
Foreground challenge to detect primordial B-modes using ECHO – A fourth generation CMB space mission

CSGC meeting 2-5th Feb, 2022 Debabrata Adak IUCAA, Pune, India

Next CMB mission: Why ?

CMB is the oldest and cleanest cosmological probes of the universe

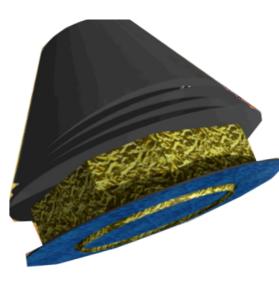
Planck mission has extracted ~ 100 % information from CMB temperature But only a small fraction (10%) of the rich CMB polarization information Unsolved problem: Inflation ? ? —> Primordial B-modes in CMB polarization

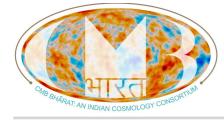
Future CMB satellites aim to detect r ~ 0.001

LiteBIRD (JAXA - Selected)

Matsumura et al, 2013

40 – 402 GHz 2.5 μK.arcmin





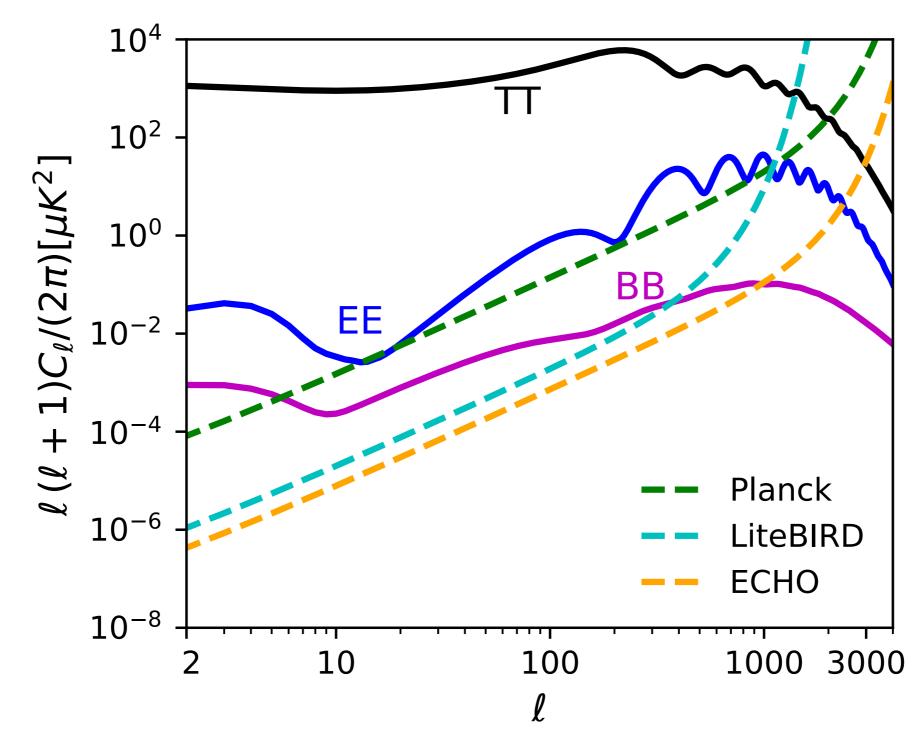
PICO (NASA?)

