Testing GR using GWs

Chandra Kant Mishra IIT Madras

Chennai Symposium, IIT Madras

Overview

- Testing GR pre-detection proposals
- Firsts tests of GR using GWs GW150914
- Testing GR with O1/O2 BBHs and GW170817
- GW observations and BH signatures
- "No-hair" tests for inspiralling CBCs proposal and the test on real data (aLIGO)
- Beyond aLIGO: 3rd generation detectors, LISA

pre-detection proposals

Consistency Test (PSR1913+16)

Measurement of two Keplerian (e, P_b) and three post-Keplerian parameters (all functions of e, P_b, m_1, m_2) provides three constraints on the two unknown masses.

GR passes the test if it provides a consistent solution to these constraints, within the measurement errors.

Clifford Will (2014)

Probing highly relativistic, highly dynamical, strong gravity regime

Parametrized tests of the post-Newtonian theory

- In the post-Newtonian (PN) theory, various quantities are expressed as a series expansion in a small parameter $v/c \sim f^{1/3}$.
- The PN inspiral waveform

$$\tilde{h}(f) = A(f) e^{i \Psi(f)} \qquad \Psi(f) = \sum_{j=0}^{7} \left[\psi_j + \psi_{jl} \ln f \right] f^{(j-5)/3}$$

- For a binary with nonspinning components, ψ_i ≡ ψ_i(m₁, m₂).
 Measure each of the phasing coefficients (ψ_j, ψ_{jl}), treating them all as independent of one another.
- Measurement of any two of these parameters can be used to infer the binary's component masses (m_1, m_2) .
- Measurement of a third parameter would constitute a test of the theory, by requiring a consistency of the component masses in the m_1 - m_2 plane, similar to the binary pulsar test.

Parametrised tests of PN theory

GR is correct

non-GR: $\psi_i \to \psi_i (1 + \delta \psi_i)$ for $i \ge 5$

GR needs modifications

Mishra, Arun, Iyer, Sathyaprakash, PRD 82, 064010 (2010) ; Arun+, PRD (2006); Arun+, CQG (2006)

Generalisations — model independent test

Generic tests of GR in Bayesian framework.

$$\psi_i \to \psi_i (1 + \delta \chi_i); \delta \chi_i^{\text{GR}} = 0.$$

Li et al. (2012)

Tests with GW150914

LVC, Phys. Rev. Lett. 116, 061102 (2016) — BBH Discovery Paper LVC, Phys. Rev. Lett. 116, 221101 (2016) — Testing GR Paper

Parameterised tests — IMR signals

Frequency Evolution

Waveform regime	Parameter	f dependence
Early-inspiral regime	$\delta \hat{arphi}_0$	$f^{-5/3}$
	$\delta \hat{arphi}_1$	$f^{-4/3}$
	$\delta \hat{arphi}_2$	f^{-1}
	$\delta \hat{arphi}_3$	$f^{-2/3}$
	$\delta \hat{arphi}_4$	$f^{-1/3}$
	$\delta \hat{arphi}_{5l}$	$\log(f)$
	$\delta \hat{arphi}_6$	$f^{1/3}$
	$\delta \hat{arphi}_{6l}$	$f^{1/3}\log(f)$
	$\delta \hat{arphi}_7$	$f^{2/3}$
Intermediate regime	$\delta \hat{eta}_2$	$\log f$
	$\delta \hat{eta}_3$	f^{-3}
Merger-ringdown regime	$\delta \hat{lpha}_2$	f^{-1}
	$\delta \hat{lpha}_3$	$f^{3/4}$
	$\delta \hat{lpha}_4$	$\tan^{-1}(af+b)$

Parameterised tests

Bounds (90%)

IMR consistency test

Test of the least damped mode

Tests with O1-O2 data

LVC, PRD, 100, 104036 (2019)

