
Figure 5: Time frequency maps and reconstructed signal waveforms for

the ten binary black hole events reported in our catalog. In the right hand

panel for each detection, the different colors represent different methods

for reconstructing the waveforms; these are found to be consistent with

each other when we take into account the uncertainties in the process.

(Adapted from Figure 10 of our paper.)

LOOKING TO THE FUTURE
The GW detections presented in our catalog have allowed us to
improve our estimate of the rate at which the 'global'
population of BBH and BNS mergers takes place in the
Universe, and to place an upper limit on the rate of mergers of
neutron star-black hole binary systems, in view of the fact that
we did not detect such a merger in O1 or O2. More details of
these population rate estimates, and how they were
measured, can be found in a companion article to our catalog
paper. Although our rate estimates are still quite uncertain,
they will continue to improve as we make many more GW
detections in the future.

Advanced Virgo and Advanced LIGO are currently undergoing
further upgrades to their sensitivity and a third Observing Run,
known as O3, is expected to start in spring 2019 and last for an
entire year— leading to the discovery of tens of binary merger
events during that run. Moreover, the Japanese
detector KAGRA is also expected to join the network around
the end of 03 — which will further extend the global network
and so should further improve our ability to pinpoint GW
sources on the sky.

The publication of GWTC-1 is a landmark moment for
gravitational-wave astronomy, and an important stepping
stone to a very bright future.

GLOSSARY
Black hole: A region of space-time caused by an extremely compact mass
where the gravity is so intense it prevents anything, including light, from
leaving.
Neutron star: An extremely dense remnant from the collapse of more massive
stars.
Noise: Fluctuation in the gravitational-wave measurement signal due to
various instrumental and environmental effects. The sensitivity of a
gravitational-wave detector is limited by noise.
Observing run: A period of observation in which gravitational wave detectors
are taking data.
Sensitivity: A description of a detector's ability to detect a signal. Detectors
with lower noise are able to detect weaker signals and therefore are said to
have higher (or greater) sensitivity.
Strain: The fractional change in the distance between two measurement
points due to the deformation of space-time by a passing gravitational wave.
Waveform: Representation of how a gravitational-wave signal varies with
time.
Spin: Quantity that measures how fast an object rotates around itself.
Gravitational-wave polarization: The geometric shape of the stretching and
squeezing of space-time caused by a gravitational wave as it moves.
Tidal deformation: Deformation of an object induced by the gravitational field
of another object. As an example, on the Earth tides are caused by the Sun
and the Moon and produce a deformation of the surface of the oceans with
consequent daily fluctuation in ocean level.

Figure 6: Still image from LIGO's and Virgo's "Binary Black Hole Orrery": a

visualization of the merging black holes that LIGO and Virgo have observed so

far. The full video (available here) shows numerical-relativity calculations of the

black holes' horizons and the emitted gravitational waves, during the final few

orbits of the black holes as they spiral inwards, merge and ring down. Each

numerical-relativity calculation is consistent with one of the observations in the

LIGO-Virgo catalog. As the horizons of the black holes spiral together and merge,

the emitted gravitational waves become louder (larger amplitude) and higher

pitched (higher in frequency). This movie is inspired by the Kepler Orrery. (Credit:

Teresita Ramirez / Geoffrey Lovelace / SXS Collaboration / LIGO Virgo

Collaboration).

FIND OUT MORE:
Visit our websites: http://www.ligo.org, http://www.virgo-gw.eu

Read the full article, free and online here

Read a companion paper on BBH population properties inferred from O1 and 
O2, free and online here

Explore the catalog data here at the Gravitational Wave Open Science Center

Visit our websites:
http://www.ligo.org

http://www.virgo-gw.eu
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Testing GR — pre-detection proposals 

Firsts tests of GR using GWs — GW150914 

Testing GR with O1/O2 BBHs and GW170817  

GW observations and BH signatures 

“No-hair” tests for inspiralling CBCs — 
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Consistency Test (PSR1913+16)

Clifford Will (2014)

The first evidence: PSR B1913+16

⌅ Discovery of a double neutron star
system.
Hulse and Taylor (1975)

⌅ Orbital decay:
(Ṗb)obs/(Ṗb)GR

= 1.0013± 0.0021.

⌅ Measurement of two Keplerian
(e,Pb) and three post-Keplerian
parameters (all functions of
e,Pb,m1,m2) provides three
constraints on the two unknown
masses.

⌅ GR passes the test if it provides a
consistent solution to these
constraints, within the
measurement errors. C. M. Will (2014)
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Probing highly relativistic, highly 
dynamical, strong gravity regime  

 Yunes et al., (2014)



Parametrized tests of the post-Newtonian theory

⌅ In the post-Newtonian (PN) theory, various quantities are
expressed as a series expansion in a small parameter
v/c ⇠ f 1/3.

⌅ The PN inspiral waveform

h̃(f ) = A(f ) ei (f )  (f ) =
7X

j=0

[ j +  jl ln f ] f
(j�5)/3

⌅ For a binary with nonspinning components,  i ⌘  i (m1,m2).

⌅ Measure each of the phasing coe�cients ( j , jl), treating
them all as independent of one another.

⌅ Measurement of any two of these parameters can be used to
infer the binary’s component masses (m1,m2).

⌅ Measurement of a third parameter would constitute a test of
the theory, by requiring a consistency of the component
masses in the m1-m2 plane, similar to the binary pulsar test.



Demonstration of the proposed test

GR is correct GR needs modifications

⌅ non-GR:
 i !  i (1 + � i ) for i � 5

Mishra, Arun, Iyer, Sathyaprakash (2010)

Demonstration of the proposed test

GR is correct GR needs modifications

⌅ non-GR:
 i !  i (1 + � i ) for i � 5

Mishra, Arun, Iyer, Sathyaprakash (2010)

Parametrised tests of PN theory

Mishra, Arun, Iyer, Sathyaprakash, 
PRD 82, 064010 (2010) ; 
Arun+, PRD (2006); Arun+, CQG 
(2006) 



Generalizations of the proposed test

⌅ Generic tests of GR in Bayesian
framework.

⌅  i !  i (1 + ��i ); ��GR
i = 0.

Li et al. (2012)

GR signal

Generalisations — model independent test 



Tests with GW150914

LVC, Phys. Rev. Lett. 116, 061102 (2016) — BBH Discovery Paper
LVC, Phys. Rev. Lett. 116, 221101 (2016) — Testing GR Paper



20 Hz to fend insp
GW , and we estimate the posterior dis-

tributions of the binary’s component masses and spins
using this “inspiral” (low-frequency) part of the observed
signal, using the nested-sampling algorithm in the
LALINFERENCE software library [52]. We then use for-
mulas obtained from NR simulations to compute posterior
distributions of the remnant’s mass and spin. Next, we
obtain the complementary “postinspiral” (high-frequency)
signal, which is dominated by the contribution from the
merger and ringdown stages, by restricting the frequency-
domain representation of the waveforms to extend between
fend insp
GW and 1024 Hz. Again, we derive the posterior

distributions of the component masses and spins, and
(by way of NR-derived formulas) of the mass and spin
of the final compact object. We note that the MAP wave-
form has an expected SNRdet ∼ 19.5 if we truncate its
frequency-domain representation to have support between
20 and 132 Hz, and ∼16 if we truncate it to have support
between 132 and 1024 Hz. Finally, we compare these two
estimates of the final Mf and dimensionless spin af and
compare them also against the estimate performed using
full inspiral-merger-ringdown waveforms. In all cases, we
average the posteriors obtained with the EOBNR and
IMRPHENOM waveform models, following the procedure
outlined in Ref. [3]. Technical details about the imple-
mentation of this test can be found in Ref. [60].
This test is similar in spirit to the χ2 GW search statistic

[2,61], which divides the model waveform into frequency
bands and checks to see that the SNR accumulates as

expected across those bands. Large matched-filter SNR
values which are accompanied by a large χ2 statistic are very
likely due either to noise glitches or to a mismatch between
the signal and the model matched-filter waveform.
Conversely, reduced-χ2 values near unity indicate that the
data are consistentwithwaveformplus the expected detector
noise. Thus, large χ2 values are a warning that some parts of
the waveform are a much worse fit than others, and thus the
candidates may result from instrument glitches that are very
loud, but they do not resemble binary-inspiral signals.
However, χ2 tests are performed by comparing the data
with a single theoretical waveform, while in this case we
allow the inspiral and postinspiral partial waveforms to
select different physical parameters. Thus, this test should be
sensitive to subtler deviations from the predictions of GR.
In Fig. 4 we summarize our findings. The top panel

shows the posterior distributions of Mf and af estimated
from the inspiral and postinspiral signals, and from the
entire inspiral-merger-ringdown waveform. The plot con-
firms the expected behavior: the inspiral and postinspiral
90% confidence regions (defined by the isoprobability
contours that enclose 90% of the posterior) have a
significant region of overlap. As a sanity check (which,
strictly speaking, is not part of the test of GR that is being
performed), we also produced the 90% confidence region
computed with the full inspiral-merger-ringdown wave-
form; it lies comfortably within this overlap. We have
verified that these conclusions are not affected by the
specific formula [40,59,62] used to predict Mf and af, or
by the choice of fend insp

GW within !50 Hz.

FIG. 2. MAP estimate and 90% credible regions for (upper
panel) the waveform and (lower panel) the GW frequency of
GW150914 as estimated by the LALINFERENCE analysis [3]. The
solid lines in each panel indicate the most-probable waveform
from GW150914 [3] and its GW frequency. We mark with a
vertical line the instantaneous frequency fend insp

GW ¼ 132 Hz,
which is used in the IMR consistency test to delineate the
boundary between the frequency-domain inspiral and postinspiral
parts (see Fig. 3 below for a representation of the most-probable
waveform’s amplitude in frequency domain).

FIG. 3. Frequency regions of the parametrized waveform model
as defined in the text and in Ref. [41]. The plot shows the absolute
value of the frequency-domain amplitude of the most-probable
waveform from GW150914 [3]. The inspiral region (cyan) from
20 to ∼55 Hz corresponds to the early- and late-inspiral regimes.
The intermediate region (red) goes from ∼55 to ∼130 Hz.
Finally, the merger-ringdown region (orange) goes from
∼130 Hz to the end of the waveform.
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sensitivity improves, and more sophisticated parametrized
waveform models, will allow us to do much more stringent
and physical tests targeted at specific relativistic effects. We
work within a subset of the TIGER framework [85,86] and
perform a null-hypothesis test by comparing GW150914
with a generalized, analytical inspiral-merger-ringdown
waveform model (henceforth, GIMR) that includes para-
metrized deformations with respect to GR. In this frame-
work, deviations from GR are modeled as fractional
changes fδp̂ig in any of the parameters fpig that para-
metrize the GW phase expression in the baseline waveform
model. Similar to Refs. [85,86], we only consider deviations
fromGR in theGWphase,whilewe leave theGWamplitude
unperturbed. Indeed, at the SNR of GW150914 (i.e.,
SNR ∼ 24), we expect to have much higher sensitivity to
the GW phase than to its amplitude. Also, amplitude
deviations could be reabsorbed in the calibration error
model used to analyze GW150914 [3].
We construct GIMR starting from the frequency-domain

IMRPHENOM waveform model. The dynamical stages that
characterize the coalescence process can be represented in
the frequency domain by plotting the absolute value of the
waveform’s amplitude. We review those stages in Fig. 3 to
guide the reader toward the interpretation of the results that
are summarized in Table I and Figs. 6 and 7. We refer to the
early-inspiral stage as the PN part of the GW phase. This
stage of the phase evolution is known analytically up to
ðv=cÞ7 and it is parametrized in terms of the PN coefficients
φj, j ¼ 0;…; 7 and the logarithmic terms φjl, j ¼ 5, 6. The
late-inspiral stage, parametrized in terms of σj,

j ¼ 1;…; 4, is defined as the phenomenological extension
of the PN series to ðv=cÞ11. The early- and late-inspiral
stages are denoted simply as inspiral both in Ref. [41] and
in Fig. 3. The intermediate stage that models the transition
between the inspiral and the merger-ringdown phase is
parametrized in terms of the phenomenological coefficients
βj, j ¼ 1, 2, 3. Finally, the merger-ringdown phase is
parametrized in terms of the phenomenological coefficients
αj, j ¼ 1, 2, 3. The βj’s and αj’s aim to capture the
frequency dependencies of the phase of the corresponding
regimes; see the column labeled “f dependence” in Table I.
Because of the procedure through which the model is
constructed, which involves fitting a waveform phasing
ansatz to a calibration set of EOB waveforms joined to NR
waveforms [41], there is an intrinsic uncertainty in the
values of the phenomenological parameters of the
IMRPHENOM model. For the intermediate and merger-
ringdown regime, we verified that these intrinsic uncer-
tainties are much smaller than the corresponding statistical
uncertainties for GW150914 and thus do not affect our
conclusions. In the late-inspiral case, the uncertainties
associated with the calibration of the σj parameters are
large and almost comparable to the statistical measurement
uncertainties. For this reason, we do not report results for
the σj parameters.
As mentioned, we construct the GIMR model by intro-

ducing (fractional) deformations δp̂i for each of the
IMRPHENOM phase parameters pi, which dominate
the evolution of the phase at the different stages in the
coalescence explained above. At each point in parameter

TABLE I. Summary of results for the GIMR parametrized-deviation analysis of GW150914. For each parameter in the GIMR model,
we report its frequency dependence, its median and 90% credible intervals, the quantile of the GR value of 0 in the one-dimensional
posterior probability density function. Finally, the last two columns show log10 Bayes factors between GR and the GIMR model. The
uncertainties on the log Bayes factors are 2σ. The a and b coefficients shown for δα̂4 are functions of the component masses and spins
(see Ref. [41]). For each field, we report the corresponding quantities for both the single-parameter and the multiple-parameter analysis.

Median GR quantile log10BGR
model

Waveform regime Parameter f dependence Single Multiple Single Multiple Single Multiple

Early-inspiral regime δφ̂0 f−5=3 −0.1þ0.1
−0.1 1.4þ3.3

−3.0 0.94 0.21 1.9% 0.1
!

3.9% 0.1

δφ̂1 f−4=3 0.3þ0.4
−0.4 −0.4þ0.7

−0.7 0.14 0.87 1.6% 0.1
δφ̂2 f−1 −0.35þ0.3

−0.35 −3.2þ19.3
−15.2 0.97 0.60 1.2% 0.2

δφ̂3 f−2=3 0.2þ0.2
−0.2 2.6þ13.8

−15.7 0.04 0.41 1.2% 0.1
δφ̂4 f−1=3 −2.0þ1.6

−1.8 0.5þ17.3
−18.2 0.98 0.49 0.3% 0.1

δφ̂5l logðfÞ 0.8þ0.6
−0.55 −1.5þ19.1

−16.3 0.02 0.55 0.7% 0.1
δφ̂6 f1=3 −1.5þ1.1

−1.1 −0.6þ18.2
−17.2 0.99 0.53 0.4% 0.1

δφ̂6l f1=3 logðfÞ 8.9þ6.8
−6.8 −2.4þ18.7

−15.2 0.02 0.57 −0.2% 0.1
δφ̂7 f2=3 3.7þ2.6

−2.75 −3.4þ19.3
−14.8 0.02 0.59 −0.0% 0.2

Intermediate regime δβ̂2 log f 0.1þ0.4
−0.3 0.15þ0.6

−0.5 0.29 0.35 1.2% 0.1
!

2.2% 0.1
δβ̂3 f−3 0.1þ0.5

−0.3 −0.0þ0.8
−0.6 0.38 0.56 0.6% 0.1

Merger-ringdown regime δα̂2 f−1 −0.1þ0.4
−0.4 −0.0þ1.0

−1.15 0.68 0.51 1.1% 0.1
!

2.1% 0.1δα̂3 f3=4 −0.5þ2.0
−1.5 −0.0þ4.4

−4.4 0.67 0.50 1.3% 0.1
δα̂4 tan−1ðaf þ bÞ −0.1þ0.5

−0.6 −0.0þ1.2
−1.1 0.61 0.55 1.2% 0.1
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Parameterised tests

bounds quickly become rather loose as the PN order is
increased. As a consequence, the double-pulsar bounds are
significantly less informative than GW150914, except at
0 PN order, where the double-pulsar bound is better thanks
to the long observation time (∼10 yr against ∼0.4 s for
GW150914). (We note that when computing the upper
bounds with the binary-pulsar observations, we include the
effect of eccentricity only in the 0 PN parameter. For the
higher PN parameters, the effect is not essential considering
that the bounds are not very tight.) Thus, GW150914 allows
us for the first time to constrain the coefficients in the PN
series of the phasing up to 3.5 PN order.
Furthermore, in Table I and Fig. 7 we summarize the

constraints on each testing parameter δφ̂i for the single- and
multiple-parameter analyses. In particular, in the sixth and
seventh columns of Table I, we list the quantile at which the
GR value of zero is found within the marginalized one-
dimensional posterior (i.e., the integral of the posterior
from the lower bound of the prior up to zero). We note that
in the single-parameter analysis, for several parameters, the
GR value is found at quantiles close to an equivalent of
2σ − 2.5σ, i.e., close to the tails of their posterior proba-
bility functions. It is not surprising that this should happen
for the majority of the early-inspiral parameters since we
find that these parameters have a substantial degree of
correlation. Thus, if a particular noise realization causes the
posterior distribution of one parameter to be off centered
with respect to zero, we expect that the posteriors of all of
the other parameters will also be off centered. This is
indeed what we observe. The medians of the early-inspiral
single-parameter posteriors reported in Table I show
opposite sign shifts that follow closely the sign pattern
found in the PN series.

