Tests of General Relativity using Compact Binaries

K. G. Arun

Chennai Mathematical Institute

Second Chennai Symposium on Gravitation and Cosmology 2nd February 2022

CHENNAI MATHEMATICAL INSTITUTE

LIGO–India Scientific Collaboration

85 BBHs + 3 NS-BHs + 2 BNS

						40000		-				
01 2015 - 2016	G N		02 2016 - 2017			de la		-			03a+b 2019 - 2020	
• • 36 31	23 14	14 7.7	31 20	11 7.6	50 3 4	35 24	31 25	• • 1.5 1.3	• • 35 • 27	40 29	88 • ²²	25 18
63 GW150914	36 GW151012	21 GW151226	49 GW170104	18 GW170608	80 GW170729	56 GW170809	53 GW170814	≤ 2.8 cw170817	60 GW170818	65 GW170823	105 GW190403_051519	41 GW190408_181802
30 8.3	35 24	48 32	41 32	• • 2 1.4	107 77	43 28	23 13	36 18	3 9 28	37 25	66 • 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 CW190425	175 GW190426_190642	69 CW190503_185404	35 GW190512_180714	52 GW190513_205428	65 GW190514_065416	59 CW190517_055101	101 GW190519_153544	156 GW190521
42 33	• • 37 23	69 4 8	57 36	35 24	54 41	67 • 38	12 8.4	18 13	• • 37 21	13 7.8	12 6.4	38 29
71 GW190521_074359	56 GW190527_092055	111 GW190602_175927	87 GW190620_030421	56 cw190630_185205	90 GW190701_203306	99 CW190706_222641	19 GW190707_093326	30 GW190708_232457	55 cw190719_215514	20 CW190720_000836	17 GW190725_174728	64 cw190727_060333
12 8.1	• • 42 29	• • 37 27	48 32	23 2.6	• 32 26	24 10	• • • • • • • • • • • • • • • • • • •	35 24	44 24	• 9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 GW190828_063405	33 CW190828_065509	76 GW190910_112807	57 GW190915_235702	66 GW190916_200658	11 GW190917_114630	13 GW190924_021846	35 GW190925_232845
40 23	81 2 4	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	• • 53 24	11 6.7	27 19	12 8.2	25 18
61 cw190926_050336	102 GW190929_012149	19 GW190930_133541	19 GW191103_012549	18 cw191105_143521	107 GW191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 GW191129_134029	45 GW191204_110529	19 GW191204_171526	41 GW191215_223052
12 7.7	• • 31 1.2	45 35	49 3 7	9 1.9	36 28	5.9 1.4	42 33	34 29	10 7.3	38 27	51 12	36 27
19 GW191216_213338	32 GW191219_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 GW200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 GW200209_085452
24 2.8	51 30	• • 38 28	87 61	• • 39 28	40 33	19 14	• • 38 20	28 15	36 14	34 28	13 7.8	34 14
27 GW200210_092254	78 CW200216_220804	62 cw200219_094415	141 GW200220_061928	64 GW200220_124850	69 GW200224_222234	32 GW200225_060421	56 GW200302_015811	42 GW200306_093714	47 cw200308_173609	59 GW200311_115853	20 GW200316_215756	53 GW200322_091133

GRAVITATIONAL WAVE MERGER DETECTIONS SINCE 2015

A. Gupta's talk has more details

Why should we test GR?

No reason why GR should be the correct theory of gravity! and We can test it in several ways!

An overview of various tests

Yunes, Pretorius, Yagi 2016

Modifications to GR

GWs in modGR

Difference from GR in terms of

- How GWs are generated.
- How GWs propagate.
- GW polarization.

What can change in modified gravity?

- How GWs are generated.
 - Presence of additional fields, curvature corrections, higher D etc
- How GWs propagate.
 - Dispersion, Birefringence,...
- GW polarization.
 - Non-GR modes of polarizations

All these can be put to test.

Compact binary dynamics

LVC, Phys. Rev. Lett. 116, 061102 (2016)

How can we test?

- Use specific predictions/waveforms of modified theories and
 - Constrain the additional parameters using the GW data
 - Carry out model selection between competing models.
- There are hurdles to do this
 - Lack of accurate waveforms in modGR theories
 - No well-posed initial value problem for certain modGR
 - Nevertheless, recent developments in the case of Scalar-Tensor theories are encouraging.

