifted lens mass ML
z (violin plots) and

the log Bayes factor between lensed and unlensed hypothesis log10 U
L� (top

vertical axis) for wave optics effects in each gravitational wave event. The
Bayes factors and the lens mass posteriors have been computed using nested
sampling assuming a log-uniform redshifted lens mass prior. None of the Bayes
factors are significant enough to favor the lensing hypothesis.
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Lensing Bayes factor

λGW ∼ MlensWhen                            lensing can produce wave 
optics effects. Expected deformation in the GW 

signals can be modeled for simple lens models (e.g 
point mass). 



No evidence of lensing… yet. 

•Performed the first search for lensing 
effects in the binary BH observations 
during the first 2 observing runs. 
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Nobel laureate George Smoot claims LIGO has observed amplified signals of black hole

mergers from the very distant universe, but LIGO scientists disagree
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Announced by the LIGO collaboration in February 2016, the discovery

of ripples in spacetime known as gravitational waves was momentous

enough to merit the 2017 Nobel Prize in Physics. Now, another Nobel

laureate says LIGO has unknowingly made another spectacular

discovery: gravitational waves from merging black holes that have been

amplified by the gravity of intervening galaxies.

Called gravitational lensing, this phenomenon is routinely used to study

light from objects in the very distant cosmos. But the new assertion, if

proved correct, would make it the first such sighting for gravitational

waves. The controversial claim, which has been dismissed by members

of the LIGO team, comes via physics Nobelist George Smoot of the

Hong Kong University of Science and Technology, and his colleagues.

“We are wagering our reputations on this,” he says.

LIGO (for the Laser Interferometer Gravitational-Wave Observatory),

comprising two detectors in the U.S., and Virgo, a detector outside Pisa,

Italy, have together so far announced observations of gravitational

waves from the merging of 10 pairs of black holes as well as a pair of

neutron stars.



Gravitational lensing of GWs: A new frontier   

•LIGO-Virgo expected to detect 100s of 
mergers in the next few years.  First 
detection of lensed GWs around the corner.  

•Precise (sub-galaxy) localization of mergers 
from lensed images from the observed time 
delay and magnification ratio [Mehta et al, In prep] 

•Accurate extraction of the polarizations. Are 
polarizations consistent with GR 
predictions? [Goyal et al, In prep]
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Gravitational lensing of GWs: A new frontier   

• If the lens mass is 
comparable to the GW 
wavelength (10-105 M⊙) ⟹ 
wave optics signatures in 
the observed signal.  

•Constrain the fraction of 
dark matter in the form of 
compact objects (even from 
null observations) [Ganguly et al, In 
prep]
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for example 10 minutes of monitoring during each observation run, 
should be able to provide important constraints on heavier mass 
scales including those at LIGO black hole mass scales of 10M⊙. 
Since M31 is the most suitable target in the Northern Hemisphere 
for HSC, this is a valuable opportunity waiting to be exploited.

Methods
Microlensing basics. If a star in M31 and a foreground PBH are almost perfectly 
aligned along the line-of-sight to an observer, the star is multiply imaged owing to 
strong gravitational lensing. Note that, for the prediction of the microlensing event 
rate, we assume that a source star is in M31, not in the Milky Way halo region, 
because of the higher number density on the sky. If these multiple images are 
unresolved, the flux from the star appears magnified. When the source star and the 
lensing PBH are separated by an angle β on the sky, the total lensing magnification, 
that is the sum of the magnification of the two images, is48–50

= + = +
+

A A A u
u u

2
4

(2)1 2

2

2

where u ≡ (dβ)/RE, and d is the distance to a lensing PBH. The Einstein radius RE is 
defined as

=R GM D
c

4
(3)E

2 PBH
2

where MPBH is the PBH mass. D is the lensing weighted distance, D ≡ d(1 − d/ds), 
where ds is the distance to a source star in M31. By plugging in typical values of the 
parameters, we can find the typical Einstein radius:

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

θ ≡ ≃ × −
−

⊙

∕ − ∕R
d

M
M

d3 10 arcsec
10 100 kpc
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where we have assumed ds = 770 kpc for distance to a star in M31 and D ≃ d 
for simplicity, and used MPBH = 10−8M⊙ as a working example for the sake of 
comparison with ref. 18. In the following analysis we will consider a wide range 
of PBH mass scales. The PBH lensing phenomena that we search for are in the 
microlensing regime; we cannot resolve two lensed images with angular resolution 
of an optical telescope, and we can measure only the total magnification. The size 
of a star in M31 is viewed as

θ ≃ ≃ . × −R
d

5 8 10 arcsec (5)s
s

s

9

if the source star has a similar size to the solar radius (R⊙ ≃ 6.96 × 1010 cm). 
Comparing with equation (4), we find that the Einstein radius becomes smaller 
than the source size if PBH mass MPBH ≲ 10−10M⊙ corresponding to MPBH ≲ 1023 g. 
We will later discuss such lighter PBHs, where we will take into account the effect 
of finite-source size on the microlensing18,33,51.