We repeated our single-parameter analysis on 20 data
sets obtained by adding the same NR waveform with
GW150914-like parameters to different noise-only data
segments close to GW150914. In one instance, we
observed δφ̂i posterior distributions very similar to those
of Table I and Fig. 7, both in terms of their displacements
from zero and of their widths, whereas for the others the
displacements tended to be much smaller (though the
widths were still comparable). Thus, it is not unlikely that
instrumental noise fluctuations would cause the degree of
apparent deviation from GR found to occur in the single-
parameter quantiles for GW150914, even in the absence of
an actual deviation from GR. However, we cannot fully
exclude a systematic origin from inaccuracies or even
missing physics in our waveform models. Future observa-
tions will shed light on this aspect.
In the multiple-parameter analysis, which accounts for

correlations between parameters, the GR value is usually
found to be very close to the median of the marginalized
distributions. This is partly due to the fact that we are not
sensitive to most of the early-inspiral parameters, with the
exception of the 0PN and 0.5PN coefficients. As for the
intermediate and merger-ringdown parameters, since most
of the SNR for GW150914 comes from the high-frequency
portion of the observed signal, we find that the constraints
on those coefficients are very robust and essentially
independent of the analysis configuration chosen, single
or multiple.
Finally, the last two columns of Table I report the

logarithm of the ratio of the marginal likelihoods (the
logarithm of the Bayes factor log10 BGR

model) as a measure of
the relative goodness of fit between the IMRPHENOM and
GIMR models (see Ref. [3] and the references therein). If

FIG. 7. Violin plot summarizing the posterior probability density distributions for all of the parameters in the GIMR model. (Summary
statistics are reported in Table I.) From left to right, the plot shows increasingly high-frequency regimes, as outlined in the text and
Fig. 3; the leftmost posteriors, labeled from 0 PN to 3.5 PN, are for the early-inspiral PN regime; the βi and αi parameters correspond to
the intermediate and merger-ringdown regimes. Note that the constraints get tighter in the merger and ringdown regimes. In red, we
show posterior probability distributions for the single-parameter analysis, while in cyan we show the posterior distribution for the
multiple-parameter analysis. The black error bar at 0PN shows the bound inferred from the double pulsar; higher PN orders are not
shown, as their constraints are far weaker than GW150914’s measurement and they would appear in the plot as vertical black lines
covering the entire y axis. The 2.5 PN term reported in the figure refers to the logarithmic term δφ̂5l. Because of their very different scale
compared to the rest of the parameters, the 0 PN and 0.5 PN posterior distributions from GW150914 and the double-pulsar limits at 0 PN
order are shown on separate panels. The error bars indicate the 90% credible regions reported in Table I. Because of correlations among
the parameters, the posterior distribution obtained from the multiple-parameter analyses in the early-inspiral regimes are informative
only for the 0.5 PN coefficient.
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GW150914). (We note that when computing the upper
bounds with the binary-pulsar observations, we include the
effect of eccentricity only in the 0 PN parameter. For the
higher PN parameters, the effect is not essential considering
that the bounds are not very tight.) Thus, GW150914 allows
us for the first time to constrain the coefficients in the PN
series of the phasing up to 3.5 PN order.
Furthermore, in Table I and Fig. 7 we summarize the

constraints on each testing parameter δφ̂i for the single- and
multiple-parameter analyses. In particular, in the sixth and
seventh columns of Table I, we list the quantile at which the
GR value of zero is found within the marginalized one-
dimensional posterior (i.e., the integral of the posterior
from the lower bound of the prior up to zero). We note that
in the single-parameter analysis, for several parameters, the
GR value is found at quantiles close to an equivalent of
2σ − 2.5σ, i.e., close to the tails of their posterior proba-
bility functions. It is not surprising that this should happen
for the majority of the early-inspiral parameters since we
find that these parameters have a substantial degree of
correlation. Thus, if a particular noise realization causes the
posterior distribution of one parameter to be off centered
with respect to zero, we expect that the posteriors of all of
the other parameters will also be off centered. This is
indeed what we observe. The medians of the early-inspiral
single-parameter posteriors reported in Table I show
opposite sign shifts that follow closely the sign pattern
found in the PN series.

We repeated our single-parameter analysis on 20 data
sets obtained by adding the same NR waveform with
GW150914-like parameters to different noise-only data
segments close to GW150914. In one instance, we
observed δφ̂i posterior distributions very similar to those
of Table I and Fig. 7, both in terms of their displacements
from zero and of their widths, whereas for the others the
displacements tended to be much smaller (though the
widths were still comparable). Thus, it is not unlikely that
instrumental noise fluctuations would cause the degree of
apparent deviation from GR found to occur in the single-
parameter quantiles for GW150914, even in the absence of
an actual deviation from GR. However, we cannot fully
exclude a systematic origin from inaccuracies or even
missing physics in our waveform models. Future observa-
tions will shed light on this aspect.
In the multiple-parameter analysis, which accounts for

correlations between parameters, the GR value is usually
found to be very close to the median of the marginalized
distributions. This is partly due to the fact that we are not
sensitive to most of the early-inspiral parameters, with the
exception of the 0PN and 0.5PN coefficients. As for the
intermediate and merger-ringdown parameters, since most
of the SNR for GW150914 comes from the high-frequency
portion of the observed signal, we find that the constraints
on those coefficients are very robust and essentially
independent of the analysis configuration chosen, single
or multiple.
Finally, the last two columns of Table I report the

logarithm of the ratio of the marginal likelihoods (the
logarithm of the Bayes factor log10 BGR

model) as a measure of
the relative goodness of fit between the IMRPHENOM and
GIMR models (see Ref. [3] and the references therein). If

FIG. 7. Violin plot summarizing the posterior probability density distributions for all of the parameters in the GIMR model. (Summary
statistics are reported in Table I.) From left to right, the plot shows increasingly high-frequency regimes, as outlined in the text and
Fig. 3; the leftmost posteriors, labeled from 0 PN to 3.5 PN, are for the early-inspiral PN regime; the βi and αi parameters correspond to
the intermediate and merger-ringdown regimes. Note that the constraints get tighter in the merger and ringdown regimes. In red, we
show posterior probability distributions for the single-parameter analysis, while in cyan we show the posterior distribution for the
multiple-parameter analysis. The black error bar at 0PN shows the bound inferred from the double pulsar; higher PN orders are not
shown, as their constraints are far weaker than GW150914’s measurement and they would appear in the plot as vertical black lines
covering the entire y axis. The 2.5 PN term reported in the figure refers to the logarithmic term δφ̂5l. Because of their very different scale
compared to the rest of the parameters, the 0 PN and 0.5 PN posterior distributions from GW150914 and the double-pulsar limits at 0 PN
order are shown on separate panels. The error bars indicate the 90% credible regions reported in Table I. Because of correlations among
the parameters, the posterior distribution obtained from the multiple-parameter analyses in the early-inspiral regimes are informative
only for the 0.5 PN coefficient.
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Bounds (90%)

space, the coefficients pi are evaluated for the local
physical parameters (masses, spins) and multiplied by
factors ð1þ δp̂iÞ. When using such waveforms as tem-
plates, the parameters that are allowed to vary freely are
then the ones that are also present in the GR waveforms
(masses, spins, sky position, orientation, distance, and a
reference time and phase), together with one or more of the
δp̂i’s; the pi’s themselves are calculated using their GR
expressions in terms of masses and spins. In this para-
metrization, GR is uniquely defined as the locus in the
parameter space where all of the testing parameters δp̂i are
zero. In summary, our battery of testing parameters consists
of (i) the early-inspiral stage: fδφ̂0; δφ̂1; δφ̂2; δφ̂3;
δφ̂4; δφ̂5l; δφ̂6; δφ̂6l; δφ̂7g, (ii) the intermediate regime:
fδβ̂2; δβ̂3g, and (iii) the merger-ringdown regime:
fδα̂2; δα̂3; δα̂4g. (Unlike Ref. [41], we explicitly include
the logarithmic terms δφ̂5l and δφ̂6l. We also include the
0.5 PN parameter δφ̂1; since φ1 is zero in GR, we define
δφ̂1 to be an absolute shift rather than a fractional
deformation.) We do not consider parameters that are
degenerate with either the reference time or the reference
phase. For our analysis, we explore two scenarios: a single-
parameter analysis in which only one of the testing

parameters is allowed to vary freely (in addition to masses,
spins, etc.), while the remaining ones are fixed to their GR
value, that is zero, and a multiple-parameter analysis in
which all of the parameters in one of the three sets
enumerated above are allowed to vary simultaneously.
The rationale behind our choices of single- and multiple-

parameter analyses comes from the following consider-
ations. In most known alternative theories of gravity
[13,14,88], the corrections to GR extend to all PN orders
even if, in most cases, they have been computed only at
leading PN order. Considering that GW150914 is an
inspiral-merger-ringdown signal sweeping through the
detector between 20 and 300 Hz, we expect to see signal
deviations from GR at all PN orders. The single-parameter
analysis corresponds to minimally extended models that
can capture deviations from GR that occur predominantly,
but not only, at a specific PN order. Nevertheless, should a
deviation be measurably present at multiple PN orders, we
expect the single-parameter analyses to also capture these.
In the multiple-parameter analysis, the correlations among
the parameters are very significant. In other words, a shift in
one of the testing parameters can always be compensated
for by a change of the opposite sign in another parameter
and still return the same overall GW phase. Thus, it is not
surprising that the multiple-parameter case provides a much
more conservative statement on the agreement between
GW150914 and GR. We defer to future studies the
identification of optimally determined directions in the
δp̂i space by performing a singular value decomposition
along the lines suggested in Ref. [89].
For each set of testing parameters, we perform a separate

LALINFERENCE analysis, where, in concert with the full set
of GR parameters [3], we also explore the posterior
distributions for the specified set of testing parameters.
Since our testing parameters are purely phenomenological
(except the parameters that govern the PN early-inspiral
stage), we choose their prior probability distributions to be
uniform and wide enough to encompass the full posterior
probability density function in the single-parameter case.
Specifically, we set δφ̂i ∈ ½−20; 20%; δβ̂i ∈ ½−3; 3%;
δα̂i ∈ ½−5; 5%. In all cases, we obtain estimates of the
physical parameters—e.g., masses and spins—that are in
agreement with those reported in Ref. [3].
In Fig. 6 we show the 90% upper bounds on deviations in

the (known) PNparameters, δφ̂iwith i ¼ 0;…; 7 (except for
i ¼ 5, which is degenerate with the reference phase), when
varying the testing parameters one at the time, keeping the
other parameters fixed to the GR value. As an illustration,
following Ref. [87], we also show in Fig. 6 the bounds
obtained from themeasured orbital-period derivative _Porb of
the double pulsar J0737-3039 [12]. Also, for the latter,
bounds are computed by allowing for possible violations of
GR at different powers of frequency, one at a time. Not
surprisingly, since in binary pulsars the orbital period
changes at essentially a constant rate, the corresponding

FIG. 6. 90% upper bounds on the fractional variations of the
known PN coefficients with respect to their GR values. The
orange squares are the 90% upper bounds obtained from
the single-parameter analysis of GW150914. As a comparison,
the blue triangles show the 90% upper bounds extrapolated
exclusively from the measured orbital-period derivative _Porb of
the double pulsar J0737-3039 [12,87], here, too, allowing for
possible GR violations at different powers of frequency, one at a
time. The GW phase deduced from an almost constant _Porb
cannot provide significant information as the PN order is
increased, so we show the bounds for the latter only up to
1PN order. We do not report on the deviation of the 2.5 PN
coefficient, which is unmeasurable because it is degenerate with
the reference phase. We also do not report on the deviations of the
logarithmic terms in the PN series at 2.5 PN and 3 PN order,
which can be found in Table I and in Fig. 7.
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IMR consistency test 

20 Hz to fend insp
GW , and we estimate the posterior dis-

tributions of the binary’s component masses and spins
using this “inspiral” (low-frequency) part of the observed
signal, using the nested-sampling algorithm in the
LALINFERENCE software library [52]. We then use for-
mulas obtained from NR simulations to compute posterior
distributions of the remnant’s mass and spin. Next, we
obtain the complementary “postinspiral” (high-frequency)
signal, which is dominated by the contribution from the
merger and ringdown stages, by restricting the frequency-
domain representation of the waveforms to extend between
fend insp
GW and 1024 Hz. Again, we derive the posterior

distributions of the component masses and spins, and
(by way of NR-derived formulas) of the mass and spin
of the final compact object. We note that the MAP wave-
form has an expected SNRdet ∼ 19.5 if we truncate its
frequency-domain representation to have support between
20 and 132 Hz, and ∼16 if we truncate it to have support
between 132 and 1024 Hz. Finally, we compare these two
estimates of the final Mf and dimensionless spin af and
compare them also against the estimate performed using
full inspiral-merger-ringdown waveforms. In all cases, we
average the posteriors obtained with the EOBNR and
IMRPHENOM waveform models, following the procedure
outlined in Ref. [3]. Technical details about the imple-
mentation of this test can be found in Ref. [60].
This test is similar in spirit to the χ2 GW search statistic

[2,61], which divides the model waveform into frequency
bands and checks to see that the SNR accumulates as

expected across those bands. Large matched-filter SNR
values which are accompanied by a large χ2 statistic are very
likely due either to noise glitches or to a mismatch between
the signal and the model matched-filter waveform.
Conversely, reduced-χ2 values near unity indicate that the
data are consistentwithwaveformplus the expected detector
noise. Thus, large χ2 values are a warning that some parts of
the waveform are a much worse fit than others, and thus the
candidates may result from instrument glitches that are very
loud, but they do not resemble binary-inspiral signals.
However, χ2 tests are performed by comparing the data
with a single theoretical waveform, while in this case we
allow the inspiral and postinspiral partial waveforms to
select different physical parameters. Thus, this test should be
sensitive to subtler deviations from the predictions of GR.
In Fig. 4 we summarize our findings. The top panel

shows the posterior distributions of Mf and af estimated
from the inspiral and postinspiral signals, and from the
entire inspiral-merger-ringdown waveform. The plot con-
firms the expected behavior: the inspiral and postinspiral
90% confidence regions (defined by the isoprobability
contours that enclose 90% of the posterior) have a
significant region of overlap. As a sanity check (which,
strictly speaking, is not part of the test of GR that is being
performed), we also produced the 90% confidence region
computed with the full inspiral-merger-ringdown wave-
form; it lies comfortably within this overlap. We have
verified that these conclusions are not affected by the
specific formula [40,59,62] used to predict Mf and af, or
by the choice of fend insp

GW within !50 Hz.

FIG. 2. MAP estimate and 90% credible regions for (upper
panel) the waveform and (lower panel) the GW frequency of
GW150914 as estimated by the LALINFERENCE analysis [3]. The
solid lines in each panel indicate the most-probable waveform
from GW150914 [3] and its GW frequency. We mark with a
vertical line the instantaneous frequency fend insp

GW ¼ 132 Hz,
which is used in the IMR consistency test to delineate the
boundary between the frequency-domain inspiral and postinspiral
parts (see Fig. 3 below for a representation of the most-probable
waveform’s amplitude in frequency domain).

FIG. 3. Frequency regions of the parametrized waveform model
as defined in the text and in Ref. [41]. The plot shows the absolute
value of the frequency-domain amplitude of the most-probable
waveform from GW150914 [3]. The inspiral region (cyan) from
20 to ∼55 Hz corresponds to the early- and late-inspiral regimes.
The intermediate region (red) goes from ∼55 to ∼130 Hz.
Finally, the merger-ringdown region (orange) goes from
∼130 Hz to the end of the waveform.
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To assess the significance of our findings more quanti-
tatively, we define the parameters ΔMf=Mf and Δaf=af
that describe the fractional difference between the two
estimates of the final mass and spin, and we calculate their
joint posterior distribution, using for ðMf; afÞ the posterior
distribution obtained from the full IMR waveform; see
Ref. [60] for explicit expressions. The result is shown in the
bottom panel of Fig. 4; the solid line marks the isoprob-
ability contour that contains 90% of the posterior. The plus
symbol indicates the null (0,0) result expected in GR,
which lies on the isoprobability contour that encloses 28%
of the posterior.
We have checked to see that, if we perform this analysis

on NR signals added to LIGO instrumental noise, the null
(0,0) result expected in GR lies within the isoprobability

contour that encloses 68% of the posterior roughly 68% of
the time, as expected from random noise fluctuations. By
contrast, our test can rule out the null hypothesis (with high
statistical significance) when analyzing a simulated signal
that reflects a significant GR violation in the frequency
dependence of the energy and angular momentum loss [60],
even when we choose violations which would be too small
to be noticeable in double-pulsar observations [12]; for an
explicit example, we refer to Fig. 1 of Ref. [60]. This
includes signals with a χ2 value close to unity, so that they
would not have been missed by the modeled-signal
searches. Thus, our inspiral-merger-ringdown test shows
no evidence of discrepancies with the predictions of GR.
The component masses and spins estimated in Ref. [3],

together with NR-derived relations, imply Mf ¼ 68þ4
−4M⊙

(62þ4
−4 M⊙ in the source frame) and af ¼ 0.67þ0.05

−0.07 at
90% confidence. From the posterior distributions of the
mass and spin of the final black hole, we can predict the
frequency and decay time of the least-damped QNM (i.e.,
the l ¼ 2, m ¼ 2, n ¼ 0 overtone) [63]. We find fQNM220 ¼
251þ8

−8 Hz and τQNM220 ¼ 4.0þ0.3
−0.3 ms at 90% confidence.

