Supertranslations at timelike infinity

Charges

Summary 0000000

Supertranslations at Timelike infinity

Debodirna Ghosh, CMI, Chennai

Based on 2111.08907 with A. Virmani, S. Chakraborty, Sk J. Hoque, & A. Khairnar

CSGC, IIT Madras, Feb '22

Supertranslations at timelike infinity

Charges

Summary 0000000

Introduction

Supertranslations at timelike infinity

Charges

Summary

 Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Introduction

Supertranslations at timelike infinity

Charges

Summary

Supertranslations at timelike infinity

Charges

Summary 0000000

Figure: Infrared Triangle of Strominger

Supertranslations at timelike infinity

Charges

Summary 0000000

Motivation

- The Infrared triangle gives an equivalence relation that governs the infrared dynamics of all physical theories with massless particles.
- The three vertices denote Soft theorems, Memory effects, and Asymptotic symmetries.
- These ideas are connected by mathematical relations.
- We will only discuss about the vertex representing Asymptotic symmetries.

Supertranslations at timelike infinity

Charges

Summary 0000000

Introduction

- The asymptotic properties of gravity have been studied extensively for decades in the context of asymptotically flat spacetimes at null infinity.
- The BMS group is a semi direct product of supertranslation group and Lorentz group under which one asymptotically flat solution of general relativity at null infinity is mapped into another solution. [Bondi, Burg and Metzner, Sachs]
- The infinite-dimensional supertranslation subgroup generate arbitrary angle dependent translations of retarded time.

Supertranslations at timelike infinity

Charges

Summary 0000000

Introduction

 BMS symmtries are present at spatial and timelike infinity, subjected to boundary conditions compatibility

• A natural question to ask is: How do we relate boundary conditions at null, spatial, and timelike infinity? This is difficult.

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

 Henneaux and Troessaert in a series of paper have proposed boundary conditions at spatial infinity that are invariant under BMS symmetries. Henneaux and Troessart [2017-19]

• Our motivation lies in exploring the boundary conditions at timelike infinity that realise BMS symmetries in the sense that it has a non-trivial action and have generically non-zero charges.

Supertranslations at timelike infinity

Charges

Summary 0000000

Motivation

- Recent studies suggest that stationary black holes also possess an infinite number of symmetries in the near horizon region. [Hawking, Perry, Strominger; Carlip; Donnay et al]
- It is believed that global charges associated with supertranslations receive contributions from the horizon as well as from null infinity.
- Thus, for a complete study of conservation laws associated with supertranslations, it is required to know the relation between symmetries at the horizon to that at null infinity.
- Timelike infinity can be used as a link between the symmetries at the horizon and at null infinity. [Chandrasekaran,

Flanagan, and Prabhu; ...]

Supertranslations at timelike infinity

Charges 000000

Asymptotic flatness

- We introduce our notion of asymptotic flatness at timelike infinity. It is based on the corresponding notion introduced by Beig and Schmidt at spatial infinity. [Beig and Schmidt, 81-83]
- We introduce a set of "polar coordinates" {τ, ρ, θ, φ} for Minkowski spacetime,

$$\eta_{\mu\nu} x^{\mu} x^{\nu} = -\tau^2, \qquad \qquad \frac{r}{t} = \frac{\rho}{\sqrt{1+\rho^2}}, \qquad (1.1)$$

In these coordinates flat spacetime metric takes the form

$$ds^{2} = -d\tau^{2} + \tau^{2} \left(\frac{d\rho^{2}}{1+\rho^{2}} + \rho^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right) \quad (1.2)$$

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Hyperbolic slicing

Figure: Hyperbolic slicing of Minkowski space

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Asymptotic flatness

Figure: Zooming in at i^+

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Asymptotic flatness: Convenient form

Consider a general class of spacetime

$$g_{\mu\nu} = \eta_{\mu\nu} + \sum_{n=1}^{m} \ell_{\mu\nu}^{(n)} \frac{1}{\tau^n} + \mathcal{O}(\tau^{-m-1}).$$
(1.3)