Events (O1-O2) and tests of GR

	Properties			G	R tes	ts p	erfor	rmed	
Event	$D_{\rm L}$ [Mpc]	$M_{\rm tot} \ [M_{\odot}]$	$M_{\rm f}~[M_\odot]$	a_{f}	RT	IMR	PI	PPI	MDR
GW150914 ^a	440^{+150}_{-170}	$66.1^{+3.8}_{-3.3}$	$63.1^{+3.4}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	1	\checkmark	√	1	√
GW151012 ^a	1080^{+550}_{-490}	$37.2^{+10.6}_{-3.9}$	$35.6^{+10.8}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	\checkmark	• • •	•••	\checkmark	\checkmark
GW151226 ^{a,b}	450^{+180}_{-190}	$21.5_{-1.5}^{+6.2}$	$20.5_{-1.5}^{+6.4}$	$0.74\substack{+0.07 \\ -0.05}$	\checkmark	•••	\checkmark	• • •	\checkmark
GW170104	990_{-430}^{+440}	$51.0^{+5.3}_{-4.1}$	$48.9^{+5.1}_{-4.0}$	$0.66^{+0.08}_{-0.11}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
GW170608	320^{+120}_{-110}	$18.6^{+3.2}_{-0.7}$	$17.8^{+3.4}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	\checkmark	•••	\checkmark	\checkmark	\checkmark
GW170729 ^c	2840^{+1400}_{-1360}	$84.4^{+15.8}_{-11.1}$	$79.5^{+14.7}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	\checkmark	\checkmark	•••	\checkmark	\checkmark
GW170809	1030^{+320}_{-390}	$59.0^{+5.4}_{-4.1}$	$56.3^{+5.2}_{-3.8}$	$0.70\substack{+0.08 \\ -0.09}$	\checkmark	\checkmark	•••	\checkmark	\checkmark
GW170814	600^{+150}_{-220}	$55.9^{+3.4}_{-2.6}$	$53.2^{+3.2}_{-2.4}$	$0.72\substack{+0.07 \\ -0.05}$	\checkmark	\checkmark	\checkmark	\checkmark	1
GW170818	1060^{+420}_{-380}	$62.2^{+5.2}_{-4.1}$	$59.4_{-3.8}^{+4.9}$	$0.67\substack{+0.07 \\ -0.08}$	\checkmark	\checkmark	• • •	\checkmark	\checkmark
GW170823	1940^{+970}_{-900}	$68.7^{+10.8}_{-8.1}$	$65.4^{+10.1}_{-7.4}$	$0.72\substack{+0.09 \\ -0.12}$	1	\checkmark	•••	\checkmark	\checkmark

LVC, PRD. 100, 104036 (2016)

Bounds (90%)

Combined posteriors (IMR consistency) O1-O2

Parameterised tests with GW170817

LVC, PRL 116, 061102 (2016)

LVC, PRL, 123 011102 (2019)

"No-hair" tests for inspiralling CBCs

GW observations and BH signatures

BBH nature

Waveform Reconstructions

Waveform Consistency Tests

LVC, Phys. Rev. Lett. 116, 061102 (2016)

LVC, Phys. Rev. Lett. 116, 221101 (2016)

Is the final object a BH?

Observed quasi-normal mode spectrum of the remnant

LVC, Phys. Rev. Lett. 116, 221101 (2016)

- Power in the ringdown signal.
- Uncertainties in predicting the start of the ringdown.

What about the binary constituents?

Tidal deformability of the compact object

Induced quadrupole moment

Tidal love number

 $k_2 = \frac{3}{2} G_{\lambda}^{*2} R^{-5}$ $k_2 \equiv 0 \text{ for BHs}$ Dimensionless tidal love number: **0** for BHs
Damour & Nagar, 2009
Bennington & Poisson, 2009

		k_2^E
NSs		210
ECOs	Boson star	41.4
	Wormhole	$\frac{4}{5(8+3\log\xi)}$
	Perfect mirror	$\frac{8}{5(7+3\log\xi)}$
	Gravastar	$\frac{16}{5(23-6\log 2+9\log \xi)}$

Cardoso+ (2017)

What about the binary constituents?

Tidal deformability of the compact object

Induced quadrupole moment

Tidal love number

Dimensionless tidal love number: 0 for BHs

Damour & Nagar, 2009 Bennington & Poisson, 2009 Higher order effects and hence difficult to measure.

Cardoso+, arXiv: 1701.01116 (2017) Maselli+, arXiv:1703.10612 (2017)

A "No-hair" Test for Compact Binaries

Testing the BH nature by measuring the spin-induced multipole moments of a compact binary system.

Krishnendu, Arun, Mishra, PRLI19, 091101,2017 Krishnendu, Mishra, Arun, PRD 99, 064008, 2019 Krishnendu, Saleem, Samajdar, Arun, Del Pozzo, Mishra, PRD 100, 104019 (2019)

The proposal

Measure spin-induced deformations of binary components

Poisson, PRD 57, 5287 (1998); F. D. Ryan, PRD 55, 6081 (1997) Laarakkers+, ApJ 512, 282 (1999); Uchikata+, CQG 32,085008(2015) Pappas+, PRL 108, 231103 (2012);

Waveforms and spin deformations

Inspiral waveform (SPA)

$$\tilde{h}(f) = \frac{M^2}{D_L} \sqrt{\frac{5\pi}{48\eta}} \sum_{n=0}^{4} \sum_{k=1}^{6} V_k^{n-7/2} C_k^{(n)} e^{i(k\Psi_{\text{SPA}}(f/k) - \pi/4)}$$

