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Introduction

Figure 1: Cosmic Microwave Background Radiation (CMBR)

CMB observation → Temperature fluctuations ∼ 10−5 with T0 ' 2.73 k → Early
Universe was isotropic and homogeneous (imposing spatial symmetry).

Perturbed spectra → nearly scale-invariant.

Homogeneous and isotropic Universe brings two problems in the early Universe:
I Casually disconnected region showing similar behavior behavior → Horizon problem.
I Ωk ∝ a−2(t) and Ω0

k ∼ 10−2 → Ωearlier
k is extremely small and fine-tuned →

Flatness problem.
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FLRW (homogeneous and isotropic) line element:

ds2 = − dt2 + a2(t) dx2 = a2(η)
(
− dη2 + dx2

)
where t is cosmic time, η ≡

∫
dt/a(t) is conformal time (comoving horizon) and a is the

scale factor.

Solving Horizon problem:
I At very early times → −∞ < η ≤ 0,
I and later, 0 ≤ η <∞.

i.e., the comoving horizon η shrinks and later expands.

Ωk ∝ (−k0 η)2 → Even if the spatial curvature is present, it will die down quickly at early
times.

Inflation: accelerating universe ä(t)/a(t) > 0 → solves the issue.

Scale factor a(η) ∝ (−η)α, α ≤ −1.
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Curvature ζ(t, x) and tensor perturbations hij (t, x) generate deep inside the horizon
(vacuum fluctuations) → cross it and then freeze → enters again at late times → leave
imprints on the CMB and also, seed the Large Scale Structure formation.

Figure 2: Evolution of Hubble horizon.

Observations: Pζ ≡ As (k/k?)ns−1 , PT ≡ AT (k/k?)nT , r ≡ AT /As .

ns = 0.9649± 0.0042, As ' 2.1× 10−9, r0.002 < 0.0056.

The simplest inflationary model consistent with the observations → slow-roll inflation →
driven by the simplest field: a scalar field.
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Minimal Einstein Gravity: Evolution of the perturbations

Minimal → Gravity minimally coupled (Einsteinian GR) with single canonical scalar field:

S =
1

2

∫
d4x
√
−g
(

R

M2
pl

− gµν∂µϕ∂νϕ− 2V (ϕ)

)
.

Background equations of motion:

H2 =
1

3M2
pl

(
1

2
ϕ′2 + V (ϕ)

)
,

ϕ′′ + 2Hϕ′ + a2 V,ϕ(ϕ) = 0, H ≡
a′(η)

a(η)

Perturbed equations of motion: g s
ij = a2(η) e2ζ δij , gT

ij = a2(η) e2h|ij .

ζ′′k + 2
z ′

z
ζ′k + k2ζk = 0, z(η) = a(η)

√
ε(η)

h′′k + 2
a′

a
h′k + k2hk = 0

Scalar and tensor power-spectra: Pζ = k3/(2π2)|ζk|2, PT = 2k3/π2|hk|2.
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Slow-roll dynamics and the perturbed observables

Slow-roll parameters:

εV ≡
M2

pl

2

(
V,ϕ

V

)2

, ηV ≡ M2
pl

(
V,ϕϕ

V

)
.

Slow-roll inflation condition:
{εV , ηV } � 1 → a(η) ' −1/(Hη).

Perturbed observables:

ns ' 1− 6εV + 2ηV , r ' 16 εV

with

N? '
∫ end

?

1
√

2εV
dϕ/Mpl, N? ' 50−60.

Figure 3: Slow-roll inflationary potential.

• Inflation ends → field oscillating around the minima → Reheating.
• So far the simplest yet the ‘best’ model of inflation → Starobinsky model of inflation with

V (ϕ) = 3
4
m2M2

pl

(
1− exp

(
−
√

2/3ϕ/Mpl

))2
.
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Non-minimal Gravity

However, the non-minimal theory where the matter (scalar field) is coupled with the
gravity can also drive slow-roll inflation.