Following Beig and Schmidt, this metric can be put in the following more convenient form

$$ds^2 = -N^2 d\tau^2 + h_{ab} d\phi^a d\phi^b, \qquad (1.4)$$

where

$$N = 1 + \frac{\sigma(\phi^a)}{\tau},\tag{1.5}$$

$$h_{ab} = \tau^2 \left[h_{ab}^{(0)}(\phi^c) + \frac{1}{\tau} h_{ab}^{(1)}(\phi^c) + \frac{1}{\tau^2} h_{ab}^{(2)}(\phi^c) + \mathcal{O}\left(\frac{1}{\tau^3}\right) \right].$$
(1.6)

• The above form is our starting point.

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Introduction

Supertranslations at timelike infinity

Charges

Summary

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Supertranslations

 If supertranslations are genuine symmetries of general relativity then they should also be realisable at timelike infinity.

• A natural question to ask is what is the set of diffeomorphisms preserving the form of the metric.

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Supertranslations

- The following diffeomorphism preserves the asymptotic form of the metric to order $1/\tau$.

$$\tau = \overline{\tau} - \omega(\overline{\phi}^{a}) + \mathscr{O}\left(\frac{1}{\overline{\tau}}\right), \qquad (2.1)$$
$$\phi^{a} = \overline{\phi}^{a} + \frac{1}{\overline{\tau}}h^{(0)ab}\partial_{b}\omega(\overline{\phi}^{c}) + \mathscr{O}\left(\frac{1}{\overline{\tau}^{2}}\right), \qquad (2.2)$$

 Here ω(φ^a) is an arbitrary function on EAdS₃ hyperboloid. It determines the higher order terms in the diffeomorphism uniquely.

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

First order supertranslations

• We only focus on supertranslations in our work.

• Under general supertranslation, the zeroth order field $h_{ab}^{(0)}$ and the first order field σ does not transform,

• The first order metric correction $h_{ab}^{(1)}$ transforms under general supertranslations,

$$h_{ab}^{(1)} \to h_{ab}^{(1)} + 2\mathscr{D}_a \mathscr{D}_b \omega - 2\omega h_{ab}^{(0)}.$$
(2.3)

Supertranslations at timelike infinity

Charges 000000 Summary

Boundary conditions

- ω is an arbitrary function on the hyperboloid. One needs to specify further boundary conditions.
- The boundary conditions at timelike infinity should remain invariant under allowed supertranslations.
- To state the boundary conditions, we define,

$$k_{ab} := h_{ab}^{(1)} + 2\sigma h_{ab}^{(0)}. \tag{2.4}$$

• It follows from that under general supertranslation,

$$k_{ab} \rightarrow k_{ab} + 2\mathscr{D}_a \mathscr{D}_b \omega - 2\omega h_{ab}^{(0)}.$$
 (2.5)

Supertranslations at timelike infinity

Charges 000000

Summary 0000000

Boundary conditions

- There are two natural sets of boundary conditions to consider.
 - First, one can dispose of supertranslations by demanding that [Cutler; Porrill, 1980s]

$$k_{ab} = 0.$$

Second, taking

$$k = \operatorname{tr} k_{ab} = 0$$

while $k_{ab} \neq 0$. [Compere and Dehouck, 2011]

We work with the second k = 0. It implies the following differential equation of ω

$$(\Box - 3) \omega = 0. \tag{2.6}$$

Supertranslations at timelike infinity

Charges 000000

Second order supertranslations

- We work with non-linear gravity. Thus, we can obtain second or higher order transformations of the fields.
- The action on the second order field is:

 $\begin{aligned} h_{ab}^{(2)} &\to h_{ab}^{(2)} + \text{terms involving}(\omega k) + \text{terms involving}(\omega \sigma) + \\ &+ \omega^2 h_{ab}^{(0)} - 2\omega \omega_{ab} + \omega_a^c \omega_{bc} . \end{aligned}$ (2.7)

 We find that the second order supertranslations are consistent with the Einstein's equation of motion when split into 3+1 form.

