Studying the First Stars using Neutral Hydrogen

Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research

Pune

Second Chennai Symposium on Gravitation and Cosmology Centre for Strings, Gravitation and Cosmology, IIT Madras 04 February 2022

Large-scale structure at high-redshifts

N-body simulations using *GADGET-2* (Springel et al 2005)

Tirthankar Roy Choudhury

Detecting the first galaxies

 Search for the first galaxies using Optical/NIR telescopes (e.g., JWST and the Extremely Large Telescopes).

Detecting the first galaxies

- Search for the first galaxies using Optical/NIR telescopes (e.g., JWST and the Extremely Large Telescopes).
- The direct detections would be biased towards intrinsically brighter galaxies.

Detecting the first galaxies

- Search for the first galaxies using Optical/NIR telescopes (e.g., JWST and the Extremely Large Telescopes).
- The direct detections would be biased towards intrinsically brighter galaxies.
- An alternate way to study the early galaxies is via their effect on the IGM (e.g., hydrogen reionization).

Galaxies and reionization

SCRIPT Semi-numerica

Density + halo (galaxies)

Tirthankar Roy Choudhury

GADGET-2 N-Body

- Reionization physics and model ingredients, connection to cosmology
- ► Parameter estimation using reionization models (highlight work done by our group).
- ► Future prospects.

Dark matter haloes

Dark matter haloes cooling, fragmentation, feedback, ... Galaxy + star formation

• Lyman- α absorption of UV light from distant quasars by intervening neutral hydrogen (Gunn-Peterson effect). Directly probes the amount of neutral hydrogen in the Universe.

- Lyman- α absorption of UV light from distant quasars by intervening neutral hydrogen (Gunn-Peterson effect). Directly probes the amount of neutral hydrogen in the Universe.
- ► Scattering of CMB photons by free electrons, probes the ionized component of the Universe.

- Lyman- α absorption of UV light from distant quasars by intervening neutral hydrogen (Gunn-Peterson effect). Directly probes the amount of neutral hydrogen in the Universe.
- ► Scattering of CMB photons by free electrons, probes the ionized component of the Universe.
- Also exist other (indirect) probes of reionization, e.g., high-redshift galaxies, temperature of the intergalactic medium, ...

- Lyman- α absorption of UV light from distant quasars by intervening neutral hydrogen (Gunn-Peterson effect). Directly probes the amount of neutral hydrogen in the Universe.
- ► Scattering of CMB photons by free electrons, probes the ionized component of the Universe.
- Also exist other (indirect) probes of reionization, e.g., high-redshift galaxies, temperature of the intergalactic medium, ...
- Aside: the epoch of reionization is preceded by another very interesting phase: Cosmic Dawn (not to be covered in this talk).

Lyman- α absorption spectra of quasars

The neutral hydrogen at $z \lesssim 6$ is detected through the absorption features it produces in the spectrum of a background bright source of light (typically a quasar).

Courtesy: Michael Murphy

Tirthankar Roy Choudhury

alpha-fores

tro-lvman

cast

s

19

2013/09,

More absorption at high-z

(does not necessarily mean neutral IGM at $z \sim 6$, possible to obtain the dark troughs with $x_{\rm HI} \sim 10^{-4}$).

Observed wavelength

Tirthankar Roy Choudhury

- ► More absorption at high-z (does *not* necessarily mean neutral IGM at $z \sim 6$, possible to obtain the dark troughs with $x_{\rm HI} \sim 10^{-4}$).
 - Transmitted flux ►

fores

alpha

vman ġ

cast eswi s

19,

3/09/ 2013

threvelations

$$\mathit{F}(\lambda) = rac{ ext{Observed flux}(\lambda)}{ ext{Continuum}(\lambda)}$$

$$F = \mathrm{e}^{- au_{lpha}} ~\mathrm{and}~ au_{lpha} \sim 10^5 \left(rac{n_{\mathrm{HI}}}{n_{H}}
ight).$$

z=0.15 com/ wordpress z=1.33 #1122-1645 Jull 407 z=2.40 z=3.63 /blackhol 7=4 76 1000-0014 1-6 100 https: z=6.29

Observed wavelength

Tirthankar Roy Choudhury

- More absorption at high-z(does *not* necessarily mean neutral IGM at $z \sim 6$, possible to obtain the dark troughs with $x_{\rm HI} \sim 10^{-4}$).
- Transmitted flux ►

$$F(\lambda) = \frac{\text{Observed flux}(\lambda)}{\text{Continuum}(\lambda)}$$

$$F = \mathrm{e}^{- au_{lpha}} ~\mathrm{and}~ au_{lpha} \sim 10^5 \left(rac{n_{\mathrm{HI}}}{n_{H}}
ight).$$

It is clear that the universe is highly ionized at $z \lesssim 5$, i.e., reionization must be over by then.