Simplest non-minimal theory:

Snm =
1

2

∫
d4x
√
−g
(
ϕR

M2
pl

− ω(ϕ) gµν∂µϕ∂νϕ− 2V (ϕ)

)
.

Original Starobinsky model with near de-Sitter solution → f (R) theory → can be written
with ω(φ) = 0 with the help of an auxiliary field as:

Snm =
1

2

∫
d4x
√
−g
(
ϕR

M2
pl

− 2V (ϕ)

)

Starobinsky model: f (R) = R + 1/6m2R2 → V (ϕ) = 3/4m2M2
pl(ϕ− 1)2.
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Perturbed observables in the non-minimal theory

Consider the simplest with ω(ϕ) = 0, i.e., f (R) theory of gravity.

Similar to minimal Einstein theory, slow-roll parameters:

ε1 ≡ −
Ḣ

H2
'

(ϕVϕ − 2V ) (ϕVϕ − V )

3V 2

ε2 ≡
ϕ̇

2Hϕ
' ε1 −

2ϕ (ϕVϕϕ − Vϕ)

3V

ε3 ≡
ϕ̈

Hϕ̇
' −

(ϕVϕ − 2V )

3V
,

Inflationary observables:

ns ' 1− 4 ε1 + 2 ε2 − 2 ε3

As '
V 3

8π2ϕ2M4
Pl

(ϕVϕ − 2V )2

r ' 48 ε2
3

Perturbed mode leaving the horizon before the end of inflation:

N? =

∫ end

?

1

2ϕ ε2
dϕ, N? ' 50− 60.
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Conformal connection and the “equivalence”

The above non-minimal theory can easily be transformed into a minimal one by using the
conformal transformation:

gm
µν = ϕ gnm

µν .

To make the field canonical, we need the transformation: ϕ→ exp(
√

2/3ϕ/MPl ) and
V (ϕ)→ V (ϕ)/ϕ2.

Example: One can easily check that, under such transformation, the non-minimal
Starobinsky potential 3/4m2M2

pl(ϕ− 1)2 reduces to the minimal Starobinsky potential

3/4m2M2
pl

(
1− exp

(
−
√

2/3ϕ/Mpl

))2
.

Under conformal transformation:
I Background: scalar factor am(η) =

√
ϕ(η) anm(η).

I Perturbations: ζm = ζnm, hmij = hnmij .

If two theories are conformally connected, the perturbed observables remain the same.

Example: Perturbed observables in Starobinsky f (R) theory is same as the minimal
Starobinsky model.

In fact, it can be shown that, even the background observables changes accordingly in
such a way that the conformal frames become indistinguishable. However, it is still an
open problem to show, in general, these frames are indistinguishable.

What about Reheating as the physics is a complex.
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Reheating

Scalar field ϕ decays into other particles (eventually standard model particles).

ϕ→ χ+ χ → Decay rate Γφ→χχ.

Equation: ϕ̈+ 3Hϕ̇+ Γ ϕ̇+ Vϕ = 0.

The expansion rate H decreases with time, and reheating completes when Γ = H.

V (ϕ) = 1/2m2ϕ2 ⇒ ϕ ' MPl/(mt) sin(mt), ρϕ ∝ a(t)−3. This implies the effective
equation of state is wre = 0.

V (ϕ) ∝ ϕp → wre ' (p − 2)/(p + 2).

Too simplistic → Needs simulations like Lattice → wre varies and the duration of
reheating is small.
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Figure 4: The evolution of comoving Hubble scale with reheating.

In our case, Quantitative analysis.

Assumption → wre nearly constant: ρ ∝ a(t)−3(1+wre).