S. Hannany, priv. comm.

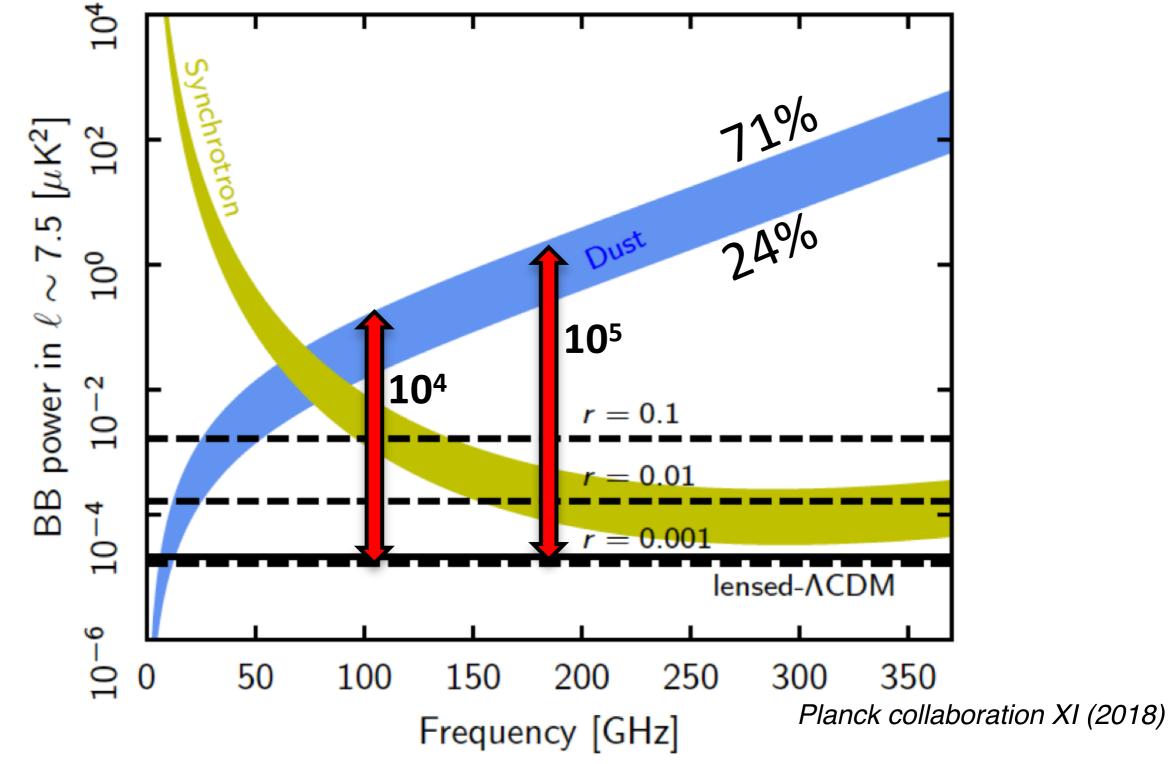
21 – 800 GHz 1 µK.arcmin CMB -Bharat (ISRO?) 23 - 850 GHz 1.7 μK.arcmin

- European CMB proposal CORE (Cosmic Origins Explorer), a 'near- ultimate' CMB polarization mission.
- Did not pass the screening by ESA in January 2017.
 - cost did not fit within ESA's M-class mission.