Testing for the least-damped QNM in the data.—We
perform a test to check the consistency of the data with
the predicted least-damped QNM of the remnant black
hole. For this purpose, we compute the Bayes factor
between a damped-sinusoid waveform model and
Gaussian noise, and we estimate the corresponding param-
eter posteriors. The signal model used is hðt ≥ t0Þ ¼
Ae−ðt−t0Þ=τ cos ½2πf0ðt − t0Þ þ ϕ0&, hðt < t0Þ ¼ 0, with a
fixed starting time t0, and uniform priors over the unknown
frequency f0 ∈ ½200; 300& Hz and damping time
τ ∈ ½0.5; 20& ms. The prior on amplitude A and phase ϕ0

is chosen as a two-dimensional Gaussian isotropic prior in
fAs ≡ −A sinϕ0; Ac ≡ A cosϕ0gwith a characteristic scale
H, which is in turn marginalized over the range H ∈
½2; 10& × 10−22 with a prior ∝ 1=H. This is a practical
choice that encodes relative ignorance about the detectable
damped-sinusoid amplitude in this range. We use 8 s of data
(centered on GW150914) from both detectors, bandpassed
to [20, 1900] Hz. The data are analyzed coherently,
assuming the signal arrived 7 ms earlier at Livingston
compared to Hanford, and the amplitude received in the
two detectors has an approximately equal magnitude and
opposite sign (as seen in, e.g., Fig. 1 of Ref. [1]).
We compute the Bayes factor and posterior estimates of

ff0; τg as a function of the unknown QNM start time t0,
which we parametrize as an offset from a fiducial GPS
merger time tM ¼ 1126259462.423 s (at the LIGO
Hanford site). (The merger time is obtained by taking
the EOBNR MAP waveform and lining this waveform up
with the data such that the largest SNR is obtained. The
merger time is then defined as the point at which the
quadrature sum of the hþ and h× polarizations is maxi-
mum.) Figure 5 shows the 90% credible contours in the

FIG. 4. (Top panel) 90% credible regions in the joint posterior
distributions for the mass Mf and dimensionless spin af of the
final compact object as determined from the inspiral (dark violet,
dashed curve) and postinspiral (violet, dot-dashed curve) signals,
and from a full inspiral-merger-ringdown analysis (black curve).
(Bottom panel) Posterior distributions for the parameters
ΔMf=Mf and Δaf=af that describe the fractional difference
in the estimates of the final mass and spin from inspiral and
postinspiral signals. The contour shows the 90% confidence
region. The plus symbol indicates the expected GR value (0,0).
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Test of the least damped mode

ff0; τg plane as a function of the merger-to-start time offset
t0 − tM, as well as the corresponding contour for the least-
damped QNM, as predicted in GR for the remnant mass
and spin parameters estimated for GW150914.
The 90% posterior contour starts to overlap with the GR

prediction from the IMR waveform for t0 ¼ tM þ 3 ms, or
∼10M after the merger. The corresponding log Bayes factor
at this point is log10 B ∼ 14 and the MAP waveform SNR is
∼8.5. For t0 ¼ tM þ 5 ms, the MAP parameters fall within
the contour predicted in GR for the least-damped QNM,
with log10B ∼ 6.5 and SNR ∼ 6.3. At t0 ¼ tM þ 6.5 ms, or
about 20M after merger, the Bayes factor is log10 B ∼ 3.5
with SNR ∼ 4.8. The signal becomes undetectable shortly
thereafter, for t0 ≳ tM þ 9 ms, where B≲ 1.
Measuring the frequency and decay time of one

damped sinusoid in the data does not by itself allow
us to conclude that we have observed the least-damped
QNM of the final black hole since the measured quality
factor could be biased by the presence of the other
QNMs in the ringdown signal (see, e.g., Refs. [63,64]
and the references therein). However, based on the
numerical simulations discussed in Refs. [65–67], one
should expect the GW frequency to level off at
10M–20M after the merger, which is where the descrip-
tion of ringdown in terms of QNMs becomes valid. For
a mass M ∼ 68M⊙, the corresponding range is ∼3–7 ms
after merger. Since this is where we observe the 90%
posterior contours of the damped-sinusoid waveform
model and the 90%-confidence region estimated from
the IMR waveform to be consistent with each other, we
may conclude that the data are compatible with the
presence of the least-damped QNM, as predicted by GR.

In the future, we will extend the analysis to two damped
sinusoids and will explore the possibility of independently
extracting the final black hole’s mass and spin. A test of the
general-relativistic no-hair theorem [68,69] requires the
identification of at least two QNM frequencies in the
ringdown waveform [64,70,71]. Such a test would benefit
from the observation of a system with a total mass similar to
the one of GW150914, but with a larger asymmetry
between component masses, which would increase the
amplitudes of the subdominant modes; a stronger misalign-
ment of the orbital angular momentum with the line of sight
would further improve their visibility [70]. Finally, the
determination of the remnant mass and spin independent of
binary component parameters will allow us to test the
second law of black-hole dynamics [72,73].
Constraining parametrized deviations from general-

relativistic inspiral-merger-ringdown waveforms.—
Because GW150914 was emitted by a binary black hole
in its final phase of rapid orbital evolution, its gravitational
phasing (or phase evolution) encodes nonlinear
conservative and dissipative effects that are not observable
in binary pulsars, whose orbital period changes at an
approximately constant rate. (Current binary-pulsar obser-
vations do constrain conservative dynamics at 1 PN order
and they partially constrain spin-orbit effects at 1.5 PN
order through geodetic spin precession [12].) Those effects
include tails of radiation due to backscattering of GWs by
the curved background around the coalescing black holes
[74], nonlinear tails (i.e., tails of tails) [75], couplings
between black-hole spins and the binary’s orbital angular
momentum, interactions between the spins of the two
bodies [76–78], and excitations of QNMs [28–30] as the
remnant black hole settles in the stationary configuration.
Whether all of these subtle effects can actually be

identified in GW150914 and tested against GR predictions
depends, of course, on their strength with respect to
instrument noise and on whether the available waveform
models are parametrized in terms of those physical
effects. GW150914 is moderately loud, with SNR ∼ 24,
certainly much smaller than what can be achieved in
binary-pulsar observations. Our ability to analyze the fine
structure of the GW150914 waveform is correspondingly
limited. Our approach is to adopt a parametrized analytical
family of inspiral-merger-ringdown waveforms, then treat
the waveform coefficients as free variables that can be
estimated (either individually or in groups) from the
GW150914 data [79–85]. We can then verify that the
posterior probability distributions for the coefficients
include their GR values.
The simplest and fastest parametrized waveform model

that is currently available [41] can be used to bound physical
effects only for the coefficients that enter the early-inspiral
phase because, for the late-inspiral, merger, and ringdown
phases, it uses phenomenological coefficients fitted to NR
waveforms. Louder GW events, to be collected as detector

FIG. 5. 90% credible regions in the joint posterior distributions
for the damped-sinusoid parameters f0 and τ (see the main text),
assuming start times t0 ¼ tM þ 1, 3, 5, 6.5 ms, where tM is the
merger time of the MAP waveform for GW150914. The black
solid line shows the 90% credible region for the frequency and
decay time of the l ¼ 2, m ¼ 2, n ¼ 0 (i.e., the least-damped)
QNM, as derived from the posterior distributions of the remnant
mass and spin parameters.
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Tests with O1-O2 data 
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Events (O1-O2) and tests of GR

events were developed in O2 and introduced in [7,13,36],
for the astrophysical parameter estimation of GW170608,
GW170814, and GW170817. This noise subtraction was
achieved using optimal Wiener filters to calculate coupling
transfer functions from auxiliary sensors [37]. A new,
optimized parallelizable method in the frequency domain
[38] allows large scale noise subtraction on LIGO data. All
of the O2 analyses presented in this manuscript use the
noise-subtracted data set with the latest calibration available.
The O1 data set is the same used in previous publications, as
the effect of noise subtraction is expected to be negligible.
Reanalysis of the O1 events is motivated by improvements in
the parameter estimation pipeline, an improved frequency-
dependent calibration, and the availability of new waveform
models.

III. EVENTS AND SIGNIFICANCE

We present results for all confident detections of binary
black hole events in GTWC-1 [9], i.e., all such events
detected during O1 and O2 with a FAR lower than one per
year, as published in [14]. The central columns of Table I
list the FARs of each event as evaluated by the three search
pipelines used in [14]. Two of these pipelines (PYCBC and

GSTLAL) rely on waveform templates computed from
binary black hole coalescences in GR. Making use of a
measure of significance that assumes the validity of GR
could potentially lead to biases in the selection of events to
be tested, systematically disfavoring signals in which a GR
violation would be most evident. Therefore, it is important
to consider the possibilities that (1) there were GW signals
with such large deviations from GR that they were missed
entirely by the modeled searches, and (2) there were events
that were picked up by the modeled searches but classified
as marginal (and thus excluded from our analysis) because
of their significant deviations from GR.
These worries can largely be dispelled by considering

the third GW search pipeline, the coherent WaveBurst
(CWB) weakly modeled search presented in [14]. This
CWB search [15,39,40] was tuned to detect chirping
signals—like those that would be expected from compact
binary coalescences—but was not tuned to any specific
GR predictions.2 CWB is most sensitive to short signals

TABLE I. The GWevents considered in this paper, separated by observing run. The first block of columns gives the names of the events
and lists some of their relevant properties obtained using GR waveforms (luminosity distanceDL, source frame total massMtot and final
massMf , and dimensionless final spin af ). The next block of columns gives the significance, measured by the FAR, with which each event
was detected by each of the three searches employed, as well as the matched filter signal-to-noise ratio from the stochastic sampling
analyses with GR waveforms. An ellipsis indicates that an event was not identified by a search. The parameters and SNR values give the
medians and 90% credible intervals. All the events except for GW151226 and GW170729 are consistent with a binary of nonspinning
black holes (when analyzed assuming GR). See [14] for more details about all the events. The last block of columns indicates which GR
tests are performed on a given event: RT ¼ residuals test (Sec. VA); IMR ¼ inspiral-merger-ringdown consistency test (Sec. V B); PI and
PPI ¼ parametrized tests of GW generation for inspiral and postinspiral phases (Sec. VI); MDR ¼ modified GW dispersion relation
(Sec. VII). The events with bold names are used to obtain the combined results for each test.

Properties FAR GR tests performed

Event DL [Mpc] Mtot [M⊙] Mf [M⊙] af PYCBC [yr−1] GSTLAL [yr−1] CWB [yr−1] SNR RT IMR PI PPI MDR

GW150914a 440þ150
−170 66.1þ3.8

−3.3 63.1þ3.4
−3.0 0.69þ0.05

−0.04 < 1.5 × 10−5 < 1.0 × 10−7 < 1.6 × 10−4 25.3þ0.1
−0.2 ✓ ✓ ✓ ✓ ✓

GW151012a 1080þ550
−490 37.2þ10.6

−3.9 35.6þ10.8
−3.8 0.67þ0.13

−0.11 0.17 7.9 × 10−3 # # # 9.2þ0.3
−0.4 ✓ # # # # # # ✓ ✓

GW151226a,b 450þ180
−190 21.5þ6.2

−1.5 20.5þ6.4
−1.5 0.74þ0.07

−0.05 < 1.7 × 10−5 < 1.0 × 10−7 0.02 12.4þ0.2
−0.3 ✓ # # # ✓ # # # ✓

GW170104 990þ440
−430 51.0þ5.3

−4.1 48.9þ5.1
−4.0 0.66þ0.08

−0.11 < 1.4 × 10−5 < 1.0 × 10−7 2.9 × 10−4 14.0þ0.2
−0.3 ✓ ✓ ✓ ✓ ✓

GW170608 320þ120
−110 18.6þ3.2

−0.7 17.8þ3.4
−0.7 0.69þ0.04

−0.04 < 3.1 × 10−4 < 1.0 × 10−7 1.4 × 10−4 15.6þ0.2
−0.3 ✓ # # # ✓ ✓ ✓

GW170729c 2840þ1400
−1360 84.4þ15.8

−11.1 79.5þ14.7
−10.2 0.81þ0.07

−0.13 1.4 0.18 0.02 10.8þ0.4
−0.5 ✓ ✓ # # # ✓ ✓

GW170809 1030þ320
−390 59.0þ5.4

−4.1 56.3þ5.2
−3.8 0.70þ0.08

−0.09 1.4 × 10−4 < 1.0 × 10−7 # # # 12.7þ0.2
−0.3 ✓ ✓ # # # ✓ ✓

GW170814 600þ150
−220 55.9þ3.4

−2.6 53.2þ3.2
−2.4 0.72þ0.07

−0.05 < 1.2 × 10−5 < 1.0 × 10−7 < 2.1 × 10−4 17.8þ0.3
−0.3 ✓ ✓ ✓ ✓ ✓

GW170818 1060þ420
−380 62.2þ5.2

−4.1 59.4þ4.9
−3.8 0.67þ0.07

−0.08 # # # 4.2 × 10−5 # # # 11.9þ0.3
−0.4 ✓ ✓ # # # ✓ ✓

GW170823 1940þ970
−900 68.7þ10.8

−8.1 65.4þ10.1
−7.4 0.72þ0.09

−0.12 < 3.3 × 10−5 < 1.0 × 10−7 2.1 × 10−3 12.0þ0.2
−0.3 ✓ ✓ # # # ✓ ✓

aThe FARs for these events differ from those in [5] because the data were reanalyzed with the new pipeline statistics used in O2
(see [14] for more details).

bAt least one black hole has dimensionless spin > 0.28 (99% credible level).
cThis event has a higher significance in the unmodeled search than in the modeled searches. Additionally, at least one black hole has

dimensionless spin > 0.27 (99% credible level).

2Chirping signals from compact binary coalescences are a
feature of many theories of gravity. All that is required is that the
orbital frequency increases as the binary radiates energy and
angular momentum in GWs.

TESTS OF GENERAL RELATIVITY WITH THE BINARY BLACK … PHYS. REV. D 100, 104036 (2019)

104036-3

events were developed in O2 and introduced in [7,13,36],
for the astrophysical parameter estimation of GW170608,
GW170814, and GW170817. This noise subtraction was
achieved using optimal Wiener filters to calculate coupling
transfer functions from auxiliary sensors [37]. A new,
optimized parallelizable method in the frequency domain
[38] allows large scale noise subtraction on LIGO data. All
of the O2 analyses presented in this manuscript use the
noise-subtracted data set with the latest calibration available.
The O1 data set is the same used in previous publications, as
the effect of noise subtraction is expected to be negligible.
Reanalysis of the O1 events is motivated by improvements in
the parameter estimation pipeline, an improved frequency-
dependent calibration, and the availability of new waveform
models.

III. EVENTS AND SIGNIFICANCE

We present results for all confident detections of binary
black hole events in GTWC-1 [9], i.e., all such events
detected during O1 and O2 with a FAR lower than one per
year, as published in [14]. The central columns of Table I
list the FARs of each event as evaluated by the three search
pipelines used in [14]. Two of these pipelines (PYCBC and

GSTLAL) rely on waveform templates computed from
binary black hole coalescences in GR. Making use of a
measure of significance that assumes the validity of GR
could potentially lead to biases in the selection of events to
be tested, systematically disfavoring signals in which a GR
violation would be most evident. Therefore, it is important
to consider the possibilities that (1) there were GW signals
with such large deviations from GR that they were missed
entirely by the modeled searches, and (2) there were events
that were picked up by the modeled searches but classified
as marginal (and thus excluded from our analysis) because
of their significant deviations from GR.
These worries can largely be dispelled by considering

the third GW search pipeline, the coherent WaveBurst
(CWB) weakly modeled search presented in [14]. This
CWB search [15,39,40] was tuned to detect chirping
signals—like those that would be expected from compact
binary coalescences—but was not tuned to any specific
GR predictions.2 CWB is most sensitive to short signals

TABLE I. The GWevents considered in this paper, separated by observing run. The first block of columns gives the names of the events
and lists some of their relevant properties obtained using GR waveforms (luminosity distanceDL, source frame total massMtot and final
massMf , and dimensionless final spin af ). The next block of columns gives the significance, measured by the FAR, with which each event
was detected by each of the three searches employed, as well as the matched filter signal-to-noise ratio from the stochastic sampling
analyses with GR waveforms. An ellipsis indicates that an event was not identified by a search. The parameters and SNR values give the
medians and 90% credible intervals. All the events except for GW151226 and GW170729 are consistent with a binary of nonspinning
black holes (when analyzed assuming GR). See [14] for more details about all the events. The last block of columns indicates which GR
tests are performed on a given event: RT ¼ residuals test (Sec. VA); IMR ¼ inspiral-merger-ringdown consistency test (Sec. V B); PI and
PPI ¼ parametrized tests of GW generation for inspiral and postinspiral phases (Sec. VI); MDR ¼ modified GW dispersion relation
(Sec. VII). The events with bold names are used to obtain the combined results for each test.