Alternative: Null Tests of GR

- Our theoretical limitations should not stop us from testing GR.
- Use the best use of our understanding of the GR dynamics and waveform.
- Ask whether there are "deviations" from the GR waveform that the data supports.

This talk

- Three different tests of GR:
 - Their basic philosophy
 - What do they search for
 - Latest bounds from them
 - What are the Pro/Con of these tests.

Residuals Test

Residuals Test: Philosophy

- Subtract off the "best-fit" (max likelihood) waveform from the data.
- Ask if there is any coherent remnant power in the "residuals".
- If the residual is consistent with detector noise, statistical consistency with GR.
- Use p-values to quantify the consistency.

Residuals Test

LIGO-Virgo-KAGRA collab, arXiv:2112.06861

Residuals Test: Philosophy

LIGO-Virgo-KAGRA collab, arXiv:2112.06861

15

Pros and Cons

Pros

- Seemingly the "most general", clean test we can perform!
- Non-parametric method.

Cons

- Not (necessarily) the "most sensitive" test we can perform.
- Very sensitive to waveform systematics (depends on what waveform you subtract off).

Parameterized Tests of Inspiral

Parametrised tests

- Introduce physically motivated free parameters to the waveform and bound them using the data.
- The free parameters capture how different is the signal from the predictions of GR.
- Can be mapped onto specific alternative theories, if they have a corresponding prediction.
- Widely used in solar system (PPN) and binary pulsar (PPK) tests.
- You can parameterize inspiral, ringdown etc. (Shilpa's talk on RD)

PN phasing formula

$$\tilde{h}(f) = \mathcal{A}(f) e^{i\Phi(f)}$$

$$\Phi(f) = 2\pi f t_c - \phi_c + \frac{3}{128 \eta v^5} \sum_{k=0}^{N} \left[\phi_k + \phi_{kl} \ln v\right] v^k$$

 $\phi_k(m_1, m_2, \chi_1, \chi_2, \cdots)$ $\phi_{kl}(m_1, m_2, \chi_1, \chi_2, \cdots)$ $\eta = \frac{m_1 m_2}{(m_1 + m_2)^2}$

PN coefficients are functions of source parameters and contain various physical effects in the compact binary dynamics

Physical effects in the PN phasing

PN Order	Effect
0PN	Chirp Mass
1PN	Possibility to measure component masses, Periastron Advance,
1.5PN	Tails of GWs, Spin-orbit interaction
2PN	Spin-spin interaction, spin-induced quadrupole
2.5PN	Black hole Horizon Flux (spinning)
3PN	Tails of Tails, Tail^2
3.5PN	Spin-induced octupole
4PN	Black hole Horizon Flux (nonspinning)
5PN	Tidal interactions

Every order above IPN contains more than one physical effect.

A GR null test of the PN phasing

Arun+2006, Yunes, Pretorius 2009, Li+ 2013

Measurement gives

the bound on the deformation parameter at a fixed confidence interval

What does it test?

- How consistent are the physical effects (tails, spin interactions, tides,...) with GR.
- Are the phasing coefficients in agreement with the predictions of GR or is there any evidence for deviation?

Current bounds

Combing BBH+NS-BH events from OI/O2/O3

LIGO-Virgo-KAGRA collab, arXiv:2112.06861 23

Interesting special case: GW170817

Bounds in presence of tidal interactions

LIGO-Virgo, Phys. Rev. Lett. 123, 011102 (2019) 24

Results from GWI908I4/GWI904I2

Figure 5. Posterior distributions for the precessing S/N, ρ_p (green) and the optimal S/N in the (3, 3) subdominant multipole moment, ρ (orange). The gray dotted line shows the expected distribution for Gaussian noise.

LIGO/Virgo collab, ApjL, 896, L44(2020)

LIGO/Virgo collab, PRD, 102, 043015 (2020)

Bounds on deviation parameters from these are the first ever test of nonquadrupolar radiation.

Criticisms

- What are we testing?
 - Physical effects in GRVs specific modGR predictions?
 - Any theoretical backing for different modifications?
- Meaning of single parameter tests?
 - We test only one parameter at a time!
 - With the current sensitivity multi-parameter tests are uninformative (due to parameter degenarcies).
 - Multi-banding of GW signals may be required to carry out multiparameter tests (Gupta+2020, Datta+2020).