Observed wavelength

Tirthankar Roy Choudhury

Observed wavelength

- More absorption at high-z (does *not* necessarily mean neutral IGM at $z \sim 6$, possible to obtain the dark troughs with $x_{\rm HI} \sim 10^{-4}$).
- Transmitted flux

fores

pha

6

3/09/

201

$$F(\lambda) = \frac{\text{Observed flux}(\lambda)}{\text{Continuum}(\lambda)}$$

$$F = \mathrm{e}^{- au_{lpha}} ~\mathrm{and}~ au_{lpha} \sim 10^5 \left(rac{n_{\mathrm{HI}}}{n_{H}}
ight).$$

- It is clear that the universe is highly ionized at $z \lesssim$ 5, i.e., reionization must be over by then.
- The Ly α absorption also sets the amount of ionizing radiation present at the end of reionization.

• CMB photons scatter off free electrons during reionization.

- CMB photons scatter off free electrons during reionization.
- Thomson scattering has angular dependence, hence can re-distribute the angular pattern of the CMB photons. Can give rise to polarization too.

- CMB photons scatter off free electrons during reionization.
- Thomson scattering has angular dependence, hence can re-distribute the angular pattern of the CMB photons. Can give rise to polarization too.
- ► The main quantity of interest: Thomson scattering optical depth

$$au = \sigma_T c \int_{t_{\rm LSS}}^{t_0} \mathrm{d}t \; ar{n}_e \; (1+z)^3.$$

- CMB photons scatter off free electrons during reionization.
- Thomson scattering has angular dependence, hence can re-distribute the angular pattern of the CMB photons. Can give rise to polarization too.
- ► The main quantity of interest: Thomson scattering optical depth

$$\tau = \sigma_T c \int_{t_{\rm LSS}}^{t_0} \mathrm{d}t \ \bar{n}_e \ (1+z)^3.$$

For the CMB angular power spectra, τ is strongly degenerate with the amplitude of the primordial power spectrum. Implications for cosmological parameter estimation.

Tirthankar Roy Choudhury

Thomson scattering au from CMB missions

$$\tau = \sigma_T c \int_0^{z_{\rm LSS}} {\rm d}z \, \left| \frac{{\rm d}t}{{\rm d}z} \right| \, \bar{n}_e \, (1+z)^3$$

Planck Collaboration (2016)

Tirthankar Roy Choudhury

• Need models which can match both observations (Ly α absorption and CMB) simultaneously.

- Need models which can match both observations (Ly α absorption and CMB) simultaneously.
- ► Need to probe a wide range of spatial and temporal scales, along with non-linear physics.

- Need models which can match both observations (Ly α absorption and CMB) simultaneously.
- ► Need to probe a wide range of spatial and temporal scales, along with non-linear physics.
- Different approaches to modelling:

- Need models which can match both observations (Ly α absorption and CMB) simultaneously.
- ► Need to probe a wide range of spatial and temporal scales, along with non-linear physics.
- Different approaches to modelling:
 - full numerical simulations: most of the physics included, but computationally extremely expensive.

- Need models which can match both observations (Ly α absorption and CMB) simultaneously.
- ▶ Need to probe a wide range of spatial and temporal scales, along with non-linear physics.
- Different approaches to modelling:
 - full numerical simulations: most of the physics included, but computationally extremely expensive.
 - analytical: fast (appropriate for parameter space exploration), but approximations required for the non-linear physics.

- Need models which can match both observations (Ly α absorption and CMB) simultaneously.
- ► Need to probe a wide range of spatial and temporal scales, along with non-linear physics.
- Different approaches to modelling:
 - full numerical simulations: most of the physics included, but computationally extremely expensive.
 - analytical: fast (appropriate for parameter space exploration), but approximations required for the non-linear physics.
 - semi-numerical: approximations applied in a low-resolution simulation.