Properties FAR GR tests performed

Event DL [Mpc] Mtot [M⊙] Mf [M⊙] af PYCBC [yr−1] GSTLAL [yr−1] CWB [yr−1] SNR RT IMR PI PPI MDR

GW150914a 440þ150
−170 66.1þ3.8

−3.3 63.1þ3.4
−3.0 0.69þ0.05

−0.04 < 1.5 × 10−5 < 1.0 × 10−7 < 1.6 × 10−4 25.3þ0.1
−0.2 ✓ ✓ ✓ ✓ ✓

GW151012a 1080þ550
−490 37.2þ10.6

−3.9 35.6þ10.8
−3.8 0.67þ0.13

−0.11 0.17 7.9 × 10−3 # # # 9.2þ0.3
−0.4 ✓ # # # # # # ✓ ✓

GW151226a,b 450þ180
−190 21.5þ6.2

−1.5 20.5þ6.4
−1.5 0.74þ0.07

−0.05 < 1.7 × 10−5 < 1.0 × 10−7 0.02 12.4þ0.2
−0.3 ✓ # # # ✓ # # # ✓

GW170104 990þ440
−430 51.0þ5.3

−4.1 48.9þ5.1
−4.0 0.66þ0.08

−0.11 < 1.4 × 10−5 < 1.0 × 10−7 2.9 × 10−4 14.0þ0.2
−0.3 ✓ ✓ ✓ ✓ ✓

GW170608 320þ120
−110 18.6þ3.2

−0.7 17.8þ3.4
−0.7 0.69þ0.04

−0.04 < 3.1 × 10−4 < 1.0 × 10−7 1.4 × 10−4 15.6þ0.2
−0.3 ✓ # # # ✓ ✓ ✓

GW170729c 2840þ1400
−1360 84.4þ15.8

−11.1 79.5þ14.7
−10.2 0.81þ0.07

−0.13 1.4 0.18 0.02 10.8þ0.4
−0.5 ✓ ✓ # # # ✓ ✓

GW170809 1030þ320
−390 59.0þ5.4

−4.1 56.3þ5.2
−3.8 0.70þ0.08

−0.09 1.4 × 10−4 < 1.0 × 10−7 # # # 12.7þ0.2
−0.3 ✓ ✓ # # # ✓ ✓

GW170814 600þ150
−220 55.9þ3.4

−2.6 53.2þ3.2
−2.4 0.72þ0.07

−0.05 < 1.2 × 10−5 < 1.0 × 10−7 < 2.1 × 10−4 17.8þ0.3
−0.3 ✓ ✓ ✓ ✓ ✓

GW170818 1060þ420
−380 62.2þ5.2

−4.1 59.4þ4.9
−3.8 0.67þ0.07

−0.08 # # # 4.2 × 10−5 # # # 11.9þ0.3
−0.4 ✓ ✓ # # # ✓ ✓

GW170823 1940þ970
−900 68.7þ10.8

−8.1 65.4þ10.1
−7.4 0.72þ0.09

−0.12 < 3.3 × 10−5 < 1.0 × 10−7 2.1 × 10−3 12.0þ0.2
−0.3 ✓ ✓ # # # ✓ ✓

aThe FARs for these events differ from those in [5] because the data were reanalyzed with the new pipeline statistics used in O2
(see [14] for more details).

bAt least one black hole has dimensionless spin > 0.28 (99% credible level).
cThis event has a higher significance in the unmodeled search than in the modeled searches. Additionally, at least one black hole has

dimensionless spin > 0.27 (99% credible level).

2Chirping signals from compact binary coalescences are a
feature of many theories of gravity. All that is required is that the
orbital frequency increases as the binary radiates energy and
angular momentum in GWs.

TESTS OF GENERAL RELATIVITY WITH THE BINARY BLACK … PHYS. REV. D 100, 104036 (2019)

104036-3

LVC, PRD. 100, 104036 (2016)



Bounds (90%)

results for all cases; see Sec. A 3 in the Appendix for a
detailed discussion. In all cases considered, the posteriors
are consistent with δp̂i ¼ 0 within statistical fluctuations.
Bounds on the inspiral coefficients obtained with the two
different waveform models are found to be in good
agreement with each other. Finally, we note that the
event-combining analyses on δp̂i assume that these para-
metrized violations are constant across all events consid-
ered. This assumption should not be made when testing a
specific theory that predicts violations that depend on the
binary’s parameters. Posterior distributions of δp̂i for the
individual-event analysis, also showing full consistency
with GR, are provided in Sec. A 3 of the Appendix.
Figure 4 shows the 90% upper bounds on jδφ̂ij for all the

individual events which cross the SNR threshold (SNR>6)
in the inspiral regime (the most massive of which is
GW150914). The bounds from the combined posteriors
are also shown; these include the events which exceed both
the SNR threshold in the inspiral regime as well as the
significance threshold, namely, GW150914, GW151226,
GW170104, GW170608, and GW170814. The bound from
the likely lightest mass binary black hole event GW170608
at 1.5 PN is currently the strongest constraint obtained on a
positive PN coefficient from a single binary black hole
event, as shown in Fig. 4. However, the constraint at this

order is about five times worse than that obtained from the
binary neutron star event GW170817 alone [8]. The −1 PN
bound is 2 orders of magnitude better for GW170817
than the best bound obtained here (from GW170608).
The corresponding best −1 PN bound coming from the
double pulsar PSR J0737–3039 is a few orders of magni-
tude tighter still, at jδφ̂−2j≲ 10−7 [104,107]. At 0 PN we
find that the bound from GW170608 beats the one from
GW170817, but remains weaker than the one from the
double pulsar by 1 order of magnitude [107,108]. For
all other PN orders, GW170608 also provides the best
bounds, which at high PN orders are of the same order of
magnitude as the ones from GW170817. Our results can be
compared statistically to those obtained by performing the
same tests on simulated GR and non-GR waveforms given
in [100]. The results presented here are consistent with
those of GR waveforms injected into realistic detector data.
The combined bounds are the tightest obtained so far,
improving on the bounds obtained in [5] by factors between
1.1 and 1.8.

VII. PARAMETRIZED TESTS OF
GRAVITATIONAL-WAVE PROPAGATION

We now place constraints on a phenomenological
modification of the GW dispersion relation, i.e., on a
possible frequency dependence of the speed of GWs.
This modification, introduced in [109] and first applied
to LIGO data in [6], is obtained by adding a power-law term
in the momentum to the dispersion relation E2 ¼ p2c2 of
GWs in GR, giving

E2 ¼ p2c2 þ Aαpαcα: ð2Þ

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and Aα and α are phenomeno-
logical parameters. We consider α values from 0 to 4 in
steps of 0.5. However, we exclude α ¼ 2, where the speed
of the GWs is modified in a frequency-independent
manner, and therefore gives no observable dephasing.14

Thus, in all cases except for α ¼ 0, we are considering
a Lorentz-violating dispersion relation. The group velo-
city associated with this dispersion relation is vg=c ¼
ðdE=dpÞ=c ¼ 1þ ðα − 1ÞAαEα−2=2þOðA2

αÞ. The associ-
ated length scale is λA ≔ hcjAαj1=ðα−2Þ, where h is Planck’s
constant. λA gives the scale of modifications to the
Newtonian potential (the Yukawa potential for α ¼ 0)
associated with this dispersion relation.
While Eq. (2) is a purely phenomenological model, it

encompasses a variety of more fundamental predictions (at
least to leading order) [101,109]. In particular, A0 > 0

FIG. 4. 90%upper bounds on the absolutemagnitude of the GR-
violating parameters δφ̂n, from −1 through 3.5 PN in the inspiral
phase. At each PNorder, we show results obtained from each of the
events listed in Table I that cross the SNR threshold in the inspiral
regime, analyzed with IMRPHENOMPv2. Bounds obtained from
combining posteriors of events detected with a significance that
exceeds a threshold of FAR < ð1000 yrÞ−1 in both modeled
searches are shown for both analyses, using IMRPHENOMPv2 (filled
diamonds) and SEOBNRv4 (empty diamonds).

14For a source with an electromagnetic counterpart, A2 can be
constrained by comparison with the arrival time of the photons, as
was done with GW170817/GRB 170817A [110].

TESTS OF GENERAL RELATIVITY WITH THE BINARY BLACK … PHYS. REV. D 100, 104036 (2019)

104036-11



signal (see Table III for values of fc).
10 The binary’s

parameters are then estimated independently from the
low- (high-) frequency parts of the data by restricting
the noise-weighted integral in the likelihood calculation
to frequencies below (above) this frequency cutoff fc.
For each of these independent estimates of the source
parameters, we make use of fits to numerical-relativity
simulations given in [84–86] to infer the mass Mf and
dimensionless spin magnitude af ¼ cjS⃗f j=ðGM2

f Þ of the
remnant black hole.11 If the data are consistent with GR,
these two independent estimates have to be consistent with
each other [41,82]. Because this consistency test ultimately
compares between the inspiral and the postinspiral results,
posteriors of both parts must be informative. In the case of
low-mass binaries, the SNR in the part f > fc is insuffi-
cient to perform this test, so that we only analyze seven
events as indicated in Tables I and III.
In order to quantify the consistency of the two different

estimates of the final black hole’s mass and spin we define
two dimensionless quantities that quantify the fractional
difference between them: ΔMf=M̄f ≔ 2ðMinsp

f −Mpostinsp
f Þ=

ðMinsp
f þMpostinsp

f Þ and Δaf=āf ≔ 2ðainspf − apostinspf Þ=
ðainspf þ apostinspf Þ, where the superscripts indicate the

estimates of the mass and spin from the inspiral and
postinspiral parts of the signal.12 The posteriors of
these dimensionless parameters, estimated from different
events, are shown in Fig. 2. For all events, the posteriors are
consistent with the GR value (ΔMf=M̄f ¼ 0, Δaf=āf ¼ 0).
The fraction of the posterior enclosed by the isoprobability
contour that passes through the GR value (i.e., the GR
quantile) for each event is shown in Table III. Figure 2
also shows the posteriors obtained by combining all
the events that pass the stronger significance threshold
FAR < ð1000 yrÞ−1, as outlined in Sec. III (see the same
section for a discussion of caveats).
The parameter estimation is performed employing uni-

form priors in component masses and spin magnitudes and
isotropic priors in spin directions [14]. This introduces a
nonflat prior in the deviation parameters ΔMf=M̄f and
Δaf=āf , which is shown as a thin, dashed contour in Fig. 2.
Posteriors are estimated employing the precessing spin

TABLE III. Results from the inspiral-merger-ringdown consis-
tency test for selected binary black hole events. fc denotes
the cutoff frequency used to demarcate the division between the
inspiral and postinspiral regimes; ρIMR, ρinsp, and ρpostinsp are the
median values of the SNR in the full signal, the inspiral part, and
the postinspiral part, respectively; and the GR quantile denotes
the fraction of the posterior enclosed by the isoprobability
contour that passes through the GR value, with smaller values
indicating better consistency with GR. (Note, however, that the
posterior distribution is broader for smaller SNRs, and hence the
GR quantile is typically smaller in such cases. This effect is
further complicated by the randomness of the noise.)

Event fc [Hz] ρIMR ρinsp ρpostinsp GR quantile [%]

GW150914 132 25.3 19.4 16.1 55.5
GW170104 143 13.7 10.9 8.5 24.4
GW170729 91 10.7 8.6 6.9 10.4
GW170809 136 12.7 10.6 7.1 14.7
GW170814 161 16.8 15.3 7.2 7.8
GW170818 128 12.0 9.3 7.2 25.5
GW170823 102 11.9 7.9 8.5 80.4

FIG. 2. Results of the inspiral-merger-ringdown consistency
test for the selected binary black hole events (see Table I).
The main panel shows 90% credible regions of the posterior
distributions of ðΔMf=M̄f ;Δaf=āfÞ, with the cross marking
the expected value for GR. The side panels show the
marginalized posteriors for ΔMf=M̄f and Δaf=āf . The thin
black dashed curve represents the prior distribution, and the
grey shaded areas correspond to the combined posteriors
from the five most significant events (as outlined in Sec. III
and Table I).

10The frequency fc was determined using preliminary param-
eter inference results, so the values in Table III are slightly
different than those that would be obtained using the posterior
samples in GWTC-1 [9]. However, the test is robust against small
changes in the cutoff frequency [41].

11As in [6], we average the Mf ; af posteriors obtained by
different fits [84–86] after augmenting the fitting formulas for
aligned-spin binaries by adding the contribution from in-plane
spins [87]. However, unlike in [6,87], we do not evolve the spins
before applying the fits, due to technical reasons.

12For black hole binaries with comparable masses and mod-
erate spins, as we consider here, the remnant black hole is
expected to have af ≳ 0.5; see, e.g., [84–86] for fitting formulas
derived from numerical simulations, or Table I for values of the
remnant’s spins obtained from GW events. Hence, Δaf=āf is
expected to yield finite values.
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Parameterised tests with GW170817

We also employ the SEOBNRv4 waveform model, which
is constructed from an aligned-spin EOB model for binary
black holes augmented with information from NR simula-
tions [58]. Using the methods of Ref. [59], this model is
evaluated in the frequency domain, and then we add the tidal
correctionϕTðfÞ as described above;we refer to the resulting
waveform model as SEOBNRT. Unlike PhenomPNRT,
the SEOBNRT model is not constructed explicitly in terms
of PN coefficients φn. Instead, we model the effect of a
relative shift δφ̂n by adding to the frequency domain phase a
term δφ̂nφnfð−5þnÞ=3 or δφ̂ðlÞ

n φðlÞ
n fð−5þnÞ=3 logðfÞ, as appli-

cable. These corrections are then tapered to zero at themerger
frequency.
Figure 1 depicts the PDFs on δφ̂n recovered when only

variations at that particular PN order are allowed. We find
that the phase evolution of GW170817 is consistent with
the GR prediction. The 90% credible region for each
parameter contains the GR value of δφ̂n ¼ 0 at all orders
other than 3PN and 3.5PN. [Using PhenomPNRT
(SEOBNRT), the GR value lies at the 6.8th (4.4th) percen-
tile of the PDF for the 3PN parameter and at the 95.0th
(96.7th) percentile for the 3.5PN parameter.] For the
pipeline used to perform parametrized tests with binary
black holes, it has been shown in Ref. [28] through
extensive simulations that no noticeable systematics are
present. In the case of binary neutron stars such a study is
computationally demanding because of the long signals,
and a similar study will be published at a later date. At
present we have no reason to believe that the offsets seen
here at 3PN and 3.5PN have anything other than a statistical
origin. In any case, we note that the value of zero is in the
support of the posterior density function for all testing
parameters. The bounds on the positive-PN parameters
(n ≥ 0) obtained with GW170817 alone are comparable to
those obtained by combining the binary black hole signals
GW150914, GW151226, and GW170104 in Ref. [16]
using the IMRPhenomPv2 waveform model. For conven-
ience we also separately give 90% upper bounds on
deviations in PN coefficients; see Fig. 2.
The PDFs shown in Fig. 1 were constructed using the

same choice of prior distribution outlined in Ref. [19] with

the following modifications. We use uniform priors on δφ̂n
that are broad enough to fully contain the plotted PDFs.
Because of the degeneracy between δφ̂0 and the chirp mass,
a broader prior distribution was chosen for the latter as
compared to Ref. [19] for runs in which δφ̂0 was allowed to
vary. All inference was done assuming the prior jχ ij ≤ 0.99,
where χ i ¼ cSi=ðGm2

i Þ is the dimensionless spin of each
body. This conservative spin prior was chosen to allow the
constraints on δφ̂n to be directly compared with those from
binary black hole observations, which used the same prior
[13,15]. Nevertheless, throughout this Letter we assume
the two objects to be neutron stars, and following Ref. [19]
we limit our prior on the component tidal parameters to
Λi ≤ 5000. (For a precise definition of the Λi, see Ref. [1]
and references therein.) This choice was motivated by
reasonable astrophysical assumptions regarding the
expected ranges for neutron star masses and equations of
state [46,60,61]; higher values of Λ are possible for some
equations of state if the neutron star masses are small
(≃0.9 M⊙). The extra freedom introduced by including δφ̂n
leads to a loss in sensitivity in the measurement of tidal
parameters; in particular, the tail of the PDF for the tidal
deformation of the less massive body Λ2 touches the prior

FIG. 1. Posterior density functions on deviations of PN coefficients δφ̂n obtained using two different waveform models
(PhenomPNRT and SEOBNRT); see the main text for details. The −1 PN and 0.5PN corrections correspond to absolute deviations,
whereas all others represent fractional deviations from the PN coefficient in GR. The horizontal bars indicate 90% credible regions.

