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Motivation

Figure: Infrared Triangle of Strominger
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Motivation

• The Infrared triangle gives an equivalence relation that
governs the infrared dynamics of all physical theories with
massless particles.

• The three vertices denote Soft theorems, Memory effects,
and Asymptotic symmetries.

• These ideas are connected by mathematical relations.

• We will only discuss about the vertex representing
Asymptotic symmetries.
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Introduction

• The asymptotic properties of gravity have been studied
extensively for decades in the context of asymptotically flat
spacetimes at null infinity.

• The BMS group is a semi direct product of supertranslation
group and Lorentz group under which one asymptotically
flat solution of general relativity at null infinity is mapped
into another solution. [Bondi, Burg and Metzner, Sachs]

• The infinite-dimensional supertranslation subgroup
generate arbitrary angle dependent translations of retarded
time.
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Introduction

• BMS symmtries are present at spatial and timelike infinity,
subjected to boundary conditions compatibility

• A natural question to ask is: How do we relate boundary
conditions at null, spatial, and timelike infinity? This is
difficult.
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Our work

• Henneaux and Troessaert in a series of paper have
proposed boundary conditions at spatial infinity that are
invariant under BMS symmetries. Henneaux and Troessart [2017-19]

• Our motivation lies in exploring the boundary conditions at
timelike infinity that realise BMS symmetries in the sense
that it has a non-trivial action and have generically
non-zero charges.
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Motivation

• Recent studies suggest that stationary black holes also
possess an infinite number of symmetries in the near
horizon region. [Hawking, Perry, Strominger; Carlip; Donnay et al]

• It is believed that global charges associated with
supertranslations receive contributions from the horizon as
well as from null infinity.

• Thus, for a complete study of conservation laws associated
with supertranslations, it is required to know the relation
between symmetries at the horizon to that at null infinity.

• Timelike infinity can be used as a link between the
symmetries at the horizon and at null infinity. [Chandrasekaran,

Flanagan, and Prabhu; ...]
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Asymptotic flatness

• We introduce our notion of asymptotic flatness at timelike
infinity. It is based on the corresponding notion introduced
by Beig and Schmidt at spatial infinity. [Beig and Schmidt, 81-83]

• We introduce a set of “polar coordinates” {τ,ρ,θ ,ϕ} for
Minkowski spacetime,

ηµνxµxν =−τ
2,

r
t

=
ρ√

1 + ρ2
, (1.1)

• In these coordinates flat spacetime metric takes the form

ds2 =−dτ
2 + τ

2
(

dρ2

1 + ρ2 + ρ
2(dθ

2 + sin2
θdϕ

2)

)
(1.2)
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Hyperbolic slicing

Figure: Hyperbolic slicing of Minkowski space
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Asymptotic flatness

Figure: Zooming in at i+
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Asymptotic flatness: Convenient form

• Consider a general class of spacetime

gµν = ηµν +
m

∑
n=1

`
(n)
µν

1
τn +O(τ

−m−1). (1.3)

• Following Beig and Schmidt, this metric can be put in the
following more convenient form

ds2 =−N2dτ
2 + habdφ

adφ
b, (1.4)

where

N = 1 +
σ(φa)

τ
, (1.5)

hab = τ
2
[
h(0)

ab (φ
c) +

1
τ

h(1)
ab (φ

c) +
1
τ2 h(2)

ab (φ
c) +O

(
1
τ3

)]
. (1.6)

• The above form is our starting point.
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Supertranslations

• If supertranslations are genuine symmetries of general
relativity then they should also be realisable at timelike
infinity.

• A natural question to ask is what is the set of
diffeomorphisms preserving the form of the metric.
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Supertranslations

• The following diffeomorphism preserves the asymptotic
form of the metric to order 1/τ .

τ = τ̄−ω(φ̄
a) +O

(
1
τ̄

)
, (2.1)

φ
a = φ̄

a +
1
τ̄

h(0)ab
∂bω(φ̄

c) +O

(
1
τ̄2

)
, (2.2)

• Here ω(φa) is an arbitrary function on EAdS3 hyperboloid.
It determines the higher order terms in the diffeomorphism
uniquely.
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First order supertranslations

• We only focus on supertranslations in our work.

• Under general supertranslation, the zeroth order field h(0)
ab

and the first order field σ does not transform,

• The first order metric correction h(1)
ab transforms under

general supertranslations,

h(1)
ab → h(1)

ab + 2DaDb ω−2ωh(0)
ab . (2.3)
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Boundary conditions

• ω is an arbitrary function on the hyperboloid. One needs to
specify further boundary conditions.

• The boundary conditions at timelike infinity should remain
invariant under allowed supertranslations.

• To state the boundary conditions, we define,

kab := h(1)
ab + 2σh(0)

ab . (2.4)

• It follows from that under general supertranslation,

kab→ kab + 2DaDbω−2ωh(0)
ab . (2.5)
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Boundary conditions
• There are two natural sets of boundary conditions to

consider.

