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Large-scale structure at high-redshi�s
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N-body simulations using GADGET-2 (Springel et al 2005)
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Detecting the first galaxies
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I Search for the first galaxies using Optical/NIR
telescopes (e.g., JWST and the Extremely Large
Telescopes).

I The direct detections would be biased towards
intrinsically brighter galaxies.

I An alternate way to study the early galaxies is via
their e�ect on the IGM (e.g., hydrogen
reionization).
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Galaxies and reionization
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Main points of discussion

I Reionization physics and model ingredients, connection to cosmology
I Parameter estimation using reionization models (highlight work done by our group).
I Future prospects.
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Reionization physics
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Main/direct observational probes of reionization

I Lyman-α absorption of UV light from distant quasars by intervening neutral hydrogen (Gunn-Peterson
e�ect). Directly probes the amount of neutral hydrogen in the Universe.

I Scattering of CMB photons by free electrons, probes the ionized component of the Universe.
I Also exist other (indirect) probes of reionization, e.g., high-redshi� galaxies, temperature of the

intergalactic medium, . . .
I Aside: the epoch of reionization is preceded by another very interesting phase: Cosmic Dawn (not to be

covered in this talk).
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Lyman-α absorption spectra of quasars

The neutral hydrogen at z . 6 is detected through the absorption features it produces in the
spectrum of a background bright source of light (typically a quasar).

Courtesy: Michael Murphy
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Lyman-α absorption at z ∼ 6
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I More absorption at high-z
(does not necessarily mean neutral IGM at z ∼ 6, possible to

obtain the dark troughs with xHI ∼ 10−4).

I Transmitted flux

F (λ) =
Observed flux(λ)

Continuum(λ)

F = e−τα and τα ∼ 105
(
nHI

nH

)
.

I It is clear that the universe is highly ionized at
z . 5, i.e., reionization must be over by then.

I The Lyα absorption also sets the amount of
ionizing radiation present at the end of
reionization.
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CMB optical depth
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I CMB photons scatter o� free electrons during reionization.

I Thomson scattering has angular dependence, hence can re-distribute the angular pattern of the CMB
photons. Can give rise to polarization too.

I The main quantity of interest: Thomson scattering optical depth

τ = σT c
∫ t0

tLSS

dt n̄e (1 + z)3.

I For the CMB angular power spectra, τ is strongly degenerate with the amplitude of the primordial power
spectrum. Implications for cosmological parameter estimation.
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Thomson scattering τ from CMB missions

τ = σT c
∫ zLSS

0
dz
∣∣∣∣ dtdz

∣∣∣∣ n̄e (1 + z)3

Planck Collaboration (2016)
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Modelling approaches

I Need models which can match both observations (Lyα absorption and CMB) simultaneously.

I Need to probe a wide range of spatial and temporal scales, along with non-linear physics.
I Di�erent approaches to modelling:

– full numerical simulations: most of the physics included, but computationally extremely expensive.
– analytical: fast (appropriate for parameter space exploration), but approximations required for the non-linear physics.
– semi-numerical: approximations applied in a low-resolution simulation.
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Reionization constraints using analytical models

6-parameter flat ΛCDM model
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CosmoReionMC: cosmology + reionization

I The core component is a physically-motivated analytical model for reionization and thermal history of
the Universe.
TRC & Ferrara (2005, 2006), Mitra, TRC & Ferrara (2011, 2012)

I Couple with CAMB for CMB angular spectra computations Lewis (2013).
I Couple with a MCMC module based on CosmoHammer Akeret et al (2013).
I Straightforward to couple to Planck likelihoods and other observational data.
I The whole code in written in python, making it extremely easy to use.