FIG. 2. 90% upper bounds on deviations jδφ̂nj in the PN
coefficients following from the posterior density functions shown
in Fig. 1.
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space, the coefficients pi are evaluated for the local
physical parameters (masses, spins) and multiplied by
factors ð1þ δp̂iÞ. When using such waveforms as tem-
plates, the parameters that are allowed to vary freely are
then the ones that are also present in the GR waveforms
(masses, spins, sky position, orientation, distance, and a
reference time and phase), together with one or more of the
δp̂i’s; the pi’s themselves are calculated using their GR
expressions in terms of masses and spins. In this para-
metrization, GR is uniquely defined as the locus in the
parameter space where all of the testing parameters δp̂i are
zero. In summary, our battery of testing parameters consists
of (i) the early-inspiral stage: fδφ̂0; δφ̂1; δφ̂2; δφ̂3;
δφ̂4; δφ̂5l; δφ̂6; δφ̂6l; δφ̂7g, (ii) the intermediate regime:
fδβ̂2; δβ̂3g, and (iii) the merger-ringdown regime:
fδα̂2; δα̂3; δα̂4g. (Unlike Ref. [41], we explicitly include
the logarithmic terms δφ̂5l and δφ̂6l. We also include the
0.5 PN parameter δφ̂1; since φ1 is zero in GR, we define
δφ̂1 to be an absolute shift rather than a fractional
deformation.) We do not consider parameters that are
degenerate with either the reference time or the reference
phase. For our analysis, we explore two scenarios: a single-
parameter analysis in which only one of the testing

parameters is allowed to vary freely (in addition to masses,
spins, etc.), while the remaining ones are fixed to their GR
value, that is zero, and a multiple-parameter analysis in
which all of the parameters in one of the three sets
enumerated above are allowed to vary simultaneously.
The rationale behind our choices of single- and multiple-

parameter analyses comes from the following consider-
ations. In most known alternative theories of gravity
[13,14,88], the corrections to GR extend to all PN orders
even if, in most cases, they have been computed only at
leading PN order. Considering that GW150914 is an
inspiral-merger-ringdown signal sweeping through the
detector between 20 and 300 Hz, we expect to see signal
deviations from GR at all PN orders. The single-parameter
analysis corresponds to minimally extended models that
can capture deviations from GR that occur predominantly,
but not only, at a specific PN order. Nevertheless, should a
deviation be measurably present at multiple PN orders, we
expect the single-parameter analyses to also capture these.
In the multiple-parameter analysis, the correlations among
the parameters are very significant. In other words, a shift in
one of the testing parameters can always be compensated
for by a change of the opposite sign in another parameter
and still return the same overall GW phase. Thus, it is not
surprising that the multiple-parameter case provides a much
more conservative statement on the agreement between
GW150914 and GR. We defer to future studies the
identification of optimally determined directions in the
δp̂i space by performing a singular value decomposition
along the lines suggested in Ref. [89].
For each set of testing parameters, we perform a separate

LALINFERENCE analysis, where, in concert with the full set
of GR parameters [3], we also explore the posterior
distributions for the specified set of testing parameters.
Since our testing parameters are purely phenomenological
(except the parameters that govern the PN early-inspiral
stage), we choose their prior probability distributions to be
uniform and wide enough to encompass the full posterior
probability density function in the single-parameter case.
Specifically, we set δφ̂i ∈ ½−20; 20%; δβ̂i ∈ ½−3; 3%;
δα̂i ∈ ½−5; 5%. In all cases, we obtain estimates of the
physical parameters—e.g., masses and spins—that are in
agreement with those reported in Ref. [3].
In Fig. 6 we show the 90% upper bounds on deviations in

the (known) PNparameters, δφ̂iwith i ¼ 0;…; 7 (except for
i ¼ 5, which is degenerate with the reference phase), when
varying the testing parameters one at the time, keeping the
other parameters fixed to the GR value. As an illustration,
following Ref. [87], we also show in Fig. 6 the bounds
obtained from themeasured orbital-period derivative _Porb of
the double pulsar J0737-3039 [12]. Also, for the latter,
bounds are computed by allowing for possible violations of
GR at different powers of frequency, one at a time. Not
surprisingly, since in binary pulsars the orbital period
changes at essentially a constant rate, the corresponding

FIG. 6. 90% upper bounds on the fractional variations of the
known PN coefficients with respect to their GR values. The
orange squares are the 90% upper bounds obtained from
the single-parameter analysis of GW150914. As a comparison,
the blue triangles show the 90% upper bounds extrapolated
exclusively from the measured orbital-period derivative _Porb of
the double pulsar J0737-3039 [12,87], here, too, allowing for
possible GR violations at different powers of frequency, one at a
time. The GW phase deduced from an almost constant _Porb
cannot provide significant information as the PN order is
increased, so we show the bounds for the latter only up to
1PN order. We do not report on the deviation of the 2.5 PN
coefficient, which is unmeasurable because it is degenerate with
the reference phase. We also do not report on the deviations of the
logarithmic terms in the PN series at 2.5 PN and 3 PN order,
which can be found in Table I and in Fig. 7.
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-3

To assess the significance of our findings more quanti-
tatively, we define the parameters ΔMf=Mf and Δaf=af
that describe the fractional difference between the two
estimates of the final mass and spin, and we calculate their
joint posterior distribution, using for ðMf; afÞ the posterior
distribution obtained from the full IMR waveform; see
Ref. [60] for explicit expressions. The result is shown in the
bottom panel of Fig. 4; the solid line marks the isoprob-
ability contour that contains 90% of the posterior. The plus
symbol indicates the null (0,0) result expected in GR,
which lies on the isoprobability contour that encloses 28%
of the posterior.
We have checked to see that, if we perform this analysis

on NR signals added to LIGO instrumental noise, the null
(0,0) result expected in GR lies within the isoprobability

contour that encloses 68% of the posterior roughly 68% of
the time, as expected from random noise fluctuations. By
contrast, our test can rule out the null hypothesis (with high
statistical significance) when analyzing a simulated signal
that reflects a significant GR violation in the frequency
dependence of the energy and angular momentum loss [60],
even when we choose violations which would be too small
to be noticeable in double-pulsar observations [12]; for an
explicit example, we refer to Fig. 1 of Ref. [60]. This
includes signals with a χ2 value close to unity, so that they
would not have been missed by the modeled-signal
searches. Thus, our inspiral-merger-ringdown test shows
no evidence of discrepancies with the predictions of GR.
The component masses and spins estimated in Ref. [3],

together with NR-derived relations, imply Mf ¼ 68þ4
−4M⊙

(62þ4
−4 M⊙ in the source frame) and af ¼ 0.67þ0.05

−0.07 at
90% confidence. From the posterior distributions of the
mass and spin of the final black hole, we can predict the
frequency and decay time of the least-damped QNM (i.e.,
the l ¼ 2, m ¼ 2, n ¼ 0 overtone) [63]. We find fQNM220 ¼
251þ8

−8 Hz and τQNM220 ¼ 4.0þ0.3
−0.3 ms at 90% confidence.

Testing for the least-damped QNM in the data.—We
perform a test to check the consistency of the data with
the predicted least-damped QNM of the remnant black
hole. For this purpose, we compute the Bayes factor
between a damped-sinusoid waveform model and
Gaussian noise, and we estimate the corresponding param-
eter posteriors. The signal model used is hðt ≥ t0Þ ¼
Ae−ðt−t0Þ=τ cos ½2πf0ðt − t0Þ þ ϕ0&, hðt < t0Þ ¼ 0, with a
fixed starting time t0, and uniform priors over the unknown
frequency f0 ∈ ½200; 300& Hz and damping time
τ ∈ ½0.5; 20& ms. The prior on amplitude A and phase ϕ0

is chosen as a two-dimensional Gaussian isotropic prior in
fAs ≡ −A sinϕ0; Ac ≡ A cosϕ0gwith a characteristic scale
H, which is in turn marginalized over the range H ∈
½2; 10& × 10−22 with a prior ∝ 1=H. This is a practical
choice that encodes relative ignorance about the detectable
damped-sinusoid amplitude in this range. We use 8 s of data
(centered on GW150914) from both detectors, bandpassed
to [20, 1900] Hz. The data are analyzed coherently,
assuming the signal arrived 7 ms earlier at Livingston
compared to Hanford, and the amplitude received in the
two detectors has an approximately equal magnitude and
opposite sign (as seen in, e.g., Fig. 1 of Ref. [1]).
We compute the Bayes factor and posterior estimates of

ff0; τg as a function of the unknown QNM start time t0,
which we parametrize as an offset from a fiducial GPS
merger time tM ¼ 1126259462.423 s (at the LIGO
Hanford site). (The merger time is obtained by taking
the EOBNR MAP waveform and lining this waveform up
with the data such that the largest SNR is obtained. The
merger time is then defined as the point at which the
quadrature sum of the hþ and h× polarizations is maxi-
mum.) Figure 5 shows the 90% credible contours in the

FIG. 4. (Top panel) 90% credible regions in the joint posterior
distributions for the mass Mf and dimensionless spin af of the
final compact object as determined from the inspiral (dark violet,
dashed curve) and postinspiral (violet, dot-dashed curve) signals,
and from a full inspiral-merger-ringdown analysis (black curve).
(Bottom panel) Posterior distributions for the parameters
ΔMf=Mf and Δaf=af that describe the fractional difference
in the estimates of the final mass and spin from inspiral and
postinspiral signals. The contour shows the 90% confidence
region. The plus symbol indicates the expected GR value (0,0).
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LVC, Phys. Rev. Lett. 116, 221101 (2016)

Observed quasi-normal mode 
spectrum of the remnant

ff0; τg plane as a function of the merger-to-start time offset
t0 − tM, as well as the corresponding contour for the least-
damped QNM, as predicted in GR for the remnant mass
and spin parameters estimated for GW150914.
The 90% posterior contour starts to overlap with the GR

prediction from the IMR waveform for t0 ¼ tM þ 3 ms, or
∼10M after the merger. The corresponding log Bayes factor
at this point is log10 B ∼ 14 and the MAP waveform SNR is
∼8.5. For t0 ¼ tM þ 5 ms, the MAP parameters fall within
the contour predicted in GR for the least-damped QNM,
with log10B ∼ 6.5 and SNR ∼ 6.3. At t0 ¼ tM þ 6.5 ms, or
about 20M after merger, the Bayes factor is log10 B ∼ 3.5
with SNR ∼ 4.8. The signal becomes undetectable shortly
thereafter, for t0 ≳ tM þ 9 ms, where B≲ 1.
Measuring the frequency and decay time of one

damped sinusoid in the data does not by itself allow
us to conclude that we have observed the least-damped
QNM of the final black hole since the measured quality
factor could be biased by the presence of the other
QNMs in the ringdown signal (see, e.g., Refs. [63,64]
and the references therein). However, based on the
numerical simulations discussed in Refs. [65–67], one
should expect the GW frequency to level off at
10M–20M after the merger, which is where the descrip-
tion of ringdown in terms of QNMs becomes valid. For
a mass M ∼ 68M⊙, the corresponding range is ∼3–7 ms
after merger. Since this is where we observe the 90%
posterior contours of the damped-sinusoid waveform
model and the 90%-confidence region estimated from
the IMR waveform to be consistent with each other, we
may conclude that the data are compatible with the
presence of the least-damped QNM, as predicted by GR.

In the future, we will extend the analysis to two damped
sinusoids and will explore the possibility of independently
extracting the final black hole’s mass and spin. A test of the
general-relativistic no-hair theorem [68,69] requires the
identification of at least two QNM frequencies in the
ringdown waveform [64,70,71]. Such a test would benefit
from the observation of a system with a total mass similar to
the one of GW150914, but with a larger asymmetry
between component masses, which would increase the
amplitudes of the subdominant modes; a stronger misalign-
ment of the orbital angular momentum with the line of sight
would further improve their visibility [70]. Finally, the
determination of the remnant mass and spin independent of
binary component parameters will allow us to test the
second law of black-hole dynamics [72,73].
Constraining parametrized deviations from general-

relativistic inspiral-merger-ringdown waveforms.—
Because GW150914 was emitted by a binary black hole
in its final phase of rapid orbital evolution, its gravitational
phasing (or phase evolution) encodes nonlinear
conservative and dissipative effects that are not observable
in binary pulsars, whose orbital period changes at an
approximately constant rate. (Current binary-pulsar obser-
vations do constrain conservative dynamics at 1 PN order
and they partially constrain spin-orbit effects at 1.5 PN
order through geodetic spin precession [12].) Those effects
include tails of radiation due to backscattering of GWs by
the curved background around the coalescing black holes
[74], nonlinear tails (i.e., tails of tails) [75], couplings
between black-hole spins and the binary’s orbital angular
momentum, interactions between the spins of the two
bodies [76–78], and excitations of QNMs [28–30] as the
remnant black hole settles in the stationary configuration.
Whether all of these subtle effects can actually be

identified in GW150914 and tested against GR predictions
depends, of course, on their strength with respect to
instrument noise and on whether the available waveform
models are parametrized in terms of those physical
effects. GW150914 is moderately loud, with SNR ∼ 24,
certainly much smaller than what can be achieved in
binary-pulsar observations. Our ability to analyze the fine
structure of the GW150914 waveform is correspondingly
limited. Our approach is to adopt a parametrized analytical
family of inspiral-merger-ringdown waveforms, then treat
the waveform coefficients as free variables that can be
estimated (either individually or in groups) from the
GW150914 data [79–85]. We can then verify that the
posterior probability distributions for the coefficients
include their GR values.
The simplest and fastest parametrized waveform model

that is currently available [41] can be used to bound physical
effects only for the coefficients that enter the early-inspiral
phase because, for the late-inspiral, merger, and ringdown
phases, it uses phenomenological coefficients fitted to NR
waveforms. Louder GW events, to be collected as detector

FIG. 5. 90% credible regions in the joint posterior distributions
for the damped-sinusoid parameters f0 and τ (see the main text),
assuming start times t0 ¼ tM þ 1, 3, 5, 6.5 ms, where tM is the
merger time of the MAP waveform for GW150914. The black
solid line shows the 90% credible region for the frequency and
decay time of the l ¼ 2, m ¼ 2, n ¼ 0 (i.e., the least-damped)
QNM, as derived from the posterior distributions of the remnant
mass and spin parameters.
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Tidal deformability of the compact object

Qij = �� ✏ij

Induced quadrupole moment
External tidal field

Tidal love number

k2 =
3

2
G�R�5

Dimensionless tidal love number: 0 for BHs

Damour & Nagar, 2009
Bennington & Poisson, 2009 

Tidal deformability of the compact object

7

Qij = �� ✏ij

External tidal fieldInduced quadrupole moment

Tidal love number

k2 =
3

2
G�R�5

k2 ⌘ 0 for BHs

Dimensionless tidal love number

Cardoso et al, 2017

Damour & Nagar, 2009
Bennington & Poisson, 2009 

Cardoso+ (2017)
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Tidal deformability of the compact object

Qij = �� ✏ij

Induced quadrupole moment
External tidal field

Tidal love number

k2 =
3

2
G�R�5

Dimensionless tidal love number: 0 for BHs

Damour & Nagar, 2009
Bennington & Poisson, 2009 

Higher order effects 
and hence difficult to 
measure.
Cardoso+, arXiv: 1701.01116 (2017)
Maselli+, arXiv:1703.10612 (2017)
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Testing the BH nature
by measuring the spin-induced 

multipole moments of
a compact binary system.

A “No-hair”  Test for Compact Binaries

Krishnendu,  Arun, Mishra, PRL119, 091101,2017
Krishnendu, Mishra, Arun, PRD 99, 064008, 2019
Krishnendu, Saleem, Samajdar,  Arun, Del Pozzo, Mishra, PRD 100, 104019 (2019)  
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Measure spin-induced deformations of binary components

Poisson, PRD 57, 5287 (1998);
Laarakkers+, ApJ 512, 282 (1999);
Pappas+, PRL 108, 231103 (2012);

F. D. Ryan, PRD 55, 6081 (1997)
Uchikata+, CQG 32,085008(2015)
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1

I. SUPPLEMENTARY MATERIAL

A. Spin-induced quadrupole and octupole pieces in compact binary waveforms

While discussing the waveform model we mentioned that the waveform used in this work is a variant of the one that is
presented in Ref. [1]. These are constructed by simply making the dependences on parameters characterising the spin-induced
quadrupole moment (through s and a) and spin-induced octupole moment (through �s and �a) explicit in the waveform, which
were set to their respective values for Kerr BHs while writing the waveform model of Ref. [1]. In this note we list various pieces
of the waveform where such dependences occur.

Let us first recall the schematic expression for the frequency domain amplitude of a gravitational wave signal, h̃( f ), given in
Ref. [1]. 1 This reads

h̃( f ) =
M2

DL

s
5 ⇡
48⌘

4X

n=0

6X

k=1

Vn�7/2
k C(n)

k ei(k SPA( f /k)�⇡/4) . (1.1)

Here, M, ⌘ and DL denote the total mass, symmetric mass ratio parameter and the distance to the binary, respectively and the
indices n and k denote the PN order and harmonic number, respectively. The coe�cients C(n)

k denote the amplitude corrections
associated with the contribution from kth harmonic at nth order. Related expressions for each of the C(n)

k s can be found in
Ref. [1, 2]. Here we list the only coe�cient which has explicit dependence on the parameters (s and a) and corresponds to the
contributions from the 2nd harmonic at the 2PN order (C(4)

2 ). In addition,  SPA represents the phase of the first harmonic in the
frequency domain as obtained under the Stationary Phase Approximation (SPA) (see sec. VI of Ref. [2] for details on SPA).
Schematically the expression for this phase can be written as follows

 SPA( f ) = 2⇡ f tc � �c +

(
3

128⌘ v5
⇥
 NS +  SO +  SS +  SSS

⇤
)

v=V1( f )
, (1.2)

where �c denotes the orbital phase at the instant tc of coalescence.

Further, one can write the spin part of the SPA phase more explicitly as

 Spin ⌘  SO +  SS +  SSS = v
3
h
P3 + P4 v + P5 v

2 + P6 v
3 + P7v

4 + P8v
5 + · · ·

i
. (1.3)

Again expressions for the coe�cients Pn can be found in Ref. [1, 2] where explicit dependence on s and a is suppressed by
setting them to their respective values for Kerr BHs. Here we provide expressions for coe�cients that contain explicit dependence
on s and a. Below we list the amplitude/phase coe�cients that do contain explicit dependence on s and a and can be combined
to those listed in Ref. [1, 2] to write the final waveform expression.

C(4)
2 =

1p
2

(
F+

"
113419241
40642560

+
152987
16128

⌘ � 11099
1152

⌘2 +

 
165194153
40642560

� 149
1792

⌘ +
6709
1152

⌘2
!

c2
◆ +

 
1693
2016

� 5723
2016

⌘ +
13
12

⌘2
!

c4
◆

�
 

1
24
� 5

24
⌘ +

5
24

⌘2
!

c6
◆ + (1 + c2

◆ )

(�s · L̂N)2

 
1

32
+

23 ⌘
8
+

3�a

2
+

3
2

(1 � 2 ⌘) s

!
+ (�a · L̂N)2

 
1
32
� 3 ⌘ +

3�a

2

+
3
2

(1 � 2 ⌘) s

!
+ (�a · L̂N)(�s · L̂N)

✓ �
16
+ 3 (1 � 2 ⌘)a + 3�s

◆�#
+ i c◆ F⇥

"
114020009
20321280

+
133411
8064

⌘ � 7499
576

⌘2

+
⇣
�s · L̂N

⌘
2
 

1
16
+

23 ⌘
4
+ 3�a + 3 (1 � 2 ⌘)s

!
+

⇣
�a · L̂N

⌘
2
 

1
16
� 6 ⌘ + 3�a + 3 (1 � 2 ⌘)s

!
+ (�a · L̂N)(�s · L̂N)

✓�
8

+ 6 (1 � 2 ⌘)a + 6�s) +
 

5777
2520

� 5555
504

⌘ +
34
3
⌘2

!
c2
◆ +

 
�1

4
+

5
4
⌘ � 5

4
⌘2

!
c4
◆

#)
⇥(2Fcut � f ) (1.4)

P4 = �
5
8

(�s · L̂N)2
h
1 + 156 ⌘ + 80 � a + 80(1 � 2 ⌘)s

i
+ (�a · L̂N)2

"
�5

8
� 50 � a � 50s + 100 ⌘ (1 + s)

#

1 Pre-factor of Eq. 1 of Ref. [1] should be multiplied with a factor 1/p⌘. We have corrected this in the Eq. (1.1).
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1 Pre-factor of Eq. 1 of Ref. [1] should be multiplied with a factor 1/p⌘. We have corrected this in the Eq. (1.1).

