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COMMON PHENOMENA, GR TWIST

• Shadows are familiar to all. Eclipses in-

volve shadows.

• Echoes are known for sound waves, as

learnt in high school.

• Memory drives us forward in life. In physics,

magnetic memory (residual magnetisation)

is well-known.

• All three have been very important in

gravitational physics, of late.

• The black hole shadow (M87); GW echoes

from black hole mimickers; GW memory!

• Thus, a lot of gravitational physics today

revolves around the study of:

SHADOWS, ECHOES AND MEMORY.



SHADOWS



SHADOWS EVERYWHERE!

• Understood using ray-tracing (Appel, 1969).

Extensively studied in computer graphics

with useful programs.



SHADOWS: ECLIPSES

LUNAR: Earth’s shadow on moon.

SOLAR: Moon’s shadow on Earth.



Umbra, Penumbra, Antumbra:

• Rectilinear propagation of light.

Aside: Interesting recent study (2020):

Eclipses of continuous gravitational waves as a probe
of stellar structure

Marchant, Breivik, Berry, Mandel, Larson

.... If a gravitational wave source is eclipsed by a star, mea-

suring these perturbations provides a way to directly measure

the distribution of mass throughout the stellar interior....We

identify continuous gravitational waves from neutron stars as

the best candidates to detect this effect. When the Sun

eclipses a far-away source, depending on the depth of the

eclipse the time-delay can change by up to 0.034 ms, the

gravitational-wave strain amplitude can increase by 4 per-

cent.



SOMMERFELD ON SHADOWS

‘We consider the light source as given. From it

there emerge rectilinear rays. A screen can be

called opaque if it absorbs all rays falling on it and

does not itself emit any rays. Then the shadow

behind the screen is bounded by straight light ray

directions which emerge from the light source....

The rays which do not meet the screen continue

unobstructed along straight lines.’

– Sommerfeld (Optics).

• Discusses theory of shadow formation

from both the geometrical optics point of

view as well as full wave optics.

• We will look at shadows formed due to

gravitational deflection of light rays, which

is a GR effect.



SHADOWS OF BLACK HOLES

• Synge (1966) first calculated the shadow

of a black hole. We will analyse shadows

for a general, static, spherically symmetric

line element.

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2
2

• Steps:

(1) Set up the coordinates (observers sky).

(2) Find photon sphere (not mandatory).

(3) Note first integrals of geodesic equa-

tion.

(4) Use (3) in coordinates to get shadow.

(5) Write down shadow radius and angular

diameter.



(1) Coordinates (Vasquez, Esteban (2003))

→ xyz coordinate system with BH at origin.

→ Large r, Boyer–Lindquist ≡ xyz.

→ Observer coordinates: (r0 sin θ0,0, r0 cos θ0)

→ Tangent to light ray hits αβ plane at

(α, β) ≡ (−β cos θ0, α, β sin θ0).

→ Line from BH to Obs. ⊥ to αβ plane.



• Eqn. of st.line joining obs. and (α, β):

x − r0 cos θ0

r0 sin θ0 + β cos θ0
=

y

−α
=

z − r0 cos θ0

r0 cos θ0 − β sin θ0

→ Yields two equations for α, β. Solve.

α =
r0y

r0 − x sin θ0 − z cos θ0
, β = α

z sin θ0 − x cos θ0

y

→ At the observer, α, β are:

α = −r20 sin θ0
dφ

dr
|r0

β = r20
dθ

dr
|r0

Note: Used x = r sin θ cosφ etc. and L’Hospital

rule to evaluate at observer point.

→ Inputs on dθ
dr

and dφ
dr

come from first in-

tegrals of geodesic motion.



(2) Photon sphere:

→ Line element:

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2
2

→ ui = ẋi;L = 1
2gijẋ

iẋj;H(xi, pi) = 1
2gijpipj

→ Null geodesics, H = 0; pi = ∂S
∂xi = gijẋ

j

→ Constants of motion:

E = −pt; L = pφ = r2 sin2 θ φ̇.

