# Signature from early Universe solves major anomalies and tensions in cosmology

#### arXiv:2201.12000

Presented by: Akhil Antony



The Institute of Mathematical Sciences, Chennai

3

Dac

Hazra, Antony, Shafieloo

# Overview

Introduction

Reconstruction

**Analytical template** 

Conclusion



Э

イロト イロト イヨト

Hazra, Antony, Shafieloo

### Introduction

- The standard model of cosmology is largely supported by the Cosmic Microwave Background (CMB) data from the Planck observation.
- However, underneath this largely consistent picture, certain anomalies and tensions emerge as crucial problems of modern cosmology.
- There are various anomalies such Alens tension, Curvature problem, discordances with low redshift measurements.
- As a solution to these anomalies, we propose a signature from the early Universe, specifically in the spectrum of primordial

quantum fluctuation.

Hazra, Antony, Shafieloo

► Lensing amplitude  $(A_{lens})$  Anomaly: It is an amplitude parameter that scales the theoretical prediction for lensing power spectrum. When  $A_{lens}$  is allowed to vary in an analysis with Planck temperature angular power spectrum data, it is found to be higher than 1 ( $A_{lens} = 1.243 \pm 0.096$  from P18TT and  $A_{lens} = 1.180 \pm 0.065$  from P18TP).



イロト イポト イヨト イヨト

Curvature anomaly: There is a positive correlation between the curvature and lensing amplitude and a closed Universe can solve the lensing anomaly problem. Since curvature changes the distance measure, it shifts the position of the acoustic peaks. Lowering the value of Hubble constant  $(H_0 = 52.2 \pm 4.3 \text{ from P18TT})$  helps in shifting back the peaks to the observed positions. This further increases the disagreement with local measurements of  $H_0$  measurements  $(H_0 = 73.04 \pm 1.04).$ 



# Anomalies and Tensions III

The Hubble tension: Hubble constant obtained from the Standard Model fit to the Planck CMB data is estimated to be  $H_0 = 66.88 \pm 0.92$  (from P18TT) and  $67.27 \pm 0.60$  (from P18TP). Local measurement of Hubble constant from Cepheids and supernovae indicates a value significantly larger than these with  $H_0 = 73.04 \pm 1.43$ . Other measurements of the Hubble constant from time-delay cosmography of the lensed guasars and calibration of the Tip of Red Giant Branch (TRGB) also indicate Hubble constant to be at higher values.



イロト イポト イヨト イヨト

▶ Tension in  $S_8$  measurement: Clustering and shear analyses provides  $S_8 = 0.772^{+0.018}_{-0.017}$ (DES) and  $S_8 = 0.759^{+0.024}_{-0.021}$ (KiDS1000). Planck CMB estimates  $S_8 = 0.840 \pm 0.024$  (P18TT) and  $S_8 = 0.834 \pm 0.016$ (P18TP).



イロト イポト イヨト イヨト

### Data used

| Acronym | Data                                     | Comments                                        |
|---------|------------------------------------------|-------------------------------------------------|
| P18TT   | TT+lowl+lowE (CMB)                       | Planck CMB temperature anisotropy               |
|         |                                          | and large scale polarization anisotropy         |
| P18TP   | TTTEEE+lowI+lowE (CMB)                   | Planck CMB temperature                          |
|         |                                          | and polarization anisotropy                     |
| DES     | $Clustering + Weak \ lensing$            | Dark Energy Survey year 1 likelihoods           |
|         |                                          | on galaxy clustering and weak lensing           |
| ACT     | ACT-TTTEEE (CMB)                         | Atacama Cosmology Telescope DR4 CMB             |
|         |                                          | likelihood on temperature and polarization      |
| BAO     | Baryon Acoustic Oscillation              | Distance ratio measurements from 6df            |
|         |                                          | galaxy survey, Sloan Digital Sky Survey         |
| SN      | Pantheon18 Supernovae                    | Distance modulus from 1048                      |
|         |                                          | Supernovae samples                              |
| HST     | H <sub>0</sub> local measurement (SH0ES) | Local measurement of Hubble constant from SH0ES |
| L       |                                          |                                                 |

Hazra, Antony, Shafieloo

#### **Reconstructed spectrum**

The reconstructed primordial power spectrum mimics the best fit temperature power spectrum to the Planck temperature data in the Standard Model with A<sub>lens</sub> extensions.



#### **Reconstructed spectrum-** A<sub>lens</sub>

The Standard Model prefers a larger value of

 $A_{lens} = 1.243 \pm 0.096$  while with the reconstructed power spectrum we find  $A_{lens} = 1.042 \pm 0.074$ .



#### **Reconstructed spectrum-** $\Omega_K$

 In Standard Model + Ω<sub>K</sub>, Ω<sub>K</sub> = -0.056<sup>+0.028+0.044+0.050</sup><sub>-0.018-0.050-0.079</sub> that indicates little over 3σ preference for a closed Universe from Planck temperature anisotropy data. Reconstruction + Ω<sub>K</sub> analysis finds Ω<sub>K</sub> = -0.014<sup>+0.016</sup><sub>-0.011</sub>.