Amplitude corrections from kth harmonic at nth PN order

$$\Psi_{\text{SPA}}(f) = 2\pi f t_{\text{c}} - \phi_{\text{c}} + \left\{ \frac{3}{128\eta v^5} \left[\psi_{\text{NS}} + \psi_{\text{SO}} + \psi_{\text{SS}} + \psi_{\text{SSS}} \right] \right\}_{v=V_1(f)}$$

$$\kappa \text{ dependence}$$

Analysis Setup

Fisher Matrix approach to parameter estimation — assumes Gaussian noise and high SNR

- gives a lower bound on errors / highly inexpensive

Parameter Space: { $t_c, \phi_c, D_L, \iota, \mathcal{M}, \delta, \chi_1, \chi_2, \kappa_1, \kappa_2, \lambda_1, \lambda_2$ } — alternatively, { $t_c, \phi_c, D_L, \iota, \mathcal{M}, \delta, \chi_1, \chi_2, \kappa_s, \kappa_a, \lambda_s, \lambda_a$ }

Compact Binary

BBH

$$\kappa_s = (\kappa_1 + \kappa_2)/2; \kappa_a = (\kappa_1 - \kappa_2)/2$$
 $\kappa_s = 1; \kappa_a = 0$
 $\lambda_s = (\lambda_1 + \lambda_2)/2; \lambda_a = (\lambda_1 - \lambda_2)/2$ $\lambda_s = 1; \lambda_a = 0$

Large dimensionality and unreliable measurements — We set κ_a , λ_s , λ_a to their BBH values

Analysis Setup

New parameter space: $\{t_c, \phi_c, D_L, \iota, \mathcal{M}, \delta, \chi_1, \chi_2, \kappa_s\}$

Note that $\kappa_s = 1$ for BBH — accuracies with which it can be measured gives constrain on BBH nature

The choice $\kappa_a = 0$

— The test may be viewed as a Null test of the BBH nature of a compact binary

Effect of binary params

aLIGO, SNR=10

Krishnendu, Arun, Mishra, PRL119, 091101,2017

$1 - \sigma$ error contours for κ_s (5,4) M_{\odot} (10,9) M_{\odot}

aLIGO, SNR=10

Krishnendu, Arun, Mishra, PRL119, 091101,2017

Injection study (Bayesian)

Trends in-line with expectations — 'high component spins lead to better constraints'

 $M = 15M_{\odot}, q = 1(\text{top}),$ $q = 2(\text{bottom}), D_L = 400 \,\text{Mpc}$

Krishnendu, Saleem, Samajdar, Arun, Del Pozzo, Mishra, PRD 100, 104019 (2019)

Constraints from observed events

Event	Prior on $\delta \kappa_s$	90% bounds on $\delta \kappa_s$	Bayes factor $(\log \mathcal{B}_{BH}^{NBH})$
GW151226	[-200, 200]	[−191.78, 13.45]	-0.94
	[0, 200]	≤98.67	-2.26
GW170608	[-200, 200]	[−177.36, 122.98]	-0.15
	[0, 200]	≤125.69	-1.15

 No evidence for non-BBH nature though weaker constraints

Krishnendu, Saleem, Samajdar, Arun, Del Pozzo, Mishra, PRD 100, 104019 (2019)

Effective spin

$$\chi_{\rm eff} = \frac{m_1 \chi_{1z} + m_2 \chi_{2z}}{(m_1 + m_2)}$$

Single most important parameter indicating the ability to constrain departure from BBH nature.

$$M = 15 M_{\odot}, D_L = 400 \,\mathrm{Mpc}$$

Krishnendu, Saleem, Samajdar, Arun, Del Pozzo, Mishra, PRD 100, 104019 (2019)

Corner plots

Beyond aLIGO Cosmic Explorer, ET & LISA

$1 - \sigma$ error contours for κ_s

 $M = 30 M_{\odot}, q = 1.2,$ $D_L = 400 \, {
m Mpc}$ Krishnendu, Mishra, Arun, PRD 99, 064008 (2019)

Simultaneous bounds (CE)

Cosmic Explorer

 $M = 30 M_{\odot}, q = 1.2$

3G cases

 $1 - \sigma$ error contours for κ_s

Summary and outlook

- First tests of GR using GWs probing the highly dynamical, highly relativistic and strong gravity regime performed — No evidence for departures from 'the theory'.
- Tests further improved by combining the data collected during the first two observations runs
 — to be aided by near future observations which are expected to be routine.

Summary and outlook

- Diverse spinning configurations, inclusion of contributions from the late stages of binary evolution to improve tests such as "No-hair" tests for BBHs.
- Synergy of tidal, spin-induced constraints in case of mixed, strong constraints compact components involving ECOs.
- Tests of General relativity involving observations of spinning-eccentric binaries in context of 2G/3G and LISA observations — probing eccentric space-times.

Additional slides

Combined posteriors (PI/PPI) 01-02

Parameterised tests with GW170817