Amplitude corrections from kth harmonic at nth PN order
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Analysis Setup
Fisher Matrix approach to parameter estimation 

— assumes Gaussian noise and high SNR 
— gives a lower bound on errors / highly inexpensive

Parameter Space:  
— alternatively, 

Compact Binary BBH

Large dimensionality and unreliable measurements 
— We set  
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— accuracies with which it can be measured gives 
constrain on BBH nature 

New parameter space: 

— The test may be viewed as a Null test of  
the BBH nature of a compact binary

Analysis Setup
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Krishnendu,  Arun, Mishra, PRL119, 
091101,2017 

aLIGO, SNR=10
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Krishnendu,  Arun, Mishra, PRL119, 
091101,2017 

aLIGO, SNR=10
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Injection study (Bayesian)

Krishnendu, Saleem, Samajdar,  Arun, Del Pozzo, 
Mishra, PRD 100, 104019 (2019)  

Other details: For the current analysis, we use a sensitive
lower cutoff frequency of flower ¼ 20 Hz for all three
detectors. The upper cutoff frequency fupper of the integral
in Eq. (2.5) is chosen as the inspiral-to-merger transition
frequency of the IMRPhenomPv2 waveform which is
related to the total mass of the system through the relation
Mfupper ¼ 0.018 [77], as described earlier. With all these
criterions applied, our test injections have the three-detector
(LHV) network SNR ranging between ∼40 and 45, where
the slight variations are caused by the spins.
The neglect of the merger and ringdown parts of the

waveform will lead to deterioration in the overall parameter
estimation. As mentioned before, this is why we choose the
injections with total mass of M ¼ 15M⊙ so that the SNR
contribution from the merger and ringdown is as low as
∼3% of the total SNR, assuming zero spins. For
GW151226 and GW170608 on which we have applied
the test in this work, the SNR contributions from the merger
and ringdown are ∼7% and ∼5%, respectively. However,
we would like to stress that the neglect of merger and
ringdown in our case is due to the unavailability of a
physical model for spin-induced multipole moments
beyond the inspiral. In future, with better analytical under-
standing of the dynamics of the remnant black holes,
situation may change (see, e.g., [110] for a recent work
along this direction).

B. Bounds on δκs parameter

Figure 2 shows the posterior probability distributions of
δκs parameter obtained from the various simulations. The
first row corresponds to component masses ð7.5; 7.5ÞM⊙

(mass ratio ¼ 1), and the second row corresponds to
component masses ð10; 5ÞM⊙ (mass ratio ¼ 2). In each
row, the four different columns correspond to four spin
magnitudes (0.2, 0.1), (0.4, 0.3), (0.6, 0.3), and (0.9, 0.8)
from left to right. The different colors represent different
injected spin orientations: both the spins aligned (light
blue) and both spins antialigned (orange) to the orbital
angular momentum axis. The dashed vertical lines are the
90% credible bounds following the respective colors of
the histograms. Recall that the bounds are estimated as the
highest density intervals of the posteriors as defined
in Eq. (2.8).
It is evident from Fig. 2 that the bounds on δκs are

stronger when the spin magnitudes are larger (see the
panels from left to right together with their narrowing axis
range). This is expected because, for larger spin magni-
tudes, the waveform has stronger signatures of spin-
induced quadrupole moments [see Eq. (2.2)] which in turn
improves the measurement.
Though all the posteriors in Fig. 2 peak at their injected

values (δκs ¼ 0), we notice that there is skewness in all the
posteriors about their injected values. This skewness gets
mirror reflected when the spin orientation is reversed. In
other words, comparing the light blue and orange histo-
grams in each panel, one notices that the longer tail for light
blue is toward left-hand side while for orange, it is toward
the right-hand side. This indicates that our ability to
constrain the non-BH nature is different for aligned and
antialigned spin orientations. For aligned cases, the type of
non-BH nature with δκs > 0 (such as binaries of boson
stars) can be better constrained than the type of non-BH
nature with δκs < 0 (such as binaries of gravastars). On the

FIG. 2. Posterior distributions on δκs for a binary systems with total mass 15 M⊙ and mass ratio 1 (top row) and 2 (bottom row) for
different spin magnitudes of (0.2, 0.1), (0.4, 0.3), (0.6, 0.3), and (0.9, 0.8) from left to right in each row. Binaries are assumed to be
optimally oriented at a luminosity distance of 400 Mpc. Different colors represent different injected spin orientations: both spins aligned
to the orbital angular momentum (light blue) and both spins antialigned to the orbital angular momentum (orange).

CONSTRAINTS ON THE BINARY BLACK HOLE NATURE OF … PHYS. REV. D 100, 104019 (2019)
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Trends in-line with 
expectations— ‘high 
component spins lead 
to better constraints’ 
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Constraints from observed events 

Krishnendu, Saleem, Samajdar,  Arun, Del Pozzo, 
Mishra, PRD 100, 104019 (2019)  

multipoles (mass, spin, quadrupole, and octupole moments)
of the system. Further, in certain regions of binary black
hole parameter space, it gives the ability to measure the
spin-induced quadrupole moment parameters of the indi-
vidual constituents of the binary, rather than measuring the
symmetric combination defined above. More recently, this
study was further extended to the case of space-based
detectors LISA and DECIGO [74], and it was found
that they offer unprecedented opportunity to test the black
hole nature of compact binaries in the intermediate-mass
and supermassive mass regimes by measuring the sym-
metric combination of the quadrupole parameter to
accuracy of the order of 0.1 even for spin magnitudes
of ∼0.5.
In this work, we implement and demonstrate the method

[60] within the framework of Bayesian inference and
perform tests of binary black hole nature of the LIGO-
Virgo detected binary black hole events. Our method
uses binary black hole waveforms with parametrized
deformations on the spin-induced quadrupole moment
coefficients κ, defined as κ ¼ 1þ δκ where the para-
metrized deformations (labeled as δκ) represent the devia-
tions from binary black hole nature. We make use of the
LALInference [75,76] library to measure the para-
metrized deformations δκ of compact binaries which can
be considered as the bounds on their departures from
binary black hole natures. Our method also includes
estimation of Bayes factors to perform Bayesian model
selection between binary black hole models and black hole
mimicker models.
We perform detailed studies to demonstrate the method

using simulated GW signals (injections) which include

those of various masses and spins. We investigate in detail
about various degeneracies in the parameter space and
associated systematics in the estimated parameters, which
may often restrict the applicability of this test. Finally, we
apply this method on the LIGO-Virgo detected binary black
holes GW151226 and GW170608 and obtain constraints
on their BH natures.

B. Executive summary: Constraints
from GW151226 and GW170608

Here we briefly summarize the results from the tests of
binary black hole nature of the observed GW signals
GW151226 [2] and GW170608 [3]. Among all the ten
binary black hole events detected in O1/O2, we have
restricted the analysis for these two events. This is because,
with the currently available waveform models, our test is
applicable only on the inspiral part of the signal and
GW151226 and GW170608 are the only two inspiral
dominated events.
Figure 1 shows the bounds obtained from GW151226

[2] (red) and GW170608 [4] (green). We show the posterior
probability distribution for δκs, the parametrized deforma-
tions in the κs parameter, which is the symmetric combi-
nation of spin-induced quadrupole moment coefficients of
the individual compact objects (κ1 and κ2), as discussed in
Sec. I A. In the left panel, we used a generic prior on δκs, as
uniform in [−200; 200], which leads to constraints on
generic BH mimicker models which has positive or
negative values for δκs. Under this prior assumption, we
find that the deformation parameter δκs is constrained to a
90% credible interval of [−191.78; 13.45] for GW151226
and [−177.36; 122.98] for GW170608. In the right panel,

FIG. 1. Posterior distributions on the spin-induced quadrupole moment parameter δκs, estimated from the observed gravitational wave
events GW151226 [2] and GW170608 [4]. Left and right panels correspond to two different physically motivated priors on δκs
parameter (symmetric and one sided). The posteriors are obtained from the Bayesian analysis of the O1/O2 public GW data using
LALInference [75]. We used IMRPhenomPv2 waveform models [77] for the analysis, truncated at the inspiral-to-merger transition
frequency as the spin-induced deformations are not modeled in the merger and ringdown phases. The vertical dotted lines show the 90%
credible bounds (highest density intervals) on δκs.
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we have obtained the bounds on δκs for a restricted one-
sided prior of [0, 200]. Unlike the generic prior, this one-
sided prior leads to constraints on specific black hole
mimicker models such as boson stars for which δκs is
predicted to be positive always. Under this prior
assumption, we obtain 90% credible upper bounds to be
δκs ≤ 98.67 for GW151226 and δκs ≤ 125.69 for
GW170608. All the bounds are listed in Table I. In all
the cases, it is noted that the BH limits (δκs ¼ 0) are well
within the 90% credible intervals which means that the
posteriors do not indicate the presence of any non-BH
nature in these events. However, one may also note that the
posteriors are not very sharply peaked at zero implying
weaker constraints on the non-BH nature of the compact
objects involved.
In addition to the bounds reported above, we performed

Bayesian model selection between BH mimicker
models and BH models by calculating the Bayes factor
between them (defined in Sec. II C). The estimated Bayes
factors for both the events are given in Table I. For these
events, we find that the Bayes factors in the logarithmic
scale are −0.94 (for GW151226) and −0.15 (for
GW170608) which implies that Bayes factors do not
show strong evidence in favor of any of the models
(neither BH nor non-BH models). These results are in
agreement with our conclusions from the posteriors
discussed above. Only more sensitive measurements in
the future may help us quantify this better. In Sec. IV, we
have discussed the results from gravitational wave events
in more detail.
The rest of this paper is organized as follows. In Sec. II,

we discuss the waveform model used in this study and give
a brief overview of Bayesian inference for parameter
estimation and model selection. Section III covers our
detailed simulation studies and results, and in Sec. IV, we
present the constraints obtained from the real events
GW151226 and GW170608.

II. METHOD

A. The waveform model

In frequency domain, the gravitational wave signal from
compact binary inspirals in the detector frame can be
schematically written as

h̃ðfÞ ¼ CAðfÞeiψðfÞ; ð2:1Þ

where ψðfÞ is the phase and AðfÞ is the amplitude
of the gravitational wave signal which is given by
∼D−1

L M5=6f−7=6, where M is the chirp mass, which is

related to individual masses m1 and m2 as,M ¼ ðm1m2Þ3=5
ðm1þm2Þ1=5

,

and DL is the luminosity distance to the source. The factor
C carries the antenna response of the interferometers as a
function of the source location and orientation parameters.
The orbital evolution of the inspiralling binary is largely

encoded in the phasing formula and appears in terms of the
masses and spins of the binary.1 Due to the recent develop-
ments in the post-Newtonian modeling of compact binaries
[78], the phasing formula for the inspiralling binary has
been computed accurately up to 3.5PN order [79–93].
This phasing formula accounts for the higher-order spin

corrections such as spin-orbit interactions (at 1.5PN, 2PN,
3PN, and 3.5PN orders) and spin-spin interactions (at 2PN
and 3PN orders). Spin-induced quadrupole moment coef-
ficient given in Eq. (1.1) first appears at the 2PN order,
and its first post-Newtonian correction appears at the 3PN
order [79–84].
Since the spin-induced quadrupole moment parameter is

unity for Kerr BHs, the waveforms which are particularly
developed for binary black hole systems a priori assume
the value unity. However, for this study, since our interest is
in those binary systems for which κ departs from unity, we
rewrite Eq. (1.1) in the following form:

Q ¼ −ð1þ δκÞχ2m3; ð2:2Þ

where δκ is the parametrized departure of κ from unity.
Hence, δκ ¼ 0 is the BH limit and nonzero δκ corresponds
to non-BH objects. Our proposal is to independently
measure δκ and use the measurement to put possible
constraints on the allowed parameter space of BHmimicker
models from observed gravitational wave events.
For this study, we use the IMRPhenomPv2 [94] wave-

form approximant which is available in LSC Algorithm
Library, by incorporating into it, the parametrized deforma-
tions shown in Eq. (2.2). IMRPhenomPv2 is a frequency
domain inspiral-merger-ringdown waveform model whose
inspiral part of the phasing agrees with the PN phasing and
the merger-ringdown parts are obtained by calibrating to

TABLE I. Summary of the tests of binary black hole nature of
the real gravitational wave events GW151226 and GW170608 by
measuring the spin-induced quadrupole moment parameters δκs.
The results are shown for two different physically motivated
priors on δκs: [−200; 200] (symmetric) and [0, 200] (one sided)
as shown in the second column. The third and fourth columns,
respectively, show the 90% credible intervals (upper bounds in
case of one-sided priors) on δκs and the Bayes factors between
non-BH and BH models.

Event Prior on δκs
90% bounds

on δκs
Bayes factor
(logBNBH

BH )

GW151226 [−200; 200] [−191.78; 13.45] −0.94
[0, 200] ≤98.67 −2.26

GW170608 [−200; 200] [−177.36; 122.98] −0.15
[0, 200] ≤125.69 −1.15

1We have not considered the effects due to orbital eccentricity,
tidal deformations due to the presence of external gravitational
field etc. in the waveform.
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other hand, for antialigned cases, it is vice versa. We
investigate these features in detail below.

1. Role of effective spin parameter

We find that the effective spin parameter χeff plays a
major role in the features observed in the posteriors
discussed above. Effective spin parameter defined as

χeff ¼
m1χ1z þm2χ2z
ðm1 þm2Þ

; ð3:1Þ

is a combination of component masses m1, m2 and
component spins χ1z, χ2z and appears as the leading order
spin dependence in the inspiral PN waveform [97]. In Fig. 3
(left panel), we have shown the bounds on δκs parameter as
a function of their injected χeff values where the vertical
bars correspond to the 90% credible intervals of the δκs
parameter. The larger the magnitude of χeff , the tighter the
bounds on δκs. For systems with small magnitudes of χeff
(for example, χeff < 0.3), the δκs parameter is almost
unconstrained. Further, when χeff is large and positive,
the region with δκs > 0 is better constrained, whereas when
the χeff is large and negative, the region with δκs < 0 is
better constrained.
The dependence of δκs posteriors on χeff discussed above

holds true despite the fact that the systems considered for
this plot include those with various component masses and
spins. In fact, it is difficult to disentangle the individual
effects of the component masses and spins due to the
degeneracy between spins and mass ratio parameters [111].
However, χeff captures the combined effects of all these
parameters on the δκs posteriors and hence is the most

important single parameter which describes our ability to
constrain δκs parameter for any given system.
We further investigate the skewness of the posteriors in

detail and show that they are primarily caused by the
waveform degeneracies between δκs and χeff parameters.
To demonstrate this, we first define the overlap function O
between a binary black hole injection h̃BH and a non-BH
template h̃NBH as

O ¼ ðh̃BHjh̃NBHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh̃BHjh̃BHÞðh̃NBHjh̃NBHÞ

q ; ð3:2Þ

where (:j:) is the noise weighted inner product defined in
Eq. (2.5) and both h̃BH and h̃NBH are in frequency domain.
Overlap quantifies how similar are the two signals h̃BH and
h̃NBH and its value is maximum (O ¼ 1) when h̃BH ¼ h̃NBH.
We have taken two binary black hole injections with both

of them having identical component masses ð10; 5ÞM⊙ but
different spin orientations (0.6, 0.3) and ð−0.6;−0.3Þ
whose χeff values are 0.5 and −0.5, respectively. The
templates h̃NBH are uniformly distributed in the non-BH
parameter space with component spins ranging in [−1; 1]
and δκs ranging in [−100; 100]. The masses of the
templates are kept fixed at their injection values which
will be justified later with the results.
We show the results of this overlap calculation in the

right panel of Fig. 3. Templates having very high overlaps
with the injections (O > 0.995) are shown as scattered
plots in the δκs − χeff plane (light blue for aligned-spin
injection and orange for antialigned spin injection). The

FIG. 3. Left: the 90% bounds on the spin-induced quadrupole moment parameter ðδκsÞ given in Eq. (2.8) as a function of the injected
values of effective spin parameter [see Eq. (3.1)]. All the injections are compact binary inspirals with fixed total mass of 15M⊙ while
varying the mass ratio, spin magnitudes, and orientations which results in different values of effective spin parameter. Right: figure
showing the degenerate regions in the non-BH parameter space (δκs − χeff ) for binary black hole injections with two different spin
orientations aligned (0.6, 0.3) and antialigned ð−0.6;−0.3Þ. The light blue and orange represent aligned and antialigned cases,
respectively, and the injected parameters are marked by black stars. The scattered points show the region at which the non-BH waveform
has a very high overlap (O > 0.995) with the BH injection(s) [see Eq. (3.2)].
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other hand, for antialigned cases, it is vice versa. We
investigate these features in detail below.