• First, one can dispose of supertranslations by demanding
that [Cutler; Porrill, 1980s]

kab = 0.

• Second, taking
k = trkab = 0

while kab 6= 0. [Compere and Dehouck, 2011]

• We work with the second k = 0. It implies the following
differential equation of ω

(�−3)ω = 0. (2.6)
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Second order supertranslations

• We work with non-linear gravity. Thus, we can obtain
second or higher order transformations of the fields.

• The action on the second order field is:

h(2)
ab → h(2)

ab + terms involving(ωk) + terms involving(ωσ)+

+ ω
2h(0)

ab −2ωωab + ω
c
a ωbc . (2.7)

• We find that the second order supertranslations are
consistent with the Einstein’s equation of motion when split
into 3 + 1 form.
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Iyer-Wald global charges
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Figure: Spacetime without a horizon
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Iyer-Wald charges

• We would like to understand the contributions to the
Iyer-Wald global charges from timelike infinity.

• The global charge variation is invariant under local
deformations of the Cauchy surface Σ.

• One can deform Σ in the far future to i+∪J +. In our
context

δQ IW
ξ

(Σ) =
∫
J +

ω
γ nγ

√
hd3x +

∫
i+

ω
γ nγ

√
hd3x (3.1)
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Iyer-Wald charges contd.

• To study the contribution to global charge from i+, we
choose the hypersurface to be a τ = constant surface. The
volume factor

√
hd3x grows as τ3 in the τ → ∞ limit.

• On τ = constant hypersurface, −ωγnγ = ωτ (1 +O(1/τ)),
and the final expression for ωτ reads,

ω
τ =

2
τ3

(
δ1σδ2k −δ1kδ2σ

)
+O(1/τ

4) (3.2)

• Upon using the boundary condition, k = 0, the first
variation to Iyer-Wald global charges vanish.

δQ IW (i+) = 0. (3.3)

• Since the symplectic flux through timelike infinity is zero,
we can define localised charges.
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Localised Charges

• Motivated by work at spatial infinity esp., for
supertranslations of the form (�−3)ω = 0, we can define
a localised charge cf. Compere and Dehouck

Qω =− 1
4πG

∫
C

√
q d2x (σωb−ωσb)rb. (3.4)

• This is our proposal. A first principal derivation can be
given by relating to J +

+ . perhaps following Troessaert and Prabhu

• Here C is spherical cross-section in H . Since there is no
symplectic flux, Ω(g,δ1g,δ2g) = 0, this expression is
independent of the choice of cross-section C.

• Similarly we can define a localised charge associated with
Lorentz symmetries by considering a conserved tensor Jab.
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Charges in diagram

Figure: Spherical crossection surrounding sources in H
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Summary

• We start by defining asymptotic flatness at timelike infinity.

• We study the action of supertranslations at timelike infinity
on fields at second order in 1/τ expansion.

• We used our boundary conditions to show that the
Lee-Wald symplectic form does not receive contributions
from timelike infinity.

• Finally, we proposed expressions for supertranslations and
Lorentz charges.
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Future directions

• Following the work of Troessaert ’17 and Prabhu ’19, we
expect our charge expressions can be matched with
appropriate expressions for supertranslation and Lorentz
charges at J +

+ .

• Another important question to answer is: can our boundary
conditions be used to relate supertanslations at future null
infinity to superstranslations at the horizon?

• The role/action of logarithmic translations, superrotations,
etc. at timelike infinity?
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THANK YOU
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Schwarzschild solution at timelike infinity

• We write the Schwarzschild solution near timelike infinity in
the Beig-Schmidt form by doing a series of coordinate
transformation.

• The requisite Beig-Schmidt form at first order in expansion
of 1/τ not only satisfies k = 0 but also satisfies kab = 0.

• The field σ takes the value,

σ =−(GM)
(

ρ
−1 + 2ρ

)
, �σ = 3σ . (4.1)
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Schwarzschild solution at timelike infinity contd.

• We notice that as τ goes to infinity for fixed r , ρ goes to 0.
Thus, the horizon r = 2GM intersects the timelike infinity
hyperboloid H at the origin ρ = 0.
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Figure: Timelike infinity
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Schwarzschild solution: Sources and Charges

• For the Schwarzschild solution the fields σ and
h(1)

ab =−2σh(0)
ab are singular at ρ = 0.

• The charge integral is finite even on a ρ = ε spherical
surface C.

Qω =− 1
4πG

∫
C

√
q d2x (σωb−ωσb)rb. (4.2)

• For the region r > 2GM of the Schwarzschild solution,
timelike infinity is taken to be the hyperboloid H minus the
origin.

• Thus we see that for a gravitationally bound system the
origin at timelike inifinity acts as a source for the charge
integrals.
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