Constraint on the total amount of the expansion:

k

a0H0
=

ak

aend

aend

are

are

aeq

aeqHeq

a0H0

Hk

Heq

⇒ ln

(
k

a0H0

)
= −Nk − Nre − NRD + ln

(
aeqHeq

a0H0

)
+ ln

(
Hk

Heq

)
.
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Reheating e-folding number:

Nre =
1

3(1 + wre)
ln

(
ρend

ρre

)
.

Also, entropy conservation provides another similar equation:

3

4(1 + wre)
Nre =

1

4
ln

(
30

greπ2

)
+

1

4
ln

(
ρend

T 4
0

)
+

1

3
ln

(
11gs,re

43

)
+ ln

(
aeq

a0

)
− NRD.

{gre, gs,re} → effective number of relativistic species upon thermalization and effective
number of light species for entropy at reheating, respectively ∼ 100.

The final expression:

Nre =
4

3wre − 1

[
Nk − ln (Hk ) +

1

4
ln(ρend) + ln

(
k

a0T0

)

+
1

4
ln

(
30

π2gre

)
+

1

3
ln

(
11gs,re

43

)]

Reheating temperature:

Tre =

(
43

11gs,re

)1/3 (a0T0

k

)
Hk e

−Nk−Nre .
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Nk and HK can be expressed in terms of ϕ, which, in turn, can be written in terms of the
scalar spectral index ns :

Nk = Nk (ns), Hk = Hk (ns).

Also, ρend is different in different conformal frames as ε1 = 1 in one frame does not imply
ε̃1 = 1 in another frame.

Different equations for different frames, which has been shown before.

We plot the Nre and Tre in terms of ns only.

This expression provides extra constraint equation for the spectral index ns .

Assumption: wre same in both frames.

The difference:
I ∆Nk is negligible and does not contribute much.
I ∆ρend is non-zero and greater than ∆Nk , but the contribution is still small.
I ∆Hk is significant because Hm

k '
1√
ϕk

Hnm
k .

We find a difference.
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Results: Starobinsky and chaotic inflation
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Figure 5: We plot Nre and Tre with ns for the Starobinsky model (left) and the chaotic m2φ2

model (right). The solid lines are for the Einstein frame while the dashed lines are for the
Jordan frame. Different colors represent different effective equation of the state wre. The blue
shaded region is the Planck 1σ region with ns = 0.9649± 0.0042. The dark blue region
indicates the future projected bound on ns with a sensitivity of 10−3 assuming the central value
of it will remain unchanged. The temperature below the deep red region is excluded due the
constraints from BBN while the lighter red region is the electroweak scale taken to be 100 GeV.
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Results: Different α-attractor models
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α = 10
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Figure 6: We plot the variation of reheating e-folding number Nre and reheating temperature
Tre with the scalar spectral index ns for the α-attractor model with α = 10 (left) and α = 100
(right). Note that the Starobinsky model is a special case of α = 1.
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Results in a nutshell

If the perturbations remain the same → Nre and Tre are different and hence the thermal
history.

Difference depends on the field value ϕ.
I Small field models → small difference.
I Large field models → difference is big.

Reheating constraints are also difference in different frames.
I From the future experiment like EUCLID [arXiv : 1206.1225] and PRISM

[arXiv : 1306.2259], cosmic 21-cm surveys [arXiv : 0802.1710] and CORE
[arXiv : 1612.08270] experiments with 10−3 sensitivity in the scalar spectral index
ns , it may (can) actually rule out frames.

There is another way to look at: Nre and Tre are the same and so the perturbations are
different in different frames. Then the thermal history remains the same.

Always, there is a difference either in the thermal history or in the perturbations.
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Summary and conclusions

We found a difference in conformal frames which indicates that the conformal frames may
not actually be ‘equivalent” and the future experiments may distinguish minimal and
non-minimal theories.

It needs further investigation:
I Qualitative reheating analysis.
I Full numerical evolution of the background till now.

We should look for other signatures in different cosmic ages.

A new outlook to look at the conformal theories.