1. Role of effective spin parameter

We find that the effective spin parameter χeff plays a
major role in the features observed in the posteriors
discussed above. Effective spin parameter defined as

χeff ¼
m1χ1z þm2χ2z
ðm1 þm2Þ

; ð3:1Þ

is a combination of component masses m1, m2 and
component spins χ1z, χ2z and appears as the leading order
spin dependence in the inspiral PN waveform [97]. In Fig. 3
(left panel), we have shown the bounds on δκs parameter as
a function of their injected χeff values where the vertical
bars correspond to the 90% credible intervals of the δκs
parameter. The larger the magnitude of χeff , the tighter the
bounds on δκs. For systems with small magnitudes of χeff
(for example, χeff < 0.3), the δκs parameter is almost
unconstrained. Further, when χeff is large and positive,
the region with δκs > 0 is better constrained, whereas when
the χeff is large and negative, the region with δκs < 0 is
better constrained.
The dependence of δκs posteriors on χeff discussed above

holds true despite the fact that the systems considered for
this plot include those with various component masses and
spins. In fact, it is difficult to disentangle the individual
effects of the component masses and spins due to the
degeneracy between spins and mass ratio parameters [111].
However, χeff captures the combined effects of all these
parameters on the δκs posteriors and hence is the most

important single parameter which describes our ability to
constrain δκs parameter for any given system.
We further investigate the skewness of the posteriors in

detail and show that they are primarily caused by the
waveform degeneracies between δκs and χeff parameters.
To demonstrate this, we first define the overlap function O
between a binary black hole injection h̃BH and a non-BH
template h̃NBH as

O ¼ ðh̃BHjh̃NBHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh̃BHjh̃BHÞðh̃NBHjh̃NBHÞ

q ; ð3:2Þ

where (:j:) is the noise weighted inner product defined in
Eq. (2.5) and both h̃BH and h̃NBH are in frequency domain.
Overlap quantifies how similar are the two signals h̃BH and
h̃NBH and its value is maximum (O ¼ 1) when h̃BH ¼ h̃NBH.
We have taken two binary black hole injections with both

of them having identical component masses ð10; 5ÞM⊙ but
different spin orientations (0.6, 0.3) and ð−0.6;−0.3Þ
whose χeff values are 0.5 and −0.5, respectively. The
templates h̃NBH are uniformly distributed in the non-BH
parameter space with component spins ranging in [−1; 1]
and δκs ranging in [−100; 100]. The masses of the
templates are kept fixed at their injection values which
will be justified later with the results.
We show the results of this overlap calculation in the

right panel of Fig. 3. Templates having very high overlaps
with the injections (O > 0.995) are shown as scattered
plots in the δκs − χeff plane (light blue for aligned-spin
injection and orange for antialigned spin injection). The

FIG. 3. Left: the 90% bounds on the spin-induced quadrupole moment parameter ðδκsÞ given in Eq. (2.8) as a function of the injected
values of effective spin parameter [see Eq. (3.1)]. All the injections are compact binary inspirals with fixed total mass of 15M⊙ while
varying the mass ratio, spin magnitudes, and orientations which results in different values of effective spin parameter. Right: figure
showing the degenerate regions in the non-BH parameter space (δκs − χeff ) for binary black hole injections with two different spin
orientations aligned (0.6, 0.3) and antialigned ð−0.6;−0.3Þ. The light blue and orange represent aligned and antialigned cases,
respectively, and the injected parameters are marked by black stars. The scattered points show the region at which the non-BH waveform
has a very high overlap (O > 0.995) with the BH injection(s) [see Eq. (3.2)].
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Corner plots

prior [0, 200] (right panel). The symmetric prior
½−200; 200" represents a most generic test which accounts
for BH mimicker models including those of both oblate
(δκs > 0) and prolate (δκs < 0) spin-induced deformations.
The one-sided prior [0, 200] is a restricted case which
accounts only for oblate spin-induced deformations. In
other words, the symmetric prior leads to generic con-
straints on BH mimicker models including boson stars,
gravastars, etc. whereas the one-sided prior is motivated by
specific models such as boson star models for which δκs is
always positive and hence meant to provide specific
constraints on such models. The prior is restricted to jδκsj ≤
200 because the parametrized waveforms we construct are
found not to be well behaved beyond this range and hence
cannot meaningfully represent the corresponding physics.
The 90% credible intervals (highest density intervals) on
δκs are given in Table I. For all the cases, it is found that the
90% credible intervals or the upper bounds (in case of one-
sided prior) are consistent with δκs being equal to zero and
hence consistent with GW151226 and GW170608 being
binary black holes.
Detailed corner plots are presented in Fig. 5 which will

help us to gain further insights about the underlying
degeneracies and correlations. As we discussed earlier,
the δκs parameter is found to be highly degenerate with χeff .
Again, we note that the posteriors of δκs are asymmetric
about their most probable values and both the events have
got more posterior support for negative values of δκs than
positive values. We recall from Figs. 2 and 3 that the similar
posterior features were observed for cases in which positive
values of χeff were injected. As seen in the corner plots, the

estimated (median) χeff values are positive for both these
events and hence the results from these two events are
completely consistent with our findings from simulation
studies. It is also found that the δκs posteriors are railing
against the prior boundaries for both the events. This may
improve in future if there are events which have larger spins
or lower masses, similar to the ones considered in the
simulations earlier.
We also performedBayes factor studies on both the events

whose results are also shown in Table I. With the symmetric
and the one-sided priors on δκs, we computed Bayes factors
(BNBH

BH ) between the non-BH and BH models (HNBH and
HBH, respectively). We find that the log of the Bayes factors
(logBNBH

BH ) are in the range −2.3 < logBNBH
BH < 0 for all the

cases. These values are too small to be considered as
evidence for favoring or rejecting any of the models which
are tested. The slightly negative values obtained in all the
cases may be interpreted as weak evidence in favor of BH
models over non-BH models. We notice that these features
are consistent with those observed in the posteriors in Fig. 1
that the posteriors are spread over a wider range of values of
δκs with significant weights over non-BH (i.e., nonzero)
values.

V. CONCLUSIONS AND OUTLOOK

In this work, we have developed a Bayesian framework
to test the binary black hole nature of gravitational wave
signals using the measurements of spin-induced quadru-
pole moment parameters of the compact binaries as
proposed in Ref. [60]. We carried out detailed studies

FIG. 5. The corner plots of δκs, chirp mass (M), symmetric mass ratio (η), and χeff from GW151226 [2] and GW170608 [4] with
symmetric priors on δκs.
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of constant errors in the component spin plane have the
form,

χ21ðαΔκsÞ þ χ22ðβΔκsÞ ¼ 1: ð4:4Þ

It is now obvious that for equal mass systems for which
α ¼ β, the contours of constant errors should be circles
whereas for unequal mass systems the contours will be
ellipses. From Eq. (4.3), as 1ffiffi

α
p ≤ 1ffiffi

β
p , these ellipses will

have their semimajor axis along χ2 direction as seen in the
bottom panel of Fig. 3. Though this scaling completely
neglects the correlation of κs with other parameters, this
does give us a qualitative picture about the shape and
orientation of the contours.
We also explore the performance of the proposed test on

an astrophysical population of binary black holes that the
third-generation detectors may see by simulating two

populations of binary black holes which correspond to
different models for the component mass distribution. In
the first model, we distribute the source frame component
masses m1;2 (here m1 > m2) uniformly between 5 M⊙ and
20 M⊙. The secondmodel assumes a power-lawdistribution
with an index α ¼ 2.3 [3,6] for the primary and uniform
distribution for the secondary, again, with masses between
5 M⊙ to 20 M⊙. For both these cases, we distribute sources
with constant comoving number density up to a redshift of
z ¼ 1. The source locations and orientations are uniform on
the sky and the polarization spheres, respectively. In order to
account for the cosmological redshift on the gravitational
signal we rescale the source frame masses (ms) to redshifted
masses (md) as, md ¼ msð1þ zÞ in the gravitational wave
signal while performing parameter estimation using Fisher
matrix. This means that the maximum and minimum
component masses in the detector frame will be 5 M⊙
and 40 M⊙, respectively. We randomly draw 2000 sources
from this population and perform the Fisher analysis to
obtain the errors on various parameters including κs.
Figure 4 shows the resulting distribution of errors on κs
for the two populations described above using Einstein
Telescope and Cosmic Explorer. As can be seen in the inset
of Fig. 4, use of the uniform over power-law distribution
leads to nearly 20% increase in the population of binaries
observed with Δκs ≤ 5 for Cosmic Explorer whereas the
errors we get using Einstein Telescope are largely indepen-
dent of the mass distribution. Furthermore, we find that
errors on κs are less than 10 for 52% (68%) of the sources for
the power-law (uniform) distribution model if we assume
CE sensitivity. The numbers change to 41% and 45%
respectively for power-law and uniform distributions when
we consider Einstein Telescope. These trends can be under-
stood as follows: the mass ratio distribution with primary’s
mass distributed using the power-law leads to fewer sources
with larger mass ratios compared to the case where we
assume uniform distribution for component masses. In
addition, the proposed test is more effective when the mass
ratios are higher (see Fig. 2). These two factors improve the
overall performance of the test for the uniform mass
distribution as can be seen in Fig. 4.
Finally, Fig. 5 compares κs estimates obtained using two

different third-generation detector configurations, Cosmic
Explorer (CE) and Einstein Telescope (ET-D). In this case,
errors on κs as a function of total mass for a fixed mass-ratio
of 1.2 is shown. We consider two spin orientations here,
both the black holes aligned and both the black holes
antialigned to the orbital angular momentum axis. As we
expect, the performance of CE and ET-D detectors are
comparable. However, the Cosmic Explorer error estimates
are marginally better than ET-D for all cases except at low
masses when component spins are aligned with respect to
the orbital angular momentum. This should be a reflection
of the improved low frequency sensitivity of ET-D at
frequencies less than 5 Hz.

FIG. 3. The errors on κs, the symmetric combination of κ1 and
κ2, in the dimensionless spin parameter plane for the binary
system with total mass of 30 M⊙ and mass-ratios of q ¼ 1.2 (top
panel) and q ¼ 3 (bottom panel). We assume the binary to be
optimally oriented at a luminosity distance of 400 Mpc. In both
panels, the solid curve corresponds to the errors using Cosmic
Explorer noise PSD and the errors using advanced LIGO noise
PSD is denoted by dashed contours. As can be seen from the
plots, parameter space explored in the χ1 − χ2 plane is much
larger for Cosmic Explorer compared to advanced LIGO.
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observable by ground-based and space-based gravitational
wave interferometers [66]. The method relies on measuring
the spin-induced quadrupole moments of the binary con-
stituents, which appear explicitly in the gravitational wave-
forms. For instance, the spin-induced quadrupole moment
is given byM2 ¼ −κχ2M3 whereM and χ are the mass and
dimensionless spin parameter of the black hole and the
coefficient κ, which is a measure of the spin-induced
quadrupole moment, is unity for Kerr black holes, whereas
it can take values roughly between ∼2–14 for neutron stars
[67–69] and between ∼10–150 for boson stars [70]. Hence
an accurate and independent measurement of this coeffi-
cient for each of the binary constituents can tell us if they
are indeed black holes [66]. For this purpose, we employed
the post-Newtonian (PN) waveforms for spinning compact
binaries which are explicitly parametrized in terms of these
coefficients (see Sec. II for more details).
It was argued in Ref. [66] that it would not be possible to

accurately measure the deformability coefficients associ-
ated with each binary constituents (κ1, κ2) simultaneously
due to the inherent degeneracies between them. However,
the symmetric combination of the two, κs ¼ ðκ1 þ κ2Þ=2,
can be measured accurately assuming the antisymmetric
combination is zero (which would mean that we work with
the condition κ1 ¼ κ2). Since κ1 ¼ κ2 ¼ 1 for a Kerr black
hole (and hence κs ¼ 1 for a binary black hole), an accurate
measurement of κs is an excellent test of the binary black
hole nature of the observed compact binary. If the binary
system comprises of exotic compact objects, the measure-
ment of the symmetric combination κs should be sensitive
to such a deviation from binary black hole nature even if
κ1 ≠ κ2. However, a further analysis, where both κ1 and κ2
are simultaneously measured, will be necessary to further
understand the composition of the binary and detailed
nature of the binary constituents. This possibility is further
discussed in Sec. IV C. The error bars associated with the
measurement provides the upper limit on the value of κs
allowed by the data for black hole mimicker models. These
bounds, therefore, can be mapped on the parameter space of
various black hole mimicker models. A statistically sig-
nificant detection of κs ≠ 1 could be an indication of the
presence of exotic physics in play and may be followed up.
In the present work, we extend the idea of [66] in three

ways by utilizing the enhanced sensitivity of third-
generation detectors [26,71]. Firstly, we estimate the errors
on κs assuming a third-generation noise sensitivity and find
that the enhanced sensitivity of third-generation detectors
over second-generation detectors improve the κs estimates,
roughly, by an order of magnitude (see Fig. 3). Secondly,
we investigate the ability of third-generation detectors to
simultaneously measure κs and λs (symmetric combination
of coefficients associated with spin-induced octupole of
each binary component (λ1, λ2)) while we set the anti-
symmetric combinations of each pair of coefficients, (κ1,
κ2) and (λ1, λ2) to zero. This would allow simultaneous

measurement of the mass, spin, quadrupole and octupole
moments of the source thereby permitting consistency tests
between them as tests of the binary black hole nature.
Thirdly, we obtain the projected bounds on κ1 and κ2
simultaneously using third-generation detectors (keeping
the octupole moment coefficients to their BH values).
These bounds can straightforwardly be mapped to the
black hole nature of the compact object constituting the
binary system leading to a much stronger test compared to
the one proposed in [66].
A summary of our analysis is shown in Fig. 1, where the

projected errors on the measurement of the spin-induced
multipole moments for the three scenarios discussed above
are shown as a function of total mass for a fixed mass-ratio
of 1.2 and dimensionless spin parameters (0.9,0.8). The
binary is assumed to be optimally oriented at a luminosity
distance of 400 Mpc. The projected bounds on the binary
black hole nature range from 1 to about 8 for the choice of
mass-ratio and spin values depending on the type of test
performed. We see in Fig. 1 that κs, whether measured
alone (Analysis I) or together with λs (Analysis II) is
measured with the smallest errors. We also note that the

FIG. 1. Figure displays variation of 1 − σ errors in the meas-
urement of parameters characterizing spin-induced multipole
moments as a function of the total mass of the binary for the
three different analyses. Analysis I represents the case where κs ¼
ðκ1 þ κ2Þ=2 is treated as an independent parameter (here κ1;2 are
parameters characterizing the spin-induced quadrupole moment
of each binary component) while the antisymmetric combination
of κ1 and κ2 as well as the symmetric and antisymmetric
combination of parameters characterizing the spin-induced octu-
pole moment, (λ1, λ2), are set to their binary black hole values of
(0,1,0), respectively. In Analysis II, both κs and λs ¼ ðλ1 þ λ2Þ=2
are measured simultaneously while the antisymmetric combina-
tion κa ¼ ðκ1 − κ2Þ=2 and λa ¼ ðλ1 − λ2Þ=2 are set to their binary
black hole values of 0. Finally in Analysis III, we obtain errors
on κ1 and κ2 while keeping λ1 and λ2 to their BH values of 1.
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Cosmic Explorerseen here resemble those of Fig. 3 where only κs was
estimated. For nearly equal mass systems, we see that the
contours are less circular when λs is included as a
parameter. This may be due to the degeneracies brought
in by the estimation of λs. Regarding the contours of
constant error on λs (bottom panel of Fig. 7), following a
line of argument similar to the one in Sec. IVA, it can be

shown that the equations of the contours should schemati-
cally read as aχ31 þ bχ32 ¼ 1, where a, b are functions of
mass-ratio which decide shape and orientation of the
contours.
We performed an analysis, similar to the one reported in

Sec. IVA, where we simulated two populations of binary
black holes following a uniform and power-law distributions
for the mass of the binary’s primary (heavier) component in
the source frame, keeping the secondary component mass to
be uniformly distributed such that the total mass is less than
or equal to 40 M⊙. We then compute the distribution of the
bounds expected from the resulting population. Our analysis
show that when κs and λs are measured simultaneously,
errors on λs are less than 10 for about ∼6%ð4%Þ sources
when we use power-law (uniform) distribution on compo-
nent masses for Cosmic Explorer. As observed earlier κs
estimates aremarginally affected compared to the casewhen
κs alone is measured. We find that for nearly 42%ð51%Þ
sources Δκs ≤ 10 with power-law (uniform) distribution
when measured along with λs. Again the error distribution
for κs is similar to those in Fig. 4.

C. Bounding the black hole nature
of the compact binary constituents

In this section, we turn to our third and final analysis
item—measuring both κ1, κ2 that characterize the spin-
induced quadrupole moment coefficients of the binary
components. Recall that simultaneous measurement of
both κ1, κ2 provides a much stronger test compared to
earlier cases where we assumed the spin-induced multipole
coefficients to be the same for both the components of the
binary (κ1 ¼ κ2, λ1 ¼ λ2). The parameter space explored in
this case is as follows,

θi ¼ ftc;ϕc;Mc; η; χ1; χ2; κ1; κ2g; ð4:6Þ

where the parameters have usual meaning.
Figure 8 shows variations in errors on κ1 (filled markers)

and κ2 (empty markers) as a function of total mass of the
binary for three different mass ratios (q ¼ 1.2, 3, 5) and four

FIG. 6. Figure displays variation of 1 − σ errors on κs (filled markers) and λs (unfilled markers) as a function of the binary’s total mass
for three representative mass-ratio cases and four representative spin-orientations with fixed component spin magnitudes (χ1, χ2) of
(0.9,0.8). The four panels (left to right) represent binaries where spins of the two BHs are aligned, heavier one aligned and the other
antialigned, heavier one antialigned and the other aligned and both the spins are antialigned to the orbital angular momentum axis. We
assume the binary to be optimally oriented at a luminosity distance of 400 Mpc.