→ Action:

S = −Et + Lφ + Sr(r) + Sθ(θ)

→ H = 0 results in:

− e−νE2r2 + e−λ

(

dSr

dr

)2

r2 + L2

−
(

dSθ

dθ

)2

− L2 cot2 θ = −C



→ Finally, we obtain:

dSr

dr
=

√

√

√

√eλ

[

e−νE2 − C

r2
− L2

r2

]

= E
√

−V (r) = eν ṙ

dSθ

dθ
=

√

C − L2 cot2 θ = E
√

Θ(θ) = r2θ̇

→ Effective potential:

V (r) = eλ

[

χ + ℓ2

r2
− e−ν

]

where χ = C
E2, ℓ = L

E
.

→ Photon sphere condition:

ṙ = 0, ṗr = 0 → V (r) = 0, V ′(r) = 0

V (r) = 0 → χ + l2 = r2pe−ν(rp)

V ′(r) = 0 → χ + l2 =
1

2
ν′(rp)r

3
pe−ν(rp)

→ Photon sphere eqn.: rpν
′(rp) = 2.



(3) First integrals:

eν ṙ = E
√

−V (r)

r2θ̇ = E
√

Θ(θ)

r2 sin2 θ φ̇ = L

(4) Use (3) in α, β:

α = −r20 sin θ0
dφ

dr
|r0 = − ℓ

sin θ0

β = r20
dθ

dr
|r0 =

√

Θ(θ).

(5) Shadow radius, angular diameter:

α2 + β2 = χ + ℓ2 = r2sh = r2pe−ν(rp)

→ For Schwarzschild: Circular shadow

Radius: rsh = 3
√

3GM
c2

Ang. diam.: 2αD =
2rsh
D

= 6
√

3GM
c2D

.



Schwarzschild shadow

• Effective potential:

Veff =
1

(

1 − 2M
r

)2

[

−1 +
27M2

r2

(

1 − 2M

r

)

]

Negative, max at r = 3M, diverges to neg-

ative infinity at r = 2M, asymptotically of

value −1.

• Photon sphere: rph = 3M.



Physical meaning

→ A finely tuned photon at the photon or-

bit could, in principle, orbit the black hole

an infinite number of times.

→ However, since the orbit is unstable, any

slight perturbation would cause the photon

either to fall into the black hole or to es-

cape to infinity.

→ The photons that escape are seen by a

distant observer to have an impact param-

eter rsh = 3
√

3M with respect to the mass

M.

→ The circle in the observer’s sky with

radius rsh, centered on M, is the boundary

of the shadow. Shadow boundary is the

critical curve in lensing.



M87 (EHT Results 2019)

For the supermassive BH in M87

→ Use GR-Schwarzschild result for shadow.

→ M = 6.5 × 109MSun, D = 16.8MPc

→ 2αD = 39.6µas by the Synge formula!

Observed result

→ For ring diameter: 42 ± 3 µ-arcseconds

→ Deviation from circularity: 10 percent.

• See details in:

First M87 Event Horizon Telescope Re-

sults. I. The Shadow of the Supermassive

Black Hole, also paper VI.



Brightness temperature profile of emissions

at λ = 1.3mm.

Inner dark region (no emissions)

Outer emission ring: photon sphere and

beyond–shadow radius.

Expected shadow radius matches well with

GR expectations.



Rotating black holes

What happens when we include rotation?

Kerr BH.

→ Shadow no longer circular.

Possible profiles:
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What can shadows tell us?

• Shadows can help us compare different

theories of gravity, apart from further con-

firming GR. But, one must understand shad-

ows better (see eg. Gralla, Holz and Wald

(2019) for critique)

• Are shadows different in the presence of

dark matter or plasma or a cosmological

background? Several papers (Jusufi et. al,

Bisnovatyi-Kogan, Perlick....) which dis-

cuss these issues.

• Shadows not necessarily for black holes

alone. Wormholes and other BH mimick-

ers can have shadows too. A lot of work

on this is ongoing (Shaikh, Konoplya...).

