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Introduction

Non-equilibrium processes are ubiquitous in nature.

Useful to develop a framework to study such processes.

Path integral techniques in QFT are tailored to study
equilibrium states.

They have to be extended to analyse non-equilibrium cases.

Such an extension is given by the Schwinger-Keldysh (SK)
path integral formalism on a folded time-contour.
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Introduction

Nevertheless a direct computation of observables from
microscopic theory may be complicated.

Depending on the observables of interest, one chooses
appropriate d.o.f to define an open quantum system.

The system acts as a probe, coupled to an environment.

System’s dynamics is governed by an effective theory.

The form of the effective theory is determined using the
unitarity of the microscopic theory and its underlying
symmetries.



Introduction

For open systems, the effective theory mostly developed has
been quadratic.

The simplest example is provided by a Brownian particle
weakly interacting with a large thermal bath.

Effective theories for such a Brownian particle (probe) were
derived by Feynman-Vernon, Caldeira-Leggett and others
using SK path integral formalism.

The quadratic effective theory is used to compute two-point
correlators of the system (linear response).



Introduction

The effective dynamics has a classical stochastic description
given by linear Langevin equation with a Gaussian noise.

d2q

dt2
+ γ

dq

dt
= 〈f 2〉N . (1)

The probability distribution of noise ensemble :

P[N ] ∝ exp

{
−〈f

2〉
2

∫
dt N 2

}
. (2)

Variance of noise 〈f 2〉 and damping γ are related by
Fluctuation-Dissipation relation (FDR)

〈f 2〉 =
2

β
γ. (3)

The path integral in the stochastic problem is related to an
underlying quantum path integral.
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Nonlinear Langevin equation

Any real system exhibits nonlinearities in its dynamics and
non-Gaussianities in noise.

Such a system is better described by a non-linear Langevin
equation with non-Gaussian noise.
This equation is given by

E[q,N ] ≡ q̈ +
(
γ + ζγN 2

)
q̇ +

(
µ2 + ζµN 2

)
q +N

(
ζ3 − ζ3γ

d

dt

)q2
2!

+
(
λ4 − λ4γ

d

dt

)q3
3!

= 〈f 2〉N

N → thermal noise

ζγ → thermal jitter in damping constant

ζµ → jitter in renormalised frequency

ζ3, ζ3γ , λ4, λ4γ → anharmonicity parameters .

(4)

Chakrabarty, Chaudhuri



Non-linear Langevin equation

The probability distribution of the noise is

P[N ] ∼ exp
[
−
∫

dt
( 〈f 2〉

2
N 2 +

ZI

2
Ṅ 2 +

ζN

4!
N 4
)]

ζN → non-Gaussianity of the thermal noise .

(5)

Generalised fluctuation-dissipation relation for a Brownian
particle is

ζN = −
12

β
ζγ . (6)

This is a consequence of the microscopic time reversal
invariance and thermality of the bath.



Heavy quark in SK formalism

Consider a heavy quark in a strongly coupled CFTd plasma at
temperature T.

The quark behaves as a Brownian particle moving in a
d-dimensional spacetime with spatial position qi

(i = 1, 2, . . . , d − 1).

SK effective Lagrangian of a Brownian particle weakly coupled
to a thermal bath till quartic order has been calculated.



Heavy quark in SK formalism

Need two copies of each d.o.f on two legs of SK contour for
evolution of ket/ bra of density matrix.

Integrating out bath introduces corrections to particle’s SK
action, referred to as ‘influence phase’.

In general, influence phase is non-local in time.

One can expand the influence phase of the particle in a
derivative expansion.



Heavy quark in SK formalism

In a strongly coupled CFT, direct computation of quark’s
influence phase is nearly impossible.

General structure of local effective action can be written using
microscopic unitarity of (quark+bath) combined system,
hermiticity of operators and invariance of microscopic
dynamics under constant translations and rotations of qi ’s.
The local effective action of quark till quartic order is

LSK ≡ mp
dqia

dt

dqid

dt
− mpγ

dqia

dt
qid + im2

p

〈f 2〉
2!

q2d − im2
p

ZI

2!