Because the PBH and the source star move relative to each other on the sky, the 
lensing magnification varies with time, allowing us to identify the star as a variable 
source in a difference image from the cadence observation. The microlensing light 
curve has a characteristic timescale that is needed for a lensing PBH to move across 
the Einstein radius:

≡t R
v

(6)E
E

where v is the relative velocity. Assuming fiducial values for these parameters, we 
can estimate the typical timescale as
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where we assumed v = 200 km s−1 for the typical relative velocity. Thus the 
microlensing light curve is expected to vary over several tens of minutes and should 
be well sampled by our HSC observation. As we can safely assume that the relative 
velocity stays constant during the Einstein radius crossing, the light curve should 
have a symmetric shape around the peak, which we will use to eliminate impostors.

The halo model for the DM distribution in the Milky Way and M31 halo 
regions. To estimate event rates of PBH microlensing for M31 stars, we first need 
to assume a model for the spatial distribution of DM (therefore PBHs) between 
M31 and us (the Earth). Here we simply assume that the DM distribution in each 
halo region of the Milky Way or M31 follows the NFW profile52:

ρ
ρ

=
∕ + ∕

r
r r r r

( )
( )(1 ) (8)NFW

c

s s
2

where r is the radius from the Milky Way centre or the M31 centre, rs is the 
scale radius and ρc is the central density parameter. Here we adopt the halo 
model in ref. 21 : Mvir = 1012M⊙, ρ = . × ⊙

−M4 88 10 kpcc
6 3 and rs = 21.5 kpc for 

the Milky Way, taken from Table 2 of that paper, while Mvir = 1.6 × 1012M⊙, 
ρ = . × ⊙

−M4 96 10 kpcc
6 3, and rs = 25 kpc for M31, taken from Table 3. Thus we 

assume a slightly larger DM content for the M31 halo than the Milky Way halo. 
DM profiles with these parameters have been shown to reproduce fairly well the 
observed rotation curves for the Milky Way and M31, respectively. There might 
be an extra DM contribution in the intervening space between the galaxies, for 
example due to a filamentary structure bridging the Milky Way and M31. However, 
we do not consider such an unknown contribution.

Consider a PBH at a distance d (kpc) from the Earth and in the angular 
direction to M31 (l, b) = (121.2°, −21.6°) in the Galactic coordinate system. 
Assuming that the Earth is placed at distance R⊕ = 8.5 kpc from the Milky Way 
centre, we can express the separation to the PBH from the Milky Way centre,  
rMW−PBH, in terms of the distance from the Earth, d, as

= − +− ⊕ ⊕r d R R d l b d( ) 2 cos ( ) cos ( ) (9)MW PBH
2 2

If we ignore the angular extent of M31 on the sky (which is restricted to 
1.5 degrees in diameter for our study), the distance to the PBH from the M31 
centre, rM31−PBH, is approximately given by

≃ −−r d d d( ) (10)M31 PBH s

where we approximated the distance to a source star in M31 to be the same as 
the distance to the centre of M31, DM31 ≃ ds, which we assume to be equal to 
ds = 770 kpc throughout this paper.

Event rate of PBH microlensing for M31 stars. By using equations (8)–(10), we 
can compute the DM density, contributed by both the Milky Way and M31 halos, 
as a function of the distance to PBH.

Assuming that PBHs make up a fraction ΩPBH/ΩDM of the DM content, we can 
compute the optical depth τ for the microlensing of PBHs with mass MPBH for a 
single star in M31. The optical depth is defined as the probability for a source star 
to be inside the Einstein radius of a foreground PBH on the sky, or equivalently 
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Fig. 5 | Comparison with other observational constraints on the 
abundance of PBHs on different mass scales. The red-shaded region 
corresponds to the 95% CL upper bound on the PBH mass fraction to DM 
in the halo regions of the Milky Way and M31, obtained from our search 
for microlensing of M31 stars based on the single-night HSC/Subaru data. 
To derive this constraint, we took into account the effect of finite-source 
size, assuming that all source stars in M31 have a solar radius, as well as 
the effect of wave optics in the HSC r-band filter on the microlensing event 
(see text for details). The effects weaken the upper bounds at M!≲!10−7M⊙ 
and give no constraint on PBH at M!≲!10−11M⊙. Our constraint can be 
compared with other observational constraints as shown by the grey-
shaded regions: extragalactic γ-rays from PBH evaporation44, femtolensing 
of γ-ray bursts (Femto)45, microlensing search of stars from the satellite 
2-year Kepler data (Kepler)18, MACHO/EROS/OGLE microlensing of stars 
(EROS/MACHO)15 and accretion effects on cosmic microwave background 
observables (CMB)46, updated from the earlier estimate47.
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[Niikura et al 2018]



Summary 

• Gravitational lensing observations begun as a 
means of   testing the validity of  GR.  

• Eventually it became a powerful probe of  
astrophysics and cosmology.  

• Similar story of  GWs. Now becoming a unique 
branch of  astronomy.  

• More fascinating observations are expected in 
the near future, e.g., the gravitational lensing of  
GWs — doubly Einstein! 
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