- Need models which can match both observations (Ly α absorption and CMB) simultaneously.
- ▶ Need to probe a wide range of spatial and temporal scales, along with non-linear physics.
- Different approaches to modelling:
 - full numerical simulations: most of the physics included, but computationally extremely expensive.-
 - analytical: fast (appropriate for parameter space exploration), but approximations required for the non-linear physics.
 - semi-numerical: approximations applied in a low-resolution simulation.

Reionization constraints using analytical models

6-parameter flat ACDM model

Data: CMB, BAO, SN, ...

Tirthankar Roy Choudhury
Reionization constraints using analytical models

6-parameter flat ΛCDM model including reionization

The core component is a physically-motivated analytical model for reionization and thermal history of the Universe.

The core component is a physically-motivated analytical model for reionization and thermal history of the Universe.

TRC & Ferrara (2005, 2006), Mitra, TRC & Ferrara (2011, 2012)

Couple with CAMB for CMB angular spectra computations Lewis (2013).

The core component is a physically-motivated analytical model for reionization and thermal history of the Universe.

- Couple with CAMB for CMB angular spectra computations Lewis (2013).
- ► Couple with a MCMC module based on CosmoHammer Akeret et al (2013).

The core component is a physically-motivated analytical model for reionization and thermal history of the Universe.

- Couple with CAMB for CMB angular spectra computations Lewis (2013).
- ► Couple with a MCMC module based on CosmoHammer Akeret et al (2013).
- Straightforward to couple to Planck likelihoods and other observational data.

The core component is a physically-motivated analytical model for reionization and thermal history of the Universe.

- Couple with CAMB for CMB angular spectra computations Lewis (2013).
- ► Couple with a MCMC module based on CosmoHammer Akeret et al (2013).
- Straightforward to couple to Planck likelihoods and other observational data.
- The whole code in written in python, making it extremely easy to use. Chatterjee, TRC & Mitra (2021)

The core component is a physically-motivated analytical model for reionization and thermal history of the Universe.

- Couple with CAMB for CMB angular spectra computations Lewis (2013).
- ► Couple with a MCMC module based on CosmoHammer Akeret et al (2013).
- Straightforward to couple to Planck likelihoods and other observational data.
- The whole code in written in python, making it extremely easy to use. Chatterjee, TRC & Mitra (2021)
- Plan to make it publicly available in the near future.

Effect of including reionization observations

Effect of including reionization observations

Note: au is a derived parameter for CMB + Ly α

Caveat: evolution, mass-dependence, environment-dependence of the efficiency parameters?

Future: 21 cm radiation

- Hyperfine transition of the hydrogen ground state.
- Only possible when hydrogen is neutral, no radiation when ionization happens (i.e., the electron dissociates).
- ► Target is to detect the signal from reionization using low-frequency radio telescopes.

Effect of adding global 21 cm data (forecast)

Effect of adding global 21 cm data (forecast)

CMB + Ly α + Future global 21 cm

► The formation of the first structures depend on the matter power spectrum, particularly the smaller scales $k \ge 1h/cMpc$. Reionization modelling and observations can affect the constraints on the primordial power spectrum.

- ► The formation of the first structures depend on the matter power spectrum, particularly the smaller scales $k \ge 1h/cMpc$. Reionization modelling and observations can affect the constraints on the primordial power spectrum.
- Reionization can probe extensions of concordance cosmological model that affect the small-scale power spectrum, e.g., warm dark matter, axionic (fuzzy) dark matter, primordial magnetic fields, ...

- ► The formation of the first structures depend on the matter power spectrum, particularly the smaller scales $k \ge 1h/cMpc$. Reionization modelling and observations can affect the constraints on the primordial power spectrum.
- Reionization can probe extensions of concordance cosmological model that affect the small-scale power spectrum, e.g., warm dark matter, axionic (fuzzy) dark matter, primordial magnetic fields, ...
- Reionization effects are also degenerate with extensions that affect the large angular scale CMB power spectra.

- ► The formation of the first structures depend on the matter power spectrum, particularly the smaller scales $k \ge 1h/cMpc$. Reionization modelling and observations can affect the constraints on the primordial power spectrum.
- Reionization can probe extensions of concordance cosmological model that affect the small-scale power spectrum, e.g., warm dark matter, axionic (fuzzy) dark matter, primordial magnetic fields, ...
- Reionization effects are also degenerate with extensions that affect the large angular scale CMB power spectra.