ESA encouraged to consider a joint proposal with a major international partner

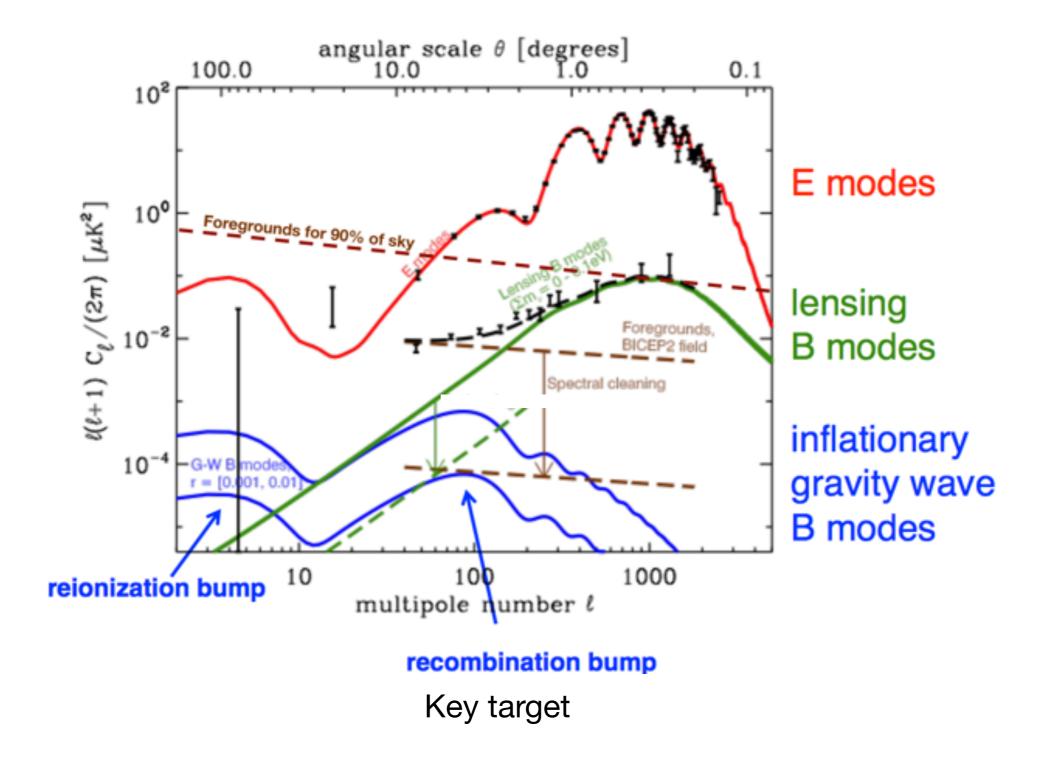

CMB-Bharat: Cross-institutional Indian cosmology consortium was set up formally on Jan 9th 2018 at ISRO HQ meet ~ 90 members from ~15 institutes

Consortium submit the proposal of CMB- mission "Exploring Cosmic History and Origins (ECHO)" to ISRO on 16th April, 2018


CMB-Bharat

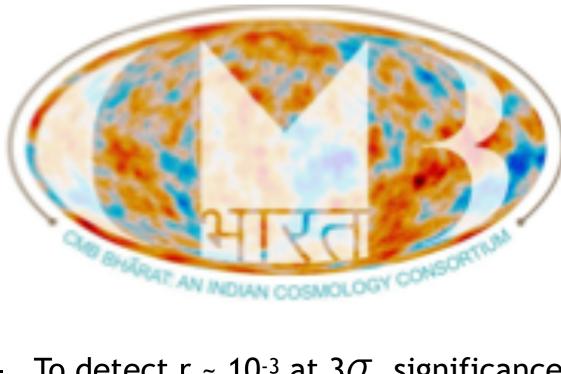
A "near-ultimate" CMB polarization survey (1-2µK.arcmin sensitivity, ~20 bands in 28-850 GHz)

Foreground contamination



Spinning dust/AME can be 1- 2% (Dickinson et al. 2011) polarized

• Point sources can be 1.5-4.8% (Ricci, R. et al. (2004)) polarized.


Lensed B-modes

Delensing is important to reduce uncertainty of r measurement

CMB-Bharat research - 'r' recovery

To detect r ~ 10⁻³ at 3 σ significance

Full-sky maps

-

-

20 frequency bands between 28 and 850 GHz

CMB polarization sensitivity: 1-2 uK.arcmin

Few arcmin resolution allows for delensing

Table 1. ECHO instrument specification as proposed in the CMB-Bh \overline{a} rat proposal.

Frequency	Beam FWHM	Q & U noise r.m.s		
(GHz)	(arcmin)	$(\mu \mathrm{K.arcmin})$		
28	39.9	16.5		
35	31.9	13.3		
45	24.8	11.9		
65	17.1	8.9		
75	14.91	5.1		
95	11.7	4.6		
115	9.72	3.1		
130	8.59	3.1		
145	7.70	2.4		
165	6.77	2.5		
190	5.88	2.8		
220	5.08	3.3		
275	4.06	6.3		
340	3.28	11.4		
390	2.86	21.9		
450	2.48	43.4		
520	2.14	102.0		
600	1.86	288.0		
700	1.59	1122.0		
850	1.31	9550.0		