FIG. 7. Errors on spin-induced quadrupole and octupole mo-
ment parameters of the binary–κs (top panel) and λs (bottom
panel) in the χ1 − χ2 plane for a binary system with total mass
30 M⊙. Solid contours represent mass-ratio of 1.2 and dashed
ones represent mass-ratio 3. Binary system is assumed to be
optimally oriented at a luminosity distance of 400 Mpc.
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3G cases

B. Simultaneous bounds on binary’s spin-induced
quadrupole and octupole moment parameters

Below we discuss the measurability of both the quad-
rupolar and octupolar spin-induced deformations due to

individual BH spins, simultaneously. This time we intend to
measure a symmetric combination of coefficients character-
izing the spin-induced octupole moment of the compact
binary system: λs ¼ ðλ1 þ λ2Þ=2 along with the parameter
κs. Again the antisymmetric combinations κa and λa are set
to their binary black hole value of zero. Formally, simulta-
neous bounds on κs and λs are more stringent than the κs
alone as we are sensitive to two of the leading spin-induced
multipoles instead of one. The parameter space considered
for this analysis is,

θi ¼ ftc;ϕc;Mc; η; χ1; χ2; κs; λsg; ð4:5Þ

where all the parameters have their usual meaning.
Figure 6 shows variations in estimating bounds on κs

(filled markers) and λs (unfilled markers) as a function of
the total mass of the binary for three different mass-ratios
(q ¼ 1.2, 3, 5) and for fixed spin magnitudes of 0.9 and 0.8.
Spin orientations chosen are those where both the black
hole spins aligned, heavier black hole spin aligned and
other antialigned, heavier black hole spin anti-aligned other
aligned and both the spins anti-aligned to the orbital
angular momentum axis, respectively from left to right
of Fig. 6.
As discussed in Sec. II, spin-induced octupole moment

terms start to appear at 3.5 PN order in the PN phasing
formula, while the leading spin-induced quadrupole
moment contributes at the 2PN order and hence is a
dominant effect in the PN dynamics. Hence, among κs
and λs the better constrained parameter is always κs. From
Fig. 6, it is clear that the κs errors are almost an order of
magnitude better estimated compared to λs errors and it is
evident from the same figure that, for most of the parameter
space, the errors on κs is unaffected due to the inclusion of
λs in the problem.
Figure 6 also shows that the bounds on both κs and λs are

tightly constrained for cases where the spin of the heavier
black hole aligned to the orbital angular momentum axis
and if the binary is more asymmetric. When both spins
are aligned with respect to the orbital angular momentum,
the effect of mass-ratio is marginal (similar to the case
presented in Sec. IVA where only κs is measured). On the
other hand, having the lighter component anti-aligned
with respect to the orbital angular momentum vector only
marginally affects the measurements, with the most
affected cases being the symmetric systems. We also note
that the trends are not clear when we deal with cases where
heavier or both components are antialigned. In any case, we
do not expect the best results when heavier or both
components are anti-aligned.
The effect of spin magnitudes on the error estimates for

simultaneous κs (top panel) and λs (bottom panel) mea-
surements are shown in Fig. 7. We choose a total mass of
30 M⊙ and mass ratios of q ¼ 1.2 (solid contours) and
q ¼ 3 (dotted contours) for this case. Broadly the features

FIG. 4. The cumulative distribution function of errors on κs for
two prototypical astrophysical populations of binary black holes
corresponding to two different models for the binary’s mass
distribution. In the first model we assume both component masses
to be uniformly distributed between 5 M⊙ to 20 M⊙ while the
second model assumes the primary mass to follow a power-law
distribution with an index α ¼ 2.3 [3,6] and uniform distribution
for the secondary. In both the models the masses are defined with
respect to the source frame and the sources are distributed
uniformly in the comoving volume up to a redshift of 1.

FIG. 5. Errors on the κs as a function of the total mass of the
binary system for two representative 3rd generation detectors,
Cosmic Explorer (CE noise PSD) and Einstein Telescope (ET-D
noise PSD). The binary is assumed to be at a distance of 400 Mpc
and is optimally oriented. The binary’s mass-ratio is 1.2 and spin
magnitudes of 0.9 and 0.8 for heavier and lighter components,
respectively. Filled- (empty-) markers represent spin orientations
of each component aligned (anti-aligned) to the orbital angular
momentum while squares (diamonds) represent error estimates
for Cosmic Explorer (Einstein Telescope, ET-D).
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LISA



Summary and outlook
First tests of GR using GWs probing the highly 

dynamical, highly relativistic and strong gravity 
regime performed — No evidence for departures 

from ‘the theory’.   
Tests further improved by combining the data 

collected during the first two observations runs 
—- to be aided by near future observations which 

are expected to be routine.



Summary and outlook
Diverse spinning configurations, inclusion of 

contributions from the late stages of binary evolution 
to improve tests such as “No-hair” tests for BBHs.  

Synergy of tidal, spin-induced constraints in case of 
mixed, strong constraints compact components 

involving ECOs.  
Tests of General relativity involving observations of 

spinning-eccentric binaries in context of 2G/3G and 
LISA observations — probing eccentric space-times. 



Additional slides



Combined posteriors (PI/PPI) O1-O2

The−1 PN term of δφ̂2 can be interpreted as arising from
the emission of dipolar radiation. For binary black holes,
this could occur in, e.g., alternative theories of gravity
where an additional scalar charge is sourced by terms
related to curvature [102,103]. At leading order, this
introduces a deviation in the −1 PN coefficient of the
waveform [104,105]. This effectively introduces a term in
the inspiral GW phase, varying with frequency as f−7=3,
while the gravitational flux is modified as FGR →
FGRð1þ Bc2=v2Þ. The first bound on δφ̂−2 was published
in [8]. The higher-order terms in the above expansion also
lead to a modification in the higher-order PN coefficients.
Unlike the case of GW170817 (which we study separately
in [8]), where the higher-order terms in the expansion of the
flux are negligible, the contribution of higher-order terms
can be significant in the binary black hole signals that we
study here. This prohibits an exact interpretation of the −1
PN term as the strength of dipolar radiation. Hence, this
analysis only serves as a test of the presence of an effective
−1 PN term in the inspiral phasing, which is absent in GR.
To measure the above GR violations in the post-

Newtonian inspiral, we employ two waveform models:
(i) the analytical frequency-domain model IMRPHENOMPv2

which also provided the natural parametrization for our tests
and (ii) SEOBNRv4, which we use in the form of
SEOBNRv4_ROM, a frequency-domain, reduced-order model
of the SEOBNRv4 model. The inspiral part of SEOBNRv4 is
based on a numerical evolution of the aligned-spin effective-
one-body dynamics of the binary and its postinspiral model
is phenomenological. The entire SEOBNRv4 model is cali-
brated against NR simulations. Despite its nonanalytical
nature, SEOBNRv4_ROM can also be used to test the para-
metrized modifications of the early inspiral defined above.
Using the method presented in [8], we add deviations to the
waveform phase corresponding to a given δφ̂i at low
frequencies and then taper the corrections to 0 at a frequency
consistent with the transition frequency between early-
inspiral and intermediate phases used by IMRPHENOMPv2.
The same procedure cannot be applied to the later stages of
thewaveform; thus the analysis performedwith SEOBNRv4 is
restricted to the post-Newtonian inspiral, cf. Fig. 3.

The analytical descriptions of the intermediate and
merger-ringdown stages in the IMRPHENOMPv2 model allow
for a straightforward way of parametrizing deviations from
GR,denotedbyfδβ̂2; δβ̂3gandfδα̂2; δα̂3; δα̂4g, respectively,
following [100]. Here the parameters δβ̂i correspond to
deviations from the NR-calibrated phenomenological coef-
ficients βi of the intermediate stage,while the parameters δα̂i
refer tomodifications of themerger-ringdowncoefficientsαi
obtained from a combination of phenomenological fits and
analytical black hole perturbation theory calculations [22].
Using LALINFERENCE, we calculate posterior distributions

of the parameters characterizing the waveform (including
those that describe the binary in GR). Our parametrization
recovers GR at δp̂i ¼ 0, so consistency with GR is verified if
the posteriors of δp̂i have support at 0. We perform the
analyses by varying one δp̂i at a time; as shown in
Ref. [106]; this is fully robust to detecting deviations present
in multiple PN-orders. In addition, allowing for a larger
parameter space by varying multiple coefficients simulta-
neously would not improve our efficiency in identifying
violations of GR, as it would yield less informative poste-
riors. A specific alternative theory of gravity would likely
yield correlated deviations in many parameters, including
modifications that we have not considered here. This would
be the target of an exact comparison of an alternative theory
with GR, which would only be possible if a complete,
accurate description of the inspiral-merger-ringdown signal
in that theory was available.
We use priors uniform on δp̂i and symmetric around 0.

Figure 3 shows the combined posteriors of δp̂i (margin-
alized over all other parameters) estimated from the
combination of all the events that cross the significance
threshold of FAR < ð1000 yrÞ−1 in both modeled searches;
see Table I. Events with SNR < 6 in the inspiral regime
(parameters δφ̂i) or in the postinspiral regime (δβ̂i and δα̂i
for the intermediate and merger-ringdown parameters,
respectively) are not included in the results, since the data
from those instances failed to provide useful constraints
(see Sec. III for more details). This SNR threshold,
however, is not equally effective in ensuring informative

FIG. 3. Combined posteriors for parametrized violations of GR, obtained from all events in Table I with a significance of FAR <
ð1000 yrÞ−1 in both modeled searches. The horizontal lines indicate the 90% credible intervals, and the dashed horizontal line at 0
corresponds to the expected GR values. The combined posteriors on φi in the inspiral regime are obtained from the events which in
addition exceed the SNR threshold in the inspiral regime (GW150914, GW151226, GW170104, GW170608, and GW170814),
analyzed with IMRPHENOMPv2 (grey shaded region) and SEOBNRv4 (black outline). The combined posteriors on the intermediate and
merger-ringdown parameters βi and αi are obtained from events which exceed the SNR threshold in the postinspiral regime
(GW150914, GW170104, GW170608, GW170809, GW170814, and GW170823), analyzed with IMRPHENOMPv2.
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We also employ the SEOBNRv4 waveform model, which
is constructed from an aligned-spin EOB model for binary
black holes augmented with information from NR simula-
tions [58]. Using the methods of Ref. [59], this model is
evaluated in the frequency domain, and then we add the tidal
correctionϕTðfÞ as described above;we refer to the resulting
waveform model as SEOBNRT. Unlike PhenomPNRT,
the SEOBNRT model is not constructed explicitly in terms
of PN coefficients φn. Instead, we model the effect of a
relative shift δφ̂n by adding to the frequency domain phase a
term δφ̂nφnfð−5þnÞ=3 or δφ̂ðlÞ

n φðlÞ
n fð−5þnÞ=3 logðfÞ, as appli-

cable. These corrections are then tapered to zero at themerger
frequency.
Figure 1 depicts the PDFs on δφ̂n recovered when only

variations at that particular PN order are allowed. We find
that the phase evolution of GW170817 is consistent with
the GR prediction. The 90% credible region for each
parameter contains the GR value of δφ̂n ¼ 0 at all orders
other than 3PN and 3.5PN. [Using PhenomPNRT
(SEOBNRT), the GR value lies at the 6.8th (4.4th) percen-
tile of the PDF for the 3PN parameter and at the 95.0th
(96.7th) percentile for the 3.5PN parameter.] For the
pipeline used to perform parametrized tests with binary
black holes, it has been shown in Ref. [28] through
extensive simulations that no noticeable systematics are
present. In the case of binary neutron stars such a study is
computationally demanding because of the long signals,
and a similar study will be published at a later date. At
present we have no reason to believe that the offsets seen
here at 3PN and 3.5PN have anything other than a statistical
origin. In any case, we note that the value of zero is in the
support of the posterior density function for all testing
parameters. The bounds on the positive-PN parameters
(n ≥ 0) obtained with GW170817 alone are comparable to
those obtained by combining the binary black hole signals
GW150914, GW151226, and GW170104 in Ref. [16]
using the IMRPhenomPv2 waveform model. For conven-
ience we also separately give 90% upper bounds on
deviations in PN coefficients; see Fig. 2.
The PDFs shown in Fig. 1 were constructed using the

same choice of prior distribution outlined in Ref. [19] with

the following modifications. We use uniform priors on δφ̂n
that are broad enough to fully contain the plotted PDFs.
Because of the degeneracy between δφ̂0 and the chirp mass,
a broader prior distribution was chosen for the latter as
compared to Ref. [19] for runs in which δφ̂0 was allowed to
vary. All inference was done assuming the prior jχ ij ≤ 0.99,
where χ i ¼ cSi=ðGm2

i Þ is the dimensionless spin of each
body. This conservative spin prior was chosen to allow the
constraints on δφ̂n to be directly compared with those from
binary black hole observations, which used the same prior
[13,15]. Nevertheless, throughout this Letter we assume
the two objects to be neutron stars, and following Ref. [19]
we limit our prior on the component tidal parameters to
Λi ≤ 5000. (For a precise definition of the Λi, see Ref. [1]
and references therein.) This choice was motivated by
reasonable astrophysical assumptions regarding the
expected ranges for neutron star masses and equations of
state [46,60,61]; higher values of Λ are possible for some
equations of state if the neutron star masses are small
(≃0.9 M⊙). The extra freedom introduced by including δφ̂n
leads to a loss in sensitivity in the measurement of tidal
parameters; in particular, the tail of the PDF for the tidal
deformation of the less massive body Λ2 touches the prior

FIG. 1. Posterior density functions on deviations of PN coefficients δφ̂n obtained using two different waveform models
(PhenomPNRT and SEOBNRT); see the main text for details. The −1 PN and 0.5PN corrections correspond to absolute deviations,
whereas all others represent fractional deviations from the PN coefficient in GR. The horizontal bars indicate 90% credible regions.

FIG. 2. 90% upper bounds on deviations jδφ̂nj in the PN
coefficients following from the posterior density functions shown
in Fig. 1.
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bounds quickly become rather loose as the PN order is
increased. As a consequence, the double-pulsar bounds are
significantly less informative than GW150914, except at
0 PN order, where the double-pulsar bound is better thanks
to the long observation time (∼10 yr against ∼0.4 s for
GW150914). (We note that when computing the upper
bounds with the binary-pulsar observations, we include the
effect of eccentricity only in the 0 PN parameter. For the
higher PN parameters, the effect is not essential considering
that the bounds are not very tight.) Thus, GW150914 allows
us for the first time to constrain the coefficients in the PN
series of the phasing up to 3.5 PN order.
Furthermore, in Table I and Fig. 7 we summarize the

constraints on each testing parameter δφ̂i for the single- and
multiple-parameter analyses. In particular, in the sixth and
seventh columns of Table I, we list the quantile at which the
GR value of zero is found within the marginalized one-
dimensional posterior (i.e., the integral of the posterior
from the lower bound of the prior up to zero). We note that
in the single-parameter analysis, for several parameters, the
GR value is found at quantiles close to an equivalent of
2σ − 2.5σ, i.e., close to the tails of their posterior proba-
bility functions. It is not surprising that this should happen
for the majority of the early-inspiral parameters since we
find that these parameters have a substantial degree of
correlation. Thus, if a particular noise realization causes the
posterior distribution of one parameter to be off centered
with respect to zero, we expect that the posteriors of all of
the other parameters will also be off centered. This is
indeed what we observe. The medians of the early-inspiral
single-parameter posteriors reported in Table I show
opposite sign shifts that follow closely the sign pattern
found in the PN series.

We repeated our single-parameter analysis on 20 data
sets obtained by adding the same NR waveform with
GW150914-like parameters to different noise-only data
segments close to GW150914. In one instance, we
observed δφ̂i posterior distributions very similar to those
of Table I and Fig. 7, both in terms of their displacements
from zero and of their widths, whereas for the others the
displacements tended to be much smaller (though the
widths were still comparable). Thus, it is not unlikely that
instrumental noise fluctuations would cause the degree of
apparent deviation from GR found to occur in the single-
parameter quantiles for GW150914, even in the absence of
an actual deviation from GR. However, we cannot fully
exclude a systematic origin from inaccuracies or even
missing physics in our waveform models. Future observa-
tions will shed light on this aspect.
In the multiple-parameter analysis, which accounts for

correlations between parameters, the GR value is usually
found to be very close to the median of the marginalized
distributions. This is partly due to the fact that we are not
sensitive to most of the early-inspiral parameters, with the
exception of the 0PN and 0.5PN coefficients. As for the
intermediate and merger-ringdown parameters, since most
of the SNR for GW150914 comes from the high-frequency
portion of the observed signal, we find that the constraints
on those coefficients are very robust and essentially
independent of the analysis configuration chosen, single
or multiple.
Finally, the last two columns of Table I report the

logarithm of the ratio of the marginal likelihoods (the
logarithm of the Bayes factor log10 BGR

model) as a measure of
the relative goodness of fit between the IMRPHENOM and
GIMR models (see Ref. [3] and the references therein). If

FIG. 7. Violin plot summarizing the posterior probability density distributions for all of the parameters in the GIMR model. (Summary
statistics are reported in Table I.) From left to right, the plot shows increasingly high-frequency regimes, as outlined in the text and
Fig. 3; the leftmost posteriors, labeled from 0 PN to 3.5 PN, are for the early-inspiral PN regime; the βi and αi parameters correspond to
the intermediate and merger-ringdown regimes. Note that the constraints get tighter in the merger and ringdown regimes. In red, we
show posterior probability distributions for the single-parameter analysis, while in cyan we show the posterior distribution for the
multiple-parameter analysis. The black error bar at 0PN shows the bound inferred from the double pulsar; higher PN orders are not
shown, as their constraints are far weaker than GW150914’s measurement and they would appear in the plot as vertical black lines
covering the entire y axis. The 2.5 PN term reported in the figure refers to the logarithmic term δφ̂5l. Because of their very different scale
compared to the rest of the parameters, the 0 PN and 0.5 PN posterior distributions from GW150914 and the double-pulsar limits at 0 PN
order are shown on separate panels. The error bars indicate the 90% credible regions reported in Table I. Because of correlations among
the parameters, the posterior distribution obtained from the multiple-parameter analyses in the early-inspiral regimes are informative
only for the 0.5 PN coefficient.
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