Challenge: uncertainties in the galaxy formation modelling can often weaken the constraints on cosmological parameters.

What next? Fluctuations in the ionized field

"Faint" galaxies (abundant)

 Fluctuations in the Lyman-α absorption at z ~ 6
 Bosman et al (2018), Kulkarni et al (2019), TRC,

Paranjape & Bosman (2021), Yang et al (2020)

Observed wavelength

Fluctuations in the Lyman- α absorption at $z \sim 6$

Bosman et al (2018), Kulkarni et al (2019), **TRC**, Paranjape & Bosman (2021), Yang et al (2020)

 Kinetic Sunyaev-Zel'dovich effect signal from patchy reionization
 Reichardt et al (2020), TRC, Mukherjee & Paul (2021)

 $\Delta T(\hat{n}) \propto n_e \, \hat{n} \cdot \vec{v}$

signal at angular scales corresponding to the bubble size

- Fluctuations in the Lyman-α absorption at z ~ 6 Bosman et al (2018), Kulkarni et al (2019), TRC,
 - Paranjape & Bosman (2021), Yang et al (2020)
- Kinetic Sunyaev-Zel'dovich effect signal from patchy reionization
 Reichardt et al (2020), TRC, Mukherjee & Paul (2021)
- Others: temperature of the IGM, Lyα emitters.

- Fluctuations in the Lyman-α absorption at z ~ 6 Bosman et al (2018), Kulkarni et al (2019), TRC,
 - Paranjape & Bosman (2021), Yang et al (2020)
- Kinetic Sunyaev-Zel'dovich effect signal from patchy reionization
 Reichardt et al (2020), TRC, Mukherjee & Paul (2021)
- ► Others: temperature of the IGM, Lyα emitters.
- Future: 21 cm experiments, CMB B-mode polarization.

 Fluctuations in the Lyman-α absorption at z ~ 6 Bosman et al (2018), Kulkarni et al (2019), TRC,

Paranjape & Bosman (2021), Yang et al (2020)

- Kinetic Sunyaev-Zel'dovich effect signal from patchy reionization
 Reichardt et al (2020), TRC, Mukherjee & Paul (2021)
- Others: temperature of the IGM, Lyα emitters.
- Future: 21 cm experiments, CMB B-mode polarization.
- Modelling requires simulations, either full numerical or semi-numerical

NCRA + TIFR

► The radiative transfer simulations are replaced by "photon counting algorithms"

- ► The radiative transfer simulations are replaced by "photon counting algorithms"
- ► The most popular models are based on the excursion set formalism, first developed analytically (Furlanetto, Zaldarriaga & Hernquist 2004). A barrier crossing problem of random walks.

- ► The radiative transfer simulations are replaced by "photon counting algorithms"
- ► The most popular models are based on the excursion set formalism, first developed analytically (Furlanetto, Zaldarriaga & Hernquist 2004). A barrier crossing problem of random walks.
- Possible to generate large volumes in quick time (Mesinger & Furlanetto 2007, Geil & Wyithe 2008). Concept of semi-numerical simulations.

- ► The radiative transfer simulations are replaced by "photon counting algorithms"
- The most popular models are based on the excursion set formalism, first developed analytically (Furlanetto, Zaldarriaga & Hernquist 2004). A barrier crossing problem of random walks.
- Possible to generate large volumes in quick time (Mesinger & Furlanetto 2007, Geil & Wyithe 2008). Concept of semi-numerical simulations.
- It is found that the excursion set based models do not conserve photons, hence ionizated fields may not be accurate.

Zahn et al (2007), Paranjape, TRC & Padmanabhan (2016), TRC & Paranjape (2018)

- ► The radiative transfer simulations are replaced by "photon counting algorithms"
- The most popular models are based on the excursion set formalism, first developed analytically (Furlanetto, Zaldarriaga & Hernquist 2004). A barrier crossing problem of random walks.
- Possible to generate large volumes in quick time (Mesinger & Furlanetto 2007, Geil & Wyithe 2008). Concept of semi-numerical simulations.
- It is found that the excursion set based models do not conserve photons, hence ionizated fields may not be accurate.

Zahn et al (2007), Paranjape, TRC & Padmanabhan (2016), TRC & Paranjape (2018)

Non-conservation also leads to non-converging power spectrum at large scales, could bias interpretation of the data!