Summary of the foreground components

Component	Emission law	Nomenclature	Additional information/Templates		
CMB	Blackbody with scaling, $a_{\nu} = \frac{dB_{\nu}(T)}{dT} _{T_{CMB}};$ $T_{CMB} = 2.725 \text{K}$		r = 0		
Thermal dust	MBB	GNILC - dust	Planck GNILC maps at 353 GHz from Planck Collaboration XLVIII (2016)	No dust decorrelation	
	modified black body spectrum	TD-dust	HI based dust polarization model at high galactic latitude developed in Ghosh et al. (2017) and Adak et al. (2020) at 353 GHz	Includes dust decorrelation	
		Gines - dust	Multi-layer dust model based on dust extinction maps developed in Martínez-Solaeche et al. (2018		
Synchrotron	Power-law, spatially varying spectral index with $\langle\beta_s\rangle=-3$	Power-law	SMICA Q , U maps from Planck Collaboration IV (2018) at 30 GHz		
	Frequency dependent spectral index; $\beta_s = -3.11 + C \log(\frac{\nu}{23})$ with curvature, $C = -0.3$ at 23 GHz	Curved-power-law	SMICA Q , U maps from Planck Collaboration IV (2018) at 30 GHz		
	GALPROP scaling; $(\frac{\nu}{30})^2 \frac{f_s(\frac{\nu}{\alpha})}{f_s(\frac{30}{\alpha})}$ with constant $\alpha = 0.26$ and $f_s(\nu)$ is taken from external template generated from GALPROP code	GALPROP	SMICA Q , U maps from Planck Collaboration IV (2018) at 30 GHz		
Spinning dust	CNM emission law with 1% polarization fraction and dust polarization angle	on	Planck thermal dust intensity at 353 GHz (Planck Collaboration XLVIII 2016) scaled at 23 GHz with correlation coefficient of 0.91 K/H	ζ	
Ditt	Sources from radio surveys extrapolated with power laws;		Radio sources have median polarization fraction 2.7% and 4.8% for two class of power-laws;	of	
Point-sources	IRAS survey modelled with modified blackbody emission laws.		IR sources are taken from IRIS data and having mean polarization fraction of 1.5%		

Table 2. Summary of the sky components and their parametric model used in simulations.

Adak et al (arXiv:2110.12362)