Chatterjee, TRC & Mitra (2021)

I Plan to make it publicly available in the near future.
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E�ect of including reionization observations
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Note: τ is a derived parameter for CMB + Lyα
Caveat: evolution, mass-dependence, environment-dependence of the e�iciency parameters?
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Future: 21 cm radiation

I Hyperfine transition of the hydrogen ground state.
I Only possible when hydrogen is neutral, no radiation when ionization happens (i.e., the electron

dissociates).
I Target is to detect the signal from reionization using low-frequency radio telescopes.
Tirthankar Roy Choudhury 15



Observational probes of the 21 cm signal

HI 21 cm signal

Global Fluctuations

Cosmic Dawn

∼ 50 − 100 MHz

Reionization

∼ 100 − 200 MHz

Cosmic Dawn

∼ 50 − 100 MHz

Reionization

∼ 100 − 200 MHz

Post-reionization

& 200 MHz

EDGES SARAS-2 LEDA MWA LOFAR GMRT

CHIME MeerKAT
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EDGES SARAS-2 LEDA MWA LOFAR GMRT

CHIME MeerKAT
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E�ect of adding global 21 cm data (forecast)
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Is reionization important for cosmology?

I The formation of the first structures depend on the matter power spectrum, particularly the
smaller scales k & 1h/cMpc. Reionization modelling and observations can a�ect the constraints on the
primordial power spectrum.

I Reionization can probe extensions of concordance cosmological model that a�ect the small-scale power
spectrum, e.g., warm dark matter, axionic (fuzzy) dark matter, primordial magnetic fields, . . .

I Reionization e�ects are also degenerate with extensions that a�ect the large angular scale CMB power
spectra.
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I Challenge: uncertainties in the galaxy formation modelling can o�en weaken the constraints on
cosmological parameters.
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What next? Fluctuations in the ionized field
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Probing the fluctuations

I Fluctuations in the Lyman-α absorption
at z ∼ 6
Bosman et al (2018), Kulkarni et al (2019), TRC,

Paranjape & Bosman (2021), Yang et al (2020)

I Kinetic Sunyaev-Zel’dovich e�ect signal
from patchy reionization
Reichardt et al (2020), TRC, Mukherjee & Paul

(2021)

I Others: temperature of the IGM, Lyα
emitters.

I Future: 21 cm experiments, CMB
B-mode polarization.

I Modelling requires simulations, either
full numerical or semi-numerical
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Semi-numerical codes: approximate but e�icient

I The radiative transfer simulations are replaced by “photon counting algorithms”

I The most popular models are based on the excursion set formalism, first developed analytically (Furlanetto,

Zaldarriaga & Hernquist 2004). A barrier crossing problem of random walks.
I Possible to generate large volumes in quick time (Mesinger & Furlanetto 2007, Geil & Wyithe 2008). Concept of

semi-numerical simulations.
I It is found that the excursion set based models do not conserve photons, hence ionizated fields may not

be accurate.
Zahn et al (2007), Paranjape, TRC & Padmanabhan (2016), TRC & Paranjape (2018)

I Non-conservation also leads to non-converging power spectrum at large scales, could bias interpretation
of the data!

I Need photon-conserving models to solve the convergence problem.
I Our contribution: SCRIPT (Semi-numerical Code for ReIonization with PhoTon-conservation), publicly

available at https://bitbucket.org/rctirthankar/script.
TRC & Paranjape (2018), TRC, Paranjape & Bosman (2021), TRC, Mukherjee & Paul (2021), Maity & TRC (2022)
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Present constraints using MCMC
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Constraints from τ (Planck) & kSZ (SPT)

A combined analysis of the two data sets should restrict the parameter space significantly.
Also need to find ways to vary cosmological parameters.
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Future: 21 cm fluctuations

SCRIPT (Semi-numerical Code for ReIonization with PhoTon-conservation)
https://bitbucket.org/rctirthankar/script (TRC & Paranjape 2018)
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Future interferometers

SKA-LOW HERA
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The SKA

I Most ambitious radio astronomy project ever attempted.
I To be built in Australia and South Africa.
I First science 2027. Main science goals include reionization and cosmic dawn.
I India is a member of the SKA international collaboration (lead by NCRA-TIFR). GMRT o�en provides

useful test-bed for SKA.
Tirthankar Roy Choudhury 25



Summary

I First stars and the high-redshi� universe can be studied using reionization of hydrogen.

I Reionization can be used to constrain the concordance cosmological model and possible extensions.
I Most of the present constraints arise from globally averaged reionization history.
I Further constraints expected from fluctuations in the ionization field, require fast and accurate

simulations for parameter constraints.
I One e�ort in this direction: photon-conserving semi-numerical simulation SCRIPT . Possible

applications to a wide range of problems.

Thank you

This presentation was prepared using the Beamer class of LATEX
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