- ► The radiative transfer simulations are replaced by "photon counting algorithms"
- The most popular models are based on the excursion set formalism, first developed analytically (Furlanetto, Zaldarriaga & Hernquist 2004). A barrier crossing problem of random walks.
- Possible to generate large volumes in quick time (Mesinger & Furlanetto 2007, Geil & Wyithe 2008). Concept of semi-numerical simulations.
- It is found that the excursion set based models do not conserve photons, hence ionizated fields may not be accurate.

Zahn et al (2007), Paranjape, TRC & Padmanabhan (2016), TRC & Paranjape (2018)

- Non-conservation also leads to non-converging power spectrum at large scales, could bias interpretation of the data!
- Need photon-conserving models to solve the convergence problem.

- ► The radiative transfer simulations are replaced by "photon counting algorithms"
- The most popular models are based on the excursion set formalism, first developed analytically (Furlanetto, Zaldarriaga & Hernquist 2004). A barrier crossing problem of random walks.
- Possible to generate large volumes in quick time (Mesinger & Furlanetto 2007, Geil & Wyithe 2008). Concept of semi-numerical simulations.
- It is found that the excursion set based models do not conserve photons, hence ionizated fields may not be accurate.

Zahn et al (2007), Paranjape, TRC & Padmanabhan (2016), TRC & Paranjape (2018)

- Non-conservation also leads to non-converging power spectrum at large scales, could bias interpretation of the data!
- ► Need photon-conserving models to solve the convergence problem.
- Our contribution: SCRIPT (Semi-numerical Code for Relonization with PhoTon-conservation), publicly available at https://bitbucket.org/rctirthankar/script.
 TRC & Paranjape (2018), TRC, Paranjape & Bosman (2021), TRC, Mukherjee & Paul (2021), Maity & TRC (2022)

Present constraints using MCMC

Constraints from τ (Planck) & kSZ (SPT)

Present constraints using MCMC

Constraints from τ (Planck) & kSZ (SPT) and Lyman- α absorption

Present constraints using MCMC

Constraints from τ (Planck) & kSZ (SPT) and Lyman- α absorption

A combined analysis of the two data sets should restrict the parameter space significantly. Also need to find ways to vary cosmological parameters.

Future: 21 cm fluctuations

SCRIPT (Semi-numerical Code for Relonization with PhoTon-conservation)

Future interferometers

SKA-LOW

HERA

Tirthankar Roy Choudhury

The SKA

- Most ambitious radio astronomy project ever attempted.
- ► To be built in Australia and South Africa.
- ► First science 2027. Main science goals include reionization and cosmic dawn.
- India is a member of the SKA international collaboration (lead by NCRA-TIFR). GMRT often provides useful test-bed for SKA.

Tirthankar Roy Choudhury

► First stars and the high-redshift universe can be studied using reionization of hydrogen.

- First stars and the high-redshift universe can be studied using reionization of hydrogen.
- Reionization can be used to constrain the concordance cosmological model and possible extensions.

- ► First stars and the high-redshift universe can be studied using reionization of hydrogen.
- ► Reionization can be used to constrain the concordance cosmological model and possible extensions.
- ► Most of the present constraints arise from globally averaged reionization history.

- ► First stars and the high-redshift universe can be studied using reionization of hydrogen.
- ▶ Reionization can be used to constrain the concordance cosmological model and possible extensions.
- ► Most of the present constraints arise from globally averaged reionization history.
- Further constraints expected from fluctuations in the ionization field, require fast and accurate simulations for parameter constraints.

- ► First stars and the high-redshift universe can be studied using reionization of hydrogen.
- Reionization can be used to constrain the concordance cosmological model and possible extensions.
- ► Most of the present constraints arise from globally averaged reionization history.
- Further constraints expected from fluctuations in the ionization field, require fast and accurate simulations for parameter constraints.
- One effort in this direction: photon-conserving semi-numerical simulation SCRIPT. Possible applications to a wide range of problems.

- ► First stars and the high-redshift universe can be studied using reionization of hydrogen.
- Reionization can be used to constrain the concordance cosmological model and possible extensions.
- ► Most of the present constraints arise from globally averaged reionization history.
- Further constraints expected from fluctuations in the ionization field, require fast and accurate simulations for parameter constraints.
- One effort in this direction: photon-conserving semi-numerical simulation SCRIPT. Possible applications to a wide range of problems.

Thank you

This presentation was prepared using the BEAMER class of LATEX