9

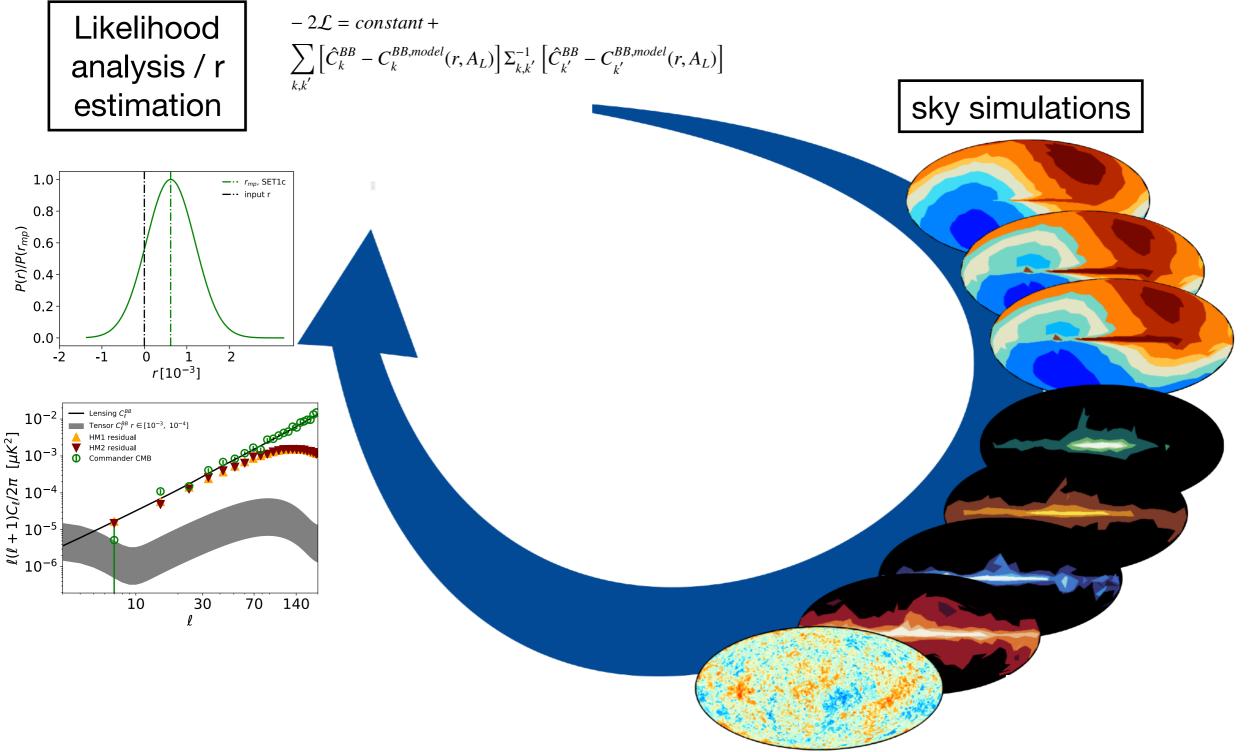
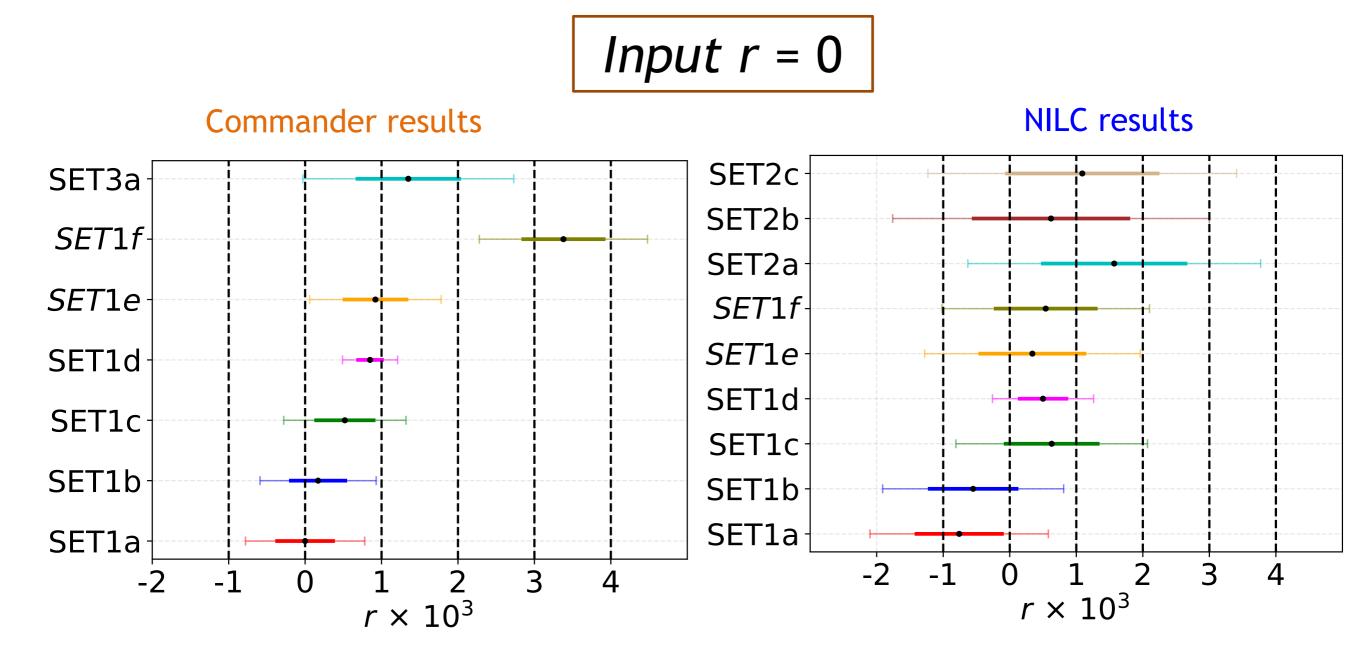

Set of sky simulations

Table 3. Set of simulations used in the analysis. The tick and cross symbols indicate which components are added and excluded respectively for different sets. The dust and synchrotron models used are identified using nomenclatures listed in Table 2.

Sim.ID	Pipeline		Dust	Synchrotron	AME	point-	delensing	Decorrelation
			_	emission law		sources		
	Commander	NILC	-					
SET1a	1	1	GNILC - dust	GALPROP	X	×	X	X
SET1b	1	1	GNILC - dust	GALPROP	✓	×	×	×
SET1c	1	1	GNILC - dust	GALPROP	✓	1	×	×
SET1d	1	\checkmark	GNILC - dust	GALPROP	x	×	√ (84 %)	×
SET1e	1	1	GNILC - dust	Power - law	1	1	×	X
SET1f	1	\checkmark	GNILC - dust	Curved-power-law	\checkmark	1	×	×
SET2a	1	1	Gines — dust	GALPROP	1	1	×	1
SET2b	1	1	Gines - dust	Power - law	1	1	×	1
SET2c	1	✓	Gines — dust	Curved-power-law	\checkmark	1	×	1
SET3a	1	X	TD-dust	GALPROP	1	1	X	×
SET3b	1	X	TD-dust	GALPROP	✓	1	×	1