• Accretion disc modeling and explanations

using GRMHD have gone a long way in un-

derstanding the results for M87. Further

work (simulations) surely required.



ECHOES



ECHOES IN SOUND

• When you get to the top of a mountain,

absorb the beautiful scenery, and shout,

”Hello!” A second later, your echo replies

in a quieter voice: ”Hello!”. Another sec-

ond later, you might hear a second reply,

even quieter than the first.

• Audio signal processing and acoustics:

Echo is a reflection of sound that arrives

at the listener with a delay after the direct

sound.

• The delay is directly proportional to the

distance of the reflecting surface from the

source and the listener.



• Two elements of an echo:

delay and decay.

• The delay is how long it takes for the

echo to occur.

• The decay is how much quieter the echo

was compared to the original sound.

• In the case of you shouting on top of

the mountain, the delay is about one sec-

ond, and the decay is probably less than

50 percent.



ECHO TEMPLATES

Echoing GW Signal (CIE Template)

ψ(t) = ψBH(t) + ψecho(t)

ψ(t) = A e−
t
τ cos (2πft + φ) +

Ñ
∑

n=1

(−1)nAne
− x2n

2β2
n cos (2πfnxn)

xn = t − techo − n∆techo

Ñ is number of echoes.

Several templates exist:

→ CIE (constant interval echoes)

→ UIE (unequal interval echoes).

For discussion on templates see Wang et.

al (2019).



Example: Choose βn = β, An = A A
3+n

,

fn = f τ = 4 × 10−3s, f = 250Hz, φ = 0,

A = 1.5 × 10−21, A = 0.5, β = 0.006s,

∆techo = techo = 0.0295
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→ Distinct demo of CI echoes above.

→ Other templates: ADA (see Abedi and

Afshordi (2020), Review.)

→ Forced oscillator with specific forcing

produces echoes.



MODELS WITH ECHOES

• When can echoes occur in GW physics?

(Cardoso, Franzin, Pani 2016)

→ Scalar wave eqn, φ =
∑

l,m Ylm
ψlm
r

→ Equation for ψlm(r):
[

− ∂2

∂t2
+

∂2

∂r2∗
− Vl(r)

]

ψlm = 0

where dr
dr∗ =

√
FB, −g00 = F, grr = B−1

• Potentials of three types:

→ Black holes, wormholes, star like ECOs

→ Note double barrier nature for worm-

holes, ECOs



• Potential features:
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• Typical solutions:

→ Solve using initial conditions:

→ ∂ψlm
∂t

(0, r) = e
−(r∗−rg)2

σ2 , ψlm(0, r) = 0.

→ Waveform profile (in time) using

rg = 10M, σ = 6M
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Multiple reflections in a lossy cavity.
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techo, ∆techo is measured from time-domain

profiles.

Double barrier nature of potential crucial.



BETTER UNDERSTANDING?

• How to understand the origin of echoes?

→ The basic eqn is:
[

− ∂2

∂t2
+

∂2

∂x2
− V (x)

]

ψ = 0

→ Laplace transform to ψ̄(ω, x) to get:

d2ψ̄

dx2
+ (ω2 − V (x))ψ̄ = I(ω, x)

I = iωψ0 − ψ̇0, ψ0 = ψ(0, x), ψ̇0 = ∂tψ(0, x).

→ One can solve this using a purely Green’s

function approach or employ a Dyson se-

ries. Final series solution inverted back us-

ing the inverse transform.

→ The crucial point is to implement the

right boundary conditions: pure outgoing

(two sides of a double barrier) or reflection

at a mirror say at x = −L and a membrane

at x = 0 (Delta fn.).



→ Dyson series approach

Analytically individualize each echo waveform and

show that it can be written as a Dyson series, for

arbitrary effective potential and boundary condi-

tions. Apply the formalism to explicitly determine

the echoes of a simple toy model: the Dirac delta

potential. Correia, Cardoso (2018)

→ Green’s function approach

Over short time scales evolution is governed by

the quasinormal frequencies of the individual po-

tentials, while the sensitivity to global structure can

be understood in terms of echoes. An echo expan-

sion of the Green’s function shows, as expected on

general grounds, at any finite time, causality limits

the number of echoes that can contribute. Hui,

Kabat, Wong (2019)

Mostly toy models worked out in some de-

tail



OBSERVATIONS?

