Hunting for intermediate-mass black hole with IGWN

Koustav Chandra IIT Bombay

Observing Runs

- <u>3 observing runs</u> of IGWN
 - Last one = O3
 - Lasted from April '19 to the day

before the Corona outbreak in US

Commissioning break in October

GWTC-1, GWTC-2, GWTC-2.1, GWTC-3

"Canonical" mergers

<u>GW200311_115853</u>

"Canonical" mergers

SNR: 14.7 FAR: **1 in 4900 years**

Almost no pre-merger dynamics \rightarrow Who are the

parents?

Definitely an IMBH remnant

How do we detect these elusive giant corpses?

IMBH: $M_{BH} \in [100, 10^5] M_{\odot}$

GW190521: A Binary Black Hole Merger with a Total Mass of $150\,M_{\odot}$

Romano+16

Noise Model

Noise is an ergodic, wide-sense stationary, Gaussian process.

Power spectrum conveys all the required information about the statistical properties of the noise!

Signal Model + Match Filtering

Location of source, inclination of source, polarisation, time and phase at mergers

Problem:

- Don't know the parameters of the signal we are hunting for ightarrow Create template bank
- Searching over 15 dimensional parameter space is computationally prohibitive

Solution:

- Assume that the signal can be well described by dominant modes of a quasi-circular nonprecessing binary
- Sufficient to search over the component masses and z-component dimensionless spin.

Sathya+'91, Allen+05

Multi-detector Candidates

Demand: Astrophysical triggers must share the same best-matched template & must be observed within a given time-lag difference.

Rank coincident triggers by using quadrature sum of SNRs

Statistical Significance

Generate background & compare the rank of a candidate

Burst Searches

- <u>Rationale</u>: GW signal are transient
 waveform → Create localised excess of
 energy in TF plane coherently across the
 detector.
- TF maps are created by wavelet transform of time domain data.
- Ranking statistics = f(Clustered TF Pixels)
- Assign FAR by method of time slides

signal

time

filtered signal

time

masked spectrogram

time

<u>Klimenko+15</u>

THE ART OF NAMING GLITCHES

Headaches!

LIGO data can be modelled to be Gaussian

LIGO data can be modelled to be wide sense stationary

Perform signal consistency test

Use signal-noise discriminators

<u>Allen '04, Klimenko+15, ...</u>

ANTIMATTERWEBCOIMICS.COM

Coherent Burst Search

Guaranteed Noise Trigger

SINGLE-EVENT BASED MERGER RATE ESTIMATE

- Insufficient number of IMBHB detections = Cannot meaningfully estimate merger rate for the population of IMBHBs
- Treat each event as a sole representative of a new class of events with same intrinsic parameters
- Use o/p samples of intrinsic parameters to cook up a population
- Estimate merger rate based on it

Injection based Merger Rate Upper Limit

Chandra+20, O3 IMBH

Conclusion

With our current methods:

- We have reported the first unambiguous detection of IMBH.
- Lots of unanswered questions on their origin, population, etc..
- Bright future: 3G detectors, LISA

<u>K. Jani+(2020)</u>

Neutron Stars detected

Stellar Black Holes detected

Supermassive BHs detected

Intermediate-mass BHs detected

Comparison between searches

GstLAL_VT	cWB_VT	PyCBC_VT	chi_p	chi_eff	mass2_source	mass1_source
11.71	12.24	16.01	Θ	0	60	60
8.18	8.93	11.51	Θ	Θ	40	80
3.04	3.54	4.64	Θ	0	24	96
2.06	2.42	3.11	Θ	Θ	20	100
1.05	1.24	1.67	Θ	Θ	15	105
0.51	0.6	0.82	Θ	Θ	10.91	109.09
7.4	9.96	11.95	Θ	Θ	50	100
10.27	12.76	14.84	Θ	Θ	100	100
6.56	9.47	10.35	Θ	Θ	66.67	133.33
1.93	3.69	3.9	Θ	Θ	40	160
0.53	1.29	1.34	Θ	Θ	25	175
0.22	0.6	0.57	Θ	Θ	20	200
1.8	2.83	2.99	Θ	Θ	50	200
5.38	5.86	6.27	Θ	Θ	100	200
0.44	0.75	0.72	Θ	0	50	300
4.29	4.55	4.82	Θ	Θ	200	200
2.68	3.33	3.08	Θ	Θ	133.33	266.67
1.29	1.94	1.68	Θ	Θ	100	300
0.7	1.22	1.11	Θ	0	80	320
0.2	0.47	0.44	Θ	0	50	350

200	200	-0.8	Θ	1.9	1.86	1.66
300	300	-0.8	Θ	0.22	0.22	0.11
400	400	-0.8	Θ	0.04	0.05	0.03
100	100	0.51	0.42	26.38	20.88	19.42
133.33	66.67	0.14	0.42	13.97	12.36	9.01
160	40	0.26	0.42	7.67	7.65	4.13
175	25	0.32	0.42	3.35	3.59	1.44
200	200	0.51	0.42	10.53	9.38	9.19
266.67	133.33	0.14	0.42	4.96	5.42	4.24
320	80	0.26	0.42	2.58	3.63	1.88
350	50	0.32	0.42	1.11	1.79	0.65
300	300	0.51	0.42	2.44	2.49	1.72
400	200	0.14	0.42	1.12	1.45	0.58
400	400	0.51	0.42	0.1	0.18	0.01

K. Chandra +21