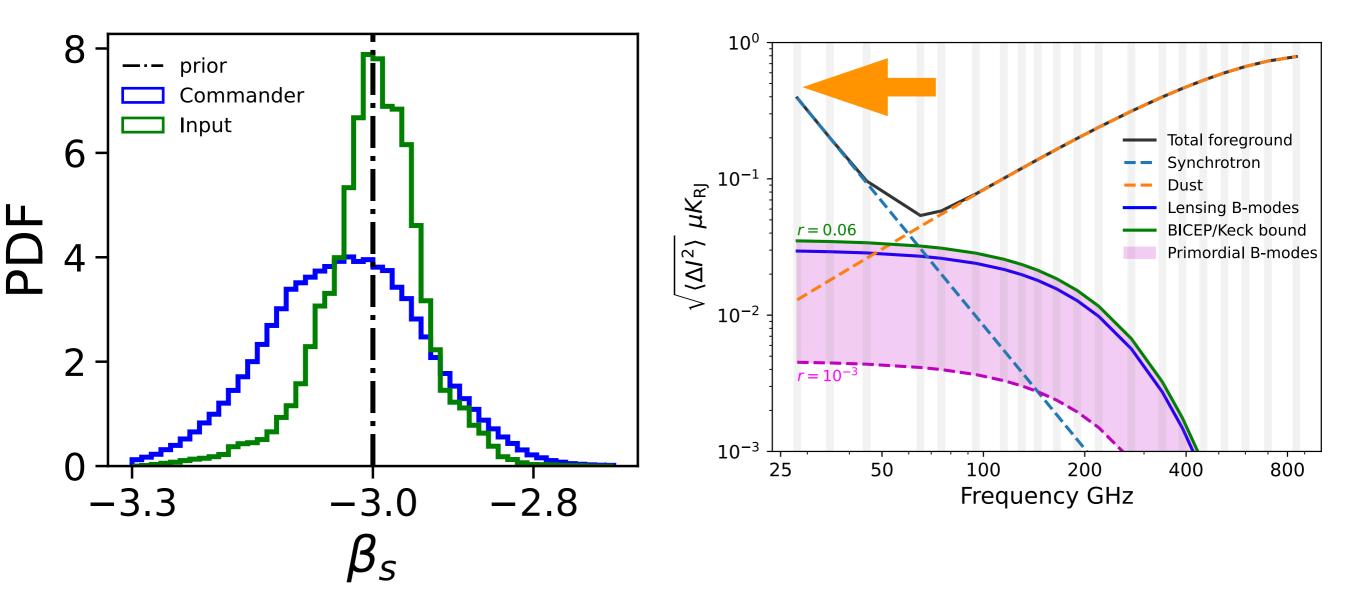
Foreground cleaning

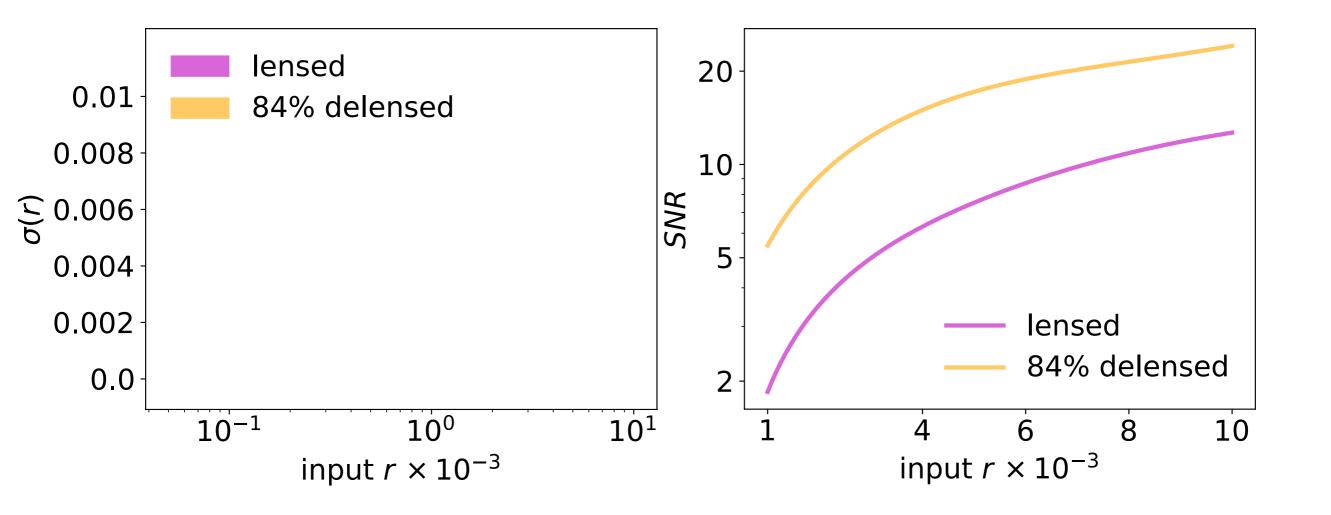
- Needless Internal Linear Combination (NILC) method minimum-variance estimator in spherical wavelet basis -Delabrouille et al. 2009, Basak et al. 2012, 2013.
- ✓ COMMANDER Bayesian multi-component spectral fit in pixel space through Gibb's sampling – Eriksen et al. 2004, 2008



Forecast results

		Input r = 0				
Sim ID	NILC r _{mp}	$\sigma(r_{mp})$	Commander r _{mp}	$\sigma(r_{mp})$		
SET1a	-0.76x10 ⁻³	0.67x10 ⁻³	-0.08x10 ⁻³	0.39x10 ⁻³	Baseline model	
SET1b	-0.55x10 ⁻³	0.68x10 ⁻³	-0.17x10 ⁻³	0.38x10 ⁻³	+ AME	
SET1c	0.81x10 ⁻³	0.71x10 ⁻³	0.52x10 ⁻³	0.40x10 ⁻³	+ point source	
SET1d	-0.49x10 ⁻³	0.33x10 ⁻³	0.44x10 ⁻³	0.17x10 ⁻³	84% delensing + baseline	
SET1e	0.34x10 ⁻³	0.81x10 ⁻³	0.92x10 ⁻³	0.43x10 ⁻³	Synchrotron power-law and curved power law model	
SET1f	0.54x10 ⁻³	0.78x10 ⁻³	3.38x10 ⁻³	0.55x10 ⁻³		
SET2a	1.6x10 ⁻³	1.1x10 ⁻³	47.5x10-3	1.5x10 ⁻³		
SET2b	0.6x10-3	1.2x10 ⁻³	51.1x10 ⁻³	1.6x10 ⁻³	Dust decorrelation included	
SET2c	1.1x10 ⁻³	1.2x10-3	34.9x10-3	1.4x10-3		
SET3a	-	-	1.3x10 ⁻³	0.7x10 ⁻³		
SET3b	-	-	188x10 ⁻³	6x10 ⁻³		


Summary plots


- ✓ COMMANDER returns biased r values for curved power-law synchrotron model (1f).
- ✓ COMMANDER returns biased r values in the presence of dust decorrelation(2a-c).
- ✓ NILC handles well different emission law models of synchrotron, e.g. curved power law.
- ✓ NILC returns larger errorbar on *r* in the presence of dust decorrelation (2a-c).

Lack of frequency channels

Detection significance : impact of delensing

• 84% delensing, increases SNR by more than two times

Summary

- ECHO is the instrument with combination of full sky coverage, high resolution and sensitivity, large frequency coverage in a single platform.
- Huge discovery space: Inflation, particle physics, galactic and extragalactic astronomy

 particularly designed to detect : r ~ 0.001.
- We consider 11 set of foreground complexities, including 84% delensing, and dust decorrelation.
- simple two-component (dust + synchrotron) foregrounds can easily be mitigated using existing component separation methods
- De-correlated dust requires new foreground cleaning method
- CMB Bharat (ECHO) alive in ISRO womb, needs a trigger!!!

Thank you