• Echoes will play a decisive role in finding

out is BH mimickers exist.

• Membrane near horizon

→ The ingoing modes of the ringdownreflect back

from the membrane (e.g., fuzzball or firewall) near

horizon and pass back through the potential barrier.

→ Part of the wave goes to infinity with a time

delay. We call this the 1st echo.

→ This time delay corresponds to twice the tor-

toise coordinate distance between the peak of the

angular momentum barrier ( rmax) and the mem-

brane (which diverges logarithmically if the mem-

brane approaches the horizon).

→ The remaining part of the 1st echo returns back

towards the membrane and the process repeats it-

self. (∆techo ∼ 8M ln M
lp
).



Abedi et. al (2017): Predicted

∆techo(sec) = 0.2925 ± 0.00916(GW150914)

∆techo(sec) = 0.1013 ± 0.01152(GW151226)

∆techo(sec) = 0.1778 ± 0.02789(LV T151012)

Abedi et. al (2017): Best fit (1σ)

∆techo(sec) = 0.30068(GW150914)

∆techo(sec) = 0.09758(GW151226)

∆techo(sec) = 0.19043(LV T151012)

Criticism by Ashton et.al (2017)

Nothing confirmed yet.

Update: Abedi et al (2020)

Echoes in GW190425??



MEMORY



EARLY WORK

• Zel’dovich, Polnarev (1974): Radiation

of gravitational waves by a cluster of su-

perdense stars.

.... the value of hik after the encounter of two

objects differs from the value before the encounter.

As a result the distance between a pair of free

bodies should change, and in principle this effect

might possible serve as a non-resonance detector.

• Braginskii, Grishchuk (1985): Kinematic

resonance and memory effect in free-mass

gravitational antenna.

First coined the term memory effect in this

paper. Provided a very simple analysis.



Braginskii, Grishchuk (continued)

• Weak GW (along x):

ds2 = −dt2 + dx2 + (1 + a(u)) dy2

+(1 − a(u)) dz2 − 2b(u)dydz

Particle 1 at origin, proper time w.r.t. 1,

(x, y, z) = (l1, l2, l3) initial position of Parti-

cle 2. Deviation measured is via (x,y,z).

• Deviation eqns.:

ẍ = 0

ÿ = −1

2

(

äy + b̈z
)

z̈ = −1

2

(

b̈y − äz
)

Total displacement ∆l << l.

ä, b̈ and ξ all small. Also y = l2(1 + ξ(u)),

z = l3(1 + ξ(u)).



y, z deviation eqns. reduce to eqns like:

ξ̈ = F (u) (Forced eqn.).

• Memory effect:

→ Forcing over a small interval only. Pulse.

Integrate forced eqn. to get:

ξ2 − ξ1 =
∫ u2

u1

(

∫ T

u1

F (τ)dτ

)

dT + v1(u2 − u1)

ξ2 − ξ1 6= 0 for u > τ (beyond the u value

where the forcing stops). Separation be-

tween geodesics changes in region where

there is no pulse.

Change in separation due to a pulse, when

initial separation is, say, zero, is memory.



SHEAR AND GW MEMORY

Permanent shear! Memory effect for a ring

of particles. Figure from a talk by Marc Favata.

• May actually be seen in future.



BRAGINSKII-THORNE, CHRISTODOULOU

• Change in metric perturbation related to

change in separation between geodesics.

∆ξi =
1

2
∆hTT

ij ξj

∆hij = lim
t→∞

hij − lim
t→−∞

hij

h̄ij ∝ D̈ij

⇒ ∆ξi ∝ ∆D̈i
j

• For energy-momentum of a system of n

particles one can find hTT
ij and ∆hTT

ij . This

gives the → Braginskii–Thorne formula.

• Christodoulou generalised this to full non-

linear GR. Memory carried by GWs to null

infinity. Effect of gravitons.



EXACT PLANE WAVES (Zhang et al (2017)

• Toy model, exact plane gravitational wave
metric:

ds2 = dx2 + dy2 + 2dudv +

(

1

2
A+(u)(x2 − y2)

)

du2

• Vacuum solution of Einstein equations.

• u =constant surfaces are planes which
propagate as the waves.

• Riemann tensor not zero everywhere.

• Choice of A+(u) is arbitrary. Choose
A+(u) as a square pulse. Write down geodesic
equations and solve.

Square pulse



DISPLACEMENT MEMORY

• Nature of separation between trajecto-

ries, before the pulse arrives and after it

departs.

x-coordinate

y-coordinate

• Note change in relative separation, caused

by pulse. Memory.



VELOCITY MEMORY

Velocity along x.

Velocity along y.

• Note jump in velocity, caused by a pulse.

Memory!



B-MEMORY (O’Loughlin, Demirchian (2019))

• Look at a geodesic congruence. Find

how ∇ivj = Bji evolves. Covariant defn. of

memory?

• Initial congruence with zero θ, σ, ω (be-

fore the pulse arrives). What is θ, σ after

the pulse leaves?

Expansion(square pulse) Shear(square pulse)

•Focusing, plus a large, non-constant grow-

ing shear! (I. Chakraborty, SK (2019)).

Fourier mode of square pulse centred around

ω ∼ 0(soft graviton??)



MEMORY IN KUNDT SPACETIMES

•Special case of Kundt spacetimes:

ds2 = P2(x, y)
[

dx2 + dy2
]

+ 2dudv +
(

1

2
A+(u)(x2 − y2)

)

du2

• Result: For a constant negative curva-

ture wavefront (P (x, y) = 1
y
), we get a dis-

tinct constant shift displacement memory

effect.

• Note that before arrival and after depar-

ture of the pulse, the spacetimes are not

asymptotically flat.

Largely of theoretical interest.

Ongoing work IC, SK (2020)



OTHER WORK

• Relation between memory, soft theorems

and BMS group symmetry at null infinity.

(Strominger, Sen,Laddha and others)

• Electromagnetic memory effects, mem-

ory for other particles as as well. Trans-

verse kick. (Bieri and Garfinkle).

• Recently discovered logarithmic terms in

the soft graviton theorem induce a late

time component in the gravitational wave-

form that falls off as inverse power of time,

producing a tail term to the linear memory

effect. (Laddha, Sen (2019)

• Persistent observables for memory, work

by Flanagan, Grant, Harte, Nichols (2019).

• Black Hole memory (Rahman and Wald

(2019)).

.... and many more....



DETECTIONS

• The expected signal:

• Overall tiny DC effect.



• Possible detections:

• Two cases: (1) BH Binary with Mtot =

106Msun at z = 1; (2) BH Binary with Mtot =

100MSun at 200 Mpc.

• For (2), Strain Amplitude is 10−23 (de-

tector arm 103 to 104 m) and change in

length due to memory signal is 10−19 m.



CONCLUSIONS

• Shadows may provide a direct image of

an astrophysical object: ‘seeing’. Eg. su-

permassive BH in M87. Proof of existence

very direct. But what we are really seeing

must be understood well.

• Echoes specific to exotic objects like worm-

holes, gravastars. Quantum effects at hori-

zons can also yield echoes. However, this

is indirect evidence through echoing time

domain profiles and their properties.

• Memory a crucial new phenomenon. De-

tecting memory amounts to detecting a

soft graviton. Inequivalent Minkoswki space-

times related through BMS transformations

at null infinity.

Hopefully many new results forth-

coming, maybe this year??



A LIGHTER(?) SIDE!

Shadow, Echo, Memory is a collection of nineteenth, twenti-

eth, and twenty-first century music arranged and written for

cello ensemble. ... All together, this varied group of compo-

sitions explores the cello’s power to sing, to express textures

of light and dark, to bring to life sounds and images from

another time, and to aid a listener in revisiting their own

history.