Supertranslations at timelike infinity

Charges •00000 Summary 0000000

Introduction

Supertranslations at timelike infinity

Charges

Summary

Supertranslations at timelike infinity

Charges

Summary 0000000

lyer-Wald global charges

Figure: Spacetime without a horizon

Supertranslations at timelike infinity

Charges

Summary 0000000

Iyer-Wald charges

- We would like to understand the contributions to the lyer-Wald global charges from timelike infinity.
- The global charge variation is invariant under local deformations of the Cauchy surface Σ.
- One can deform Σ in the far future to *i*⁺ ∪ 𝒴⁺. In our context

$$\delta Q_{\xi}^{IW}(\Sigma) = \int_{\mathscr{I}^{+}} \omega^{\gamma} n_{\gamma} \sqrt{h} d^{3}x + \int_{i^{+}} \omega^{\gamma} n_{\gamma} \sqrt{h} d^{3}x \qquad (3.1)$$

Supertranslations at timelike infinity

Charges

Summary 0000000

lyer-Wald charges contd.

- To study the contribution to global charge from i^+ , we choose the hypersurface to be a $\tau = \text{constant surface}$. The volume factor $\sqrt{h} d^3 x$ grows as τ^3 in the $\tau \to \infty$ limit.
- On $\tau = \text{constant}$ hypersurface, $-\omega^{\gamma}n_{\gamma} = \omega^{\tau}(1 + \mathcal{O}(1/\tau))$, and the final expression for ω^{τ} reads,

$$\omega^{\tau} = \frac{2}{\tau^3} \left(\delta_1 \sigma \delta_2 k - \delta_1 k \delta_2 \sigma \right) + \mathscr{O}(1/\tau^4)$$
 (3.2)

• Upon using the boundary condition, k = 0, the first variation to lyer-Wald global charges vanish.

$$\delta Q_{IW}(i^+) = 0. \tag{3.3}$$

• Since the symplectic flux through timelike infinity is zero, we can define localised charges.

Supertranslations at timelike infinity

Charges

Summary 0000000

Localised Charges

• Motivated by work at spatial infinity esp., for supertranslations of the form $(\Box - 3)\omega = 0$, we can define a localised charge cf. Compere and Dehouck

$$Q_{\omega} = -\frac{1}{4\pi G} \int_{C} \sqrt{q} d^{2} x (\sigma \omega_{b} - \omega \sigma_{b}) r^{b}.$$
(3.4)

- This is our proposal. A first principal derivation can be given by relating to \mathscr{J}_+^+ . perhaps following Troessaert and Prabhu
- Here *C* is spherical cross-section in \mathcal{H} . Since there is no symplectic flux, $\Omega(g, \delta_1 g, \delta_2 g) = 0$, this expression is independent of the choice of cross-section *C*.
- Similarly we can define a localised charge associated with Lorentz symmetries by considering a conserved tensor J_{ab}.

Supertranslations at timelike infinity

Charges

Summary

Charges in diagram

Figure: Spherical crossection surrounding sources in ${\mathscr H}$

Supertranslations at timelike infinity

Charges 000000 Summary •000000

Introduction

Supertranslations at timelike infinity

Charges

Summary

Summary

- We start by defining asymptotic flatness at timelike infinity.
- We study the action of supertranslations at timelike infinity on fields at second order in $1/\tau$ expansion.
- We used our boundary conditions to show that the Lee-Wald symplectic form does not receive contributions from timelike infinity.
- Finally, we proposed expressions for supertranslations and Lorentz charges.

Supertranslations at timelike infinity

Charges

Summary 0000000

Future directions

- Following the work of Troessaert '17 and Prabhu '19, we expect our charge expressions can be matched with appropriate expressions for supertranslation and Lorentz charges at \mathscr{J}^+_+ .
- Another important question to answer is: can our boundary conditions be used to relate supertanslations at future null infinity to superstranslations at the horizon?
- The role/action of logarithmic translations, superrotations, etc. at timelike infinity?

Supertranslations at timelike infinity

Charges

Summary 0000000

THANK YOU

Schwarