The parents of LIGO black holes and their hometown

Vishal Baibhav CIERA, Northwestern University

Exciting times for a Gravitational wave (astro)physicist

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

EM Neutron Stars

Where, when, how were LIGO BHs born?

Isolated

Common envelope, Chemically homogeneous evolution, Triples

Dynamical

Globular clusters, Nuclear star clusters, Young star cluster, Active galactic nuclei

Black binary formation through field binaries

The 'separation problem'

 $t_{
m merger} = 13.6\,{
m Gyr} \Big(rac{a}{46R_{\odot}}\Big)^4$

The 'separation problem'

~1000 R

Mandel & deMink 2016

Black binary formation in star clusters

$egin{aligned} extbf{Mass segregation} & extbf{Mass segregation} \ t_{ extbf{Ms}} \sim 100 \, extbf{Myr} \left(rac{M_{ ext{cl}}}{10^7 M_{\odot}} ight)^{1/2} \end{aligned}$

three body binary formation $BH + BH + BH \rightarrow (BH-BH) + BH$

binary-single exchanges

BH + (Star-Star) \rightarrow (BH-Star) + Star BH + (BH - Star) \rightarrow (BH-BH) + Star

 \star

Hardening a binary

BH + (BH - -BH) = BH + (BH - BH)

Where/when/how were LIGO BHs born?

Isolated

Common envelope, Chemically homogeneous, Triples

Globular clusters, Nuclear star clusters, Young star cluster, Active galactic nuclei

Where/when/how were LIGO BHs born?

What GWs can tell us?

Isolated

What we don't know?

Mass transfer

Star formation rate Common envelope efficiency Explosion Mass loss mechanism Metallicity evolution Rotational mixing 0 Stellar winds (\bigcirc) Nuclear reaction rates

Natal kicks

Time delays

Pair instability supernovae

cluster properties

Initial Mass function

BH birth spins

Angular momentum transport

Escape velocities

Initial conditions

Field

Cluster

Discovering the homeland of LIGO binaries?

Discovering the homeland of LIGO binaries

Discovering the homeland of LIGO binaries?

Zevin+2020

Repeated mergers in clusters

First generation (1g)

-born from stars

Second generation (2g)

-born from previous mergers

 $M_{2g} = 2 M_{1g} \quad \chi_{2g} \approx 0.7$

Can clusters retain their BHs?

Can clusters retain their BHs?

Finding 2g black holes in our midst

Day 27: Natives have accepted me as one of their own

2g BH

1g BH

1g BH

1g BH

The Mass Gap

The Mass Gap

Filling the gap

Mass gap exists due to PISN and PPISN Second-generation mergers fill the gap

GW190521

 $85 M_{\odot}$ $50 M_{\odot}$ $33 M_{\odot}$

Filling the gap

Mass gap exists due to PISN and PPISN Second-generation mergers fill the gap

The Spin Gap $a\sim 10^{-2}$

aHe 0.0 -0.5

Fuller, Ma 2019

Repeated Mergers can fill the SPIN GAP

Repeated Mergers can fill the SPIN GAP

1g+2g

2g+2g

Repeated Mergers can fill the SPIN GAP

1g+2g

2g+2g

Parents of second-generation black holes

Parents of GW190412

Gerosa, Vitale, Berti 2020 (PRL) Rodriguez et al 2020 (ApJL)

Parents of GW190412

Parents of GW190412 likely had asymmetric masses, q=0.2 and near-zero spins

Parents of GW190412 and their Hometown

What GWs can tell us?

Masses Spins Distance

Isolated

What we don't know?

Mass transfer

Star formation rate Common envelope efficiency Explosion Mass loss mechanism Metallicity evolution Rotational mixing 0 \bigcirc Stellar winds Nuclear reaction rates

A promise ...