(
dqd

dt

)2

+ m3
pζγq2d

dqia

dt
qid + im4

p

ζN

4!
(q2d )

2
,

(7)

where qa = 1
2(qR + qL), qd = qR − qL; qR and qL being the

right and left d.o.f of SK contour.
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Outline of our work

We compute non-local influence phase of quark in a strongly
coupled CFT using holographic SK path integral framework.

We verify the generalised fluctuation-dissipation relations
using holography.
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Holographic-SK prescription

A general prescription to compute realtime n-point functions
defined on a SchwingerKeldysh contour using gravity.
Skenderis, van Rees

The holographic prescription amounts to filling in this contour
with bulk solutions: real segments of the contour are filled in
with Lorentzian solutions while imaginary segments are filled
in with Euclidean solutions.

Appropriate matching conditions (roughly, the bulk fields and
their derivatives should be continuous) are imposed at the
corners of the contour.

With the full path integration contour on the gravity side, the
generating functional can be obtained by integrating over the
bulk fields with sources as boundary conditions.



Holographic-SK prescription

Consider AdSd+1 black-brane geometry.

Double black-brane spacetime to construct a configuration
with CFT SK contour in boundary.

Crossley-Glorioso-Liu have given a prescription recently
clarifying the near horizon structure of this doubled
black-brane space-time.

Geometry along the radial direction: ML,MR are doubled
manifolds and are stitched by a horizon cap.

× <
ML

>
MR

rh

ρ = ρc + iε

ρ = ρc − iε

Geometry along the time direction: AdS boundaries
asymptote to CFT SK contour.



Holographic-SK prescription

In AdS/CFT, a heavy quark at boundary is dual to an open
string in the bulk hanging from AdS boundary probing a
black-brane geometry.

The string stretches from two AdS boundaries and loops
around a region obtained by radial Wick rotation connecting
two stretched horizons.

Horizon cap region regulates outgoing string modes that
otherwise blow up at horizon.



The steps

Expand Nambu-Goto action of the string till quartic order in
fluctuations.

Solve linearised string e.o.m with appropriate boundary
conditions.

Calculate quartic order onshell action with this.

Integrate out radial coordinate to get boundary effective
action of the particle.



Nambu-Goto action

The black-hole metric in AdSd+1,

ds2 = 2 dvdr − r2
(

1−
rdh
rd

)
dv2 + r2dx2d−1 .

The inverse Hawking temperature β = 4π
drh

.

Evaluating Nambu-Goto action on the double string
configuration gives quark’s influence phase.

The string action is given by

SNG = − 1

2πα′

∫
d2σ

√
h(X ) ,

h(X ) is the determinant of induced metric on the string
world-sheet. We choose

σµ = (v , r) , X i = X i (v , r) for i ∈ 1, ..., d − 1



Nambu-Goto action

Define new variables.

ρ ≡ r

rh
,

dξ

dρ
≡ d

2πi

ρd−4

ρd − 1
, λ ≡ 16π

α′
, η ≡

r3hd

2πi
.

ξ is a negative imaginary radial co-ordinate in black-brane
exterior.

ξ resembles worldsheet tortoise co-ordinate

ξ ≡ d
2πi

∮ ρ
ρc+iε

yd−4dy
yd−1 .

ξ has a branch cut: ξ(ρc + iε) = 0, ξ(ρc − iε) = 1.



Nambu-Goto action

The action becomes

SNG =−
rh

2πα′

∫
dv

∮
dρ

√
1 +

(
η

rh

dξ

dρ

)(
∂X i

∂ξ
+ iβρ2

∂X i

∂v

)
∂X i

∂ξ
+ ...

Expand the action in fluctuations upto quartic order.

SNG ≈ S (2) + S (4) + ...