#### **Reconstructed spectrum-** $H_0$

►  $H_0 = 52.2 \pm 4.3$  found in Standard Model +  $\Omega_K$  analysis while Reconstruction +  $\Omega_K$  prefers higher value with

 $H_0 = 63.8^{+4.5}_{-5.8}$ 



#### Reconstructed spectrum- $S_8$

• The Reconstruction +  $\Omega_K$  model laterally shifts the

 $\Omega_m - \sigma_8$  contour in the direction of lower matter density that brings back the concordance, providing substantial overlap. While  $S_8$  posteriors from Standard Model is at more than  $2\sigma$ , when curvature is allowed to vary, the tension becomes more than  $6\sigma$ . The reconstructed spectrum removes the tension.



#### Power spectrum template

$$\mathcal{P}_{New}(k) = \mathcal{P}_{0}(k) \left[ 1 + \frac{\alpha_{1} \sin \left(\omega(k-k_{0})\right)}{\left(1 - \alpha_{2} \sin \left(\omega(k-k_{0})\right)\right) \left(1 + \beta(k-k_{0})^{4}\right)} \right]$$





Э

Hazra, Antony, Shafieloo

### **Restricted spectrum**

$$\mathcal{P}_{Restricted}(k) = \mathcal{P}_0(k) \left[ 1 + \frac{\alpha_1 \sin \left( \omega(k - k_0) \right)}{1 + \beta(k - k_0)^4} \right]$$

| Models/Data         | P18TT                              | P18TT + HST                    |
|---------------------|------------------------------------|--------------------------------|
| New spectrum        | $\textbf{-1.14}\pm0.53$            | $2.67\pm0.53$                  |
| Restricted spectrum | $\textbf{-0.58} \pm \textbf{0.52}$ | $\textbf{3.4}\pm\textbf{0.53}$ |



3

《日》《圖》《臣》《臣》

Hazra, Antony, Shafieloo

# **Posterior distribution**

P18TT \_\_\_\_ P18TT+HST \_\_\_\_ P18TP+HST





Э

→ + Ξ + + Ξ +

Hazra, Antony, Shafieloo

# Correlations





Э

Hazra, Antony, Shafieloo

| Data                     | In[Bayes factor] | C.L.  |
|--------------------------|------------------|-------|
| P18TP+HST                | $1.46\pm0.55$    | 99.5% |
| P18TT+ACT+DES+HST        | $2.28\pm0.65$    | 99.6% |
| P18TP+ACT+DES+HST        | $1.94\pm0.66$    | 98.7% |
| P18TP+DES+HST            | $2.32\pm0.64$    | 99.5% |
| P18TP+ACT+DES+BAO+SN+HST | $-0.34\pm0.66$   | 98.5% |
| P18TP+ACT+DES            | $-0.85\pm0.66$   | 99.5% |



Э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### **Extended Analysis**





Э

<ロト < 回ト < 巨ト < 巨ト :

Hazra, Antony, Shafieloo

### **Extended Analysis I**

- When small scale CMB temperature and polarization data from ACTPol are included in the analysis, the peak position of the oscillation shifts to a smaller scale compared to analyses with Planck CMB and HST.
- DES data prefers lower matter density and σ<sub>8</sub> and therefore smaller S<sub>8</sub> compared to Standard Model results with Planck. Since our model naturally prefers smaller S<sub>8</sub>, inclusion of DES data increases the significance compared to the results obtained in P18TP+HST analysis.



・ 伊ト ・ ヨト ・ ヨト

- BAO + SN prefers higher matter density. Therefore adding these two datasets drags the parameter space towards Standard Model to accommodate higher matter density.
- When DES and ACT data are used for joint analysis with P18TP without the prior on Hubble constant, we still find 99.5% significance for the proposed model (The marginal likelihood decreases as the decay parameter, β is not well constrained).



### Best fit power spectrum



Hazra, Antony, Shafieloo

# **Conclusion I**

- A simple shape of primordial power spectrum, obtained through deconvolution *solves the lensing amplitude anomaly*.
- The Reconstruction also solves the closed Universe anomaly and brings back cosmic concordance.
- Importantly, we find that a solution to the anomalies within the Planck CMB data automatically resolves or greatly reduces the tension between different datasets.



# **Conclusion II**

Our analytical power spectrum model, New Spectrum, that is designed to match the Reconstruction, prefers lower matter density and lower σ<sub>8</sub> and higher H<sub>0</sub>. When the New Spectrum and Restricted Spectrum (a simpler version of the former) are compared with Planck temperature data with priors on Hubble constant, we get moderate to very strong evidence for the models compared to the Standard Model.



The proposed form of the spectrum stays consistent with small scale CMB measurements from Atacama Cosmology Telescope observation, large scale structure measurements from Dark Energy Survey and recently estimated age of the Universe from globular clusters.



< 同 > < 三 > < 三 >