Use of Principal Component Analysis

Multiparameter Tests using PCA

 Identify the linear combinations of the eight PN deformation parameters that is best measured.

> Pai, KGA, 2013, Saleem, Datta, KGA, Sathyaprakash, 2021

Joint bounds: OI/O2

Saleem, Datta, KGA, Sathyaprakash, 2021.

Can be a promising alternative, needs to explore more.

Inspiral-Merger-Ringdown Consistency

The test

Consistency between the mass and spin of the remnant BH inferred independently from the inspiral and post-inspiral parts of the waveform.

Consistency between low- and high-frequency parts of the waveform Ghosh+ 2016 30

What does it test

- Any anomalous loss of energy/angular momentum as the binary transits from inspiral to ringdown through merger.
- Powerful test of the Merger dynamics.

Current bounds

$$\frac{\Delta M_{\rm f}}{\bar{M}_{\rm f}} = 2 \frac{M_{\rm f}^{\rm insp} - M_{\rm f}^{\rm postinsp}}{M_{\rm f}^{\rm insp} + M_{\rm f}^{\rm postinsp}}, \quad \frac{\Delta \chi_{\rm f}}{\bar{\chi}_{\rm f}} = 2 \frac{\chi_{\rm f}^{\rm insp} - \chi_{\rm f}^{\rm postinsp}}{\chi_{\rm f}^{\rm insp} + \chi_{\rm f}^{\rm postinsp}},$$

LIGO-Virgo-KAGRA collab, arXiv:2112.06861

Pros and Cons

- Pros:
 - A powerful probe of the merger dynamics.
 - A smart combination of parametric and consistency tests.
- Cons:
 - Limited applicability as the events require good SNR in both parts of the waveform.
 - Uses NR fits to obtain final mass and spin currently (in future it should be replaced by RD-only estimation.)

Status

arXiv.org > gr-qc > arXiv:2112.06861

General Relativity and Quantum Cosmology

[Submitted on 13 Dec 2021]

Tests of General Relativity with GWTC-3

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration: R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, P. F. de Alarcón, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, N. Andres, M. Andrés-Carcasona, T. Andrić, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, T. Apostolatos, E. Z. Appavuravther, S. Appert, S. K. Apple, K. Arai, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, M. Arogeti, S. M. Aronson, K. G. Arun, H. Asada, Y. Asali, G. Ashton, Y. Aso, M. Assiduo, S. Assis de Souza Melo, S. M. Aston, P. Astone, F. Aubin, K. AultONeal, C. Austin, S. Babak, F. Badaracco, M. K. M. Bader, C. Badger, S. Bae, Y. Bae, A. M. Baer, S. Bagnasco, Y. Bai, J. Baird, R. Bajpai, T. Baka, M. Ball, G. Ballardin, S. W. Ballmer, A. Balsamo, G. Baltus, S. Banagiri, B. Banerjee, D. Bankar, J. C. Barayoga, C. Barbieri, B. C. Barish, D. Barker, P. Barneo, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, S. Basak et al. (1582 additional authors not shown)

No evidence for beyond-GR physics.

Search... Help | Advanced

What does it mean?

- Our current sensitivities are not good enough to detect a GR violation, if present.
- Perhaps, GR violation happens in some extreme region of the parameter space (e.g., strong precession + high eccentricity)
- Maybe both!
- The search should go on.

Looking forward

Towards claiming a GR violation

- Needs to have excellent control over the waveform systematics.
 - Missing physical effects, such as eccentricity (Talk by Pankaj Saini).
 - Parameter degeneracies.
- Understanding the detector noise.
 - Nonstationarities and Non-Gaussianities in the data.
- Need to work towards controlling these.

Improving the null tests

- Accurate GR waveforms with all the physical effects (tides, spineffects, eccentricity, ...) and improved detector characterization.
- Recasting some of the tests based on the developments in modGR theoretical modelling
 - Improve the efficiency of the tests by making use of the results from modGR theories.
- Assessment of the ability of various tests to detect a GR violation. (Johnson-McDaniel+2021)

Conclusions

- The GR tests using GWs have found no evidence for any beyond-GR physics.
- A suite of tests, not necessarily independent, complement each other in this search.
- Improved tests in the future should capture the essence of analytical/numerical computations from modGR theories.
- Future improvements in waveform modelling and detector noise characterisation would be extremely crucial.