S(2) =
λ

2d2β3

∫
dv

∮
dρ

2π

[
2πi

dξ

dρ

] [
∂X i

∂ρ
+ iβρ2

∂X i

∂v

]
∂X i

∂ξ
,

S(4) =
λ

2d3β5

∫
dv

∮
dρ

2π

[
2πi

dξ

dρ

]2 [∂X i

∂ρ
+ iβρ2

∂X i

∂v

] [
∂X i

∂ρ
+ iβρ2

∂X i

∂v

]
∂X j

∂ξ

∂X j

∂ξ



Boundary Conditions

Solve resultant equations of motion (e.o.m) with imposing
boundary conditions at ρ = ρc to be

X i (v , ρc + iε) = qiL(v) , X i (v , ρc − iε) = qiR(v) . (8)

E.o.m are symmetric under X i 7→ −X i , under which
qi 7→ −qi .

Amplitude expansion of X i has to be odd in qi .

The solution is X i = X i
1 + X i

3 + . . . , where
X i
2k+1 ∼ O(q2k+1).

X i
1(v , ρc + iε) = qiL(v),X i

1(v , ρc − iε) = qiR(v),

X i
2k+1(v , ρc + iε) = 0,X i

2k+1(v , ρc − iε) = 0. (9)



Solution & Boundary conditions

The full linearised solution in frequency space becomes

X̃ i
1(ω) =gω[(1 + fω)q

i
R(ω)− fωq

i
L(ω)]− g−ωe

βω(1−χ)fω[q
i
R(ω)− qiL(ω)]

where fω = 1
eβω−1 and χ = d

2πi

∫ ρ
ρc+iε dy

yd−2

yd−1 .

First term sources ingoing quasi-normal mode regular at
future horizon, second term excites Hawking mode.

In AdS3 (d=2), the bulk to boundary Green’s function is

gω =

(
ρc
ρ

)
ω + irhρ

ω + irhρc
.
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Quadratic effective action

The full quadratic action in derivative expansion,

S (2) + S
(2)
ct =mp

∫
dω

2π
(ω2 + iγω)qid(−ω)qia(ω)

+
i

2
m2

p

∫
dω

2π

(
〈f 2〉 − ω2ZI

)
qid(−ω)qid(ω) .

The counter-term is given by,

S
(2)
ct =

(
mp(T = 0)− rhρc

2πα′

)∫ dω

2π
ω2qia(ω)qid(−ω) .



Parameters in quadratic effective action

[Thermal mass] : mp = mp(T = 0)− λ
8πdβ

(
1 +

∫∞
1

td−4−1
td−1 dt

)
[colour strength] :

m2
pZI = − λ

2d2β

[
1
6 +

(
d
2π

2
) ∫∞

1
td−4dt
td−1

∫ t

1
yd−4dy
yd−1 (y2 − 1)

]
[damping factor] : mpγ = λ

2d2β2

[strength of the quadratic noise] : m2
p〈f 2〉 = λ

d2β3

Consistent with FDR: γ = 1
2βmp〈f 2〉.



Dimension dependence of mass and the color strength

d mp(T ) in units of λ
8πdβ ZI in units of λ

2d2β

2 0 -0.217

3 1
18(9 ln 3−

√
3π)− 1 ≈ −0.753 -0.234

4 -1 -0.256

5 ≈ -1.115 -0.282

6 1
12(3 ln 3−

√
3π)− 1 ≈ −1.179 -0.314



Nonlinear FDR

The quartic effective couplings are

m3
pζγ = (7− d)

λ

d3β4
, m4

pζN = −12(7− d)
λ

d3β5

The generalised fluctuation-dissipation-relation is the following

ζγ = − 1

12
βmpζN . (10)
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Summary of the talk

We have studied the leading non-linear corrections to the
Brownian motion of a heavy quark probing a strongly coupled
CFT plasma using holographic SK path integral.

The influence phase of the quark gives rise to a non-linear
Langevin equation with a non-Gaussian noise.

The local effective theory obeys recently developed non-linear
fluctuation dissipation relation that relates the
non-Gaussianity of thermal noise to the thermal jitter in the
damping constant of the Brownian particle.



Future works

It would be interesting to extend the analysis presented in this
paper to account for arbitrary initial states.

A possible extension would be to study the effects of
backreaction of the string on the black brane geometry. This
corresponds in the CFT to the energy disturbances in the
plasma created by the moving quark.

It will be useful to study field theories in the black brane back-
grounds and derive dual open quantum field theories, by
integrating out the effect of the black brane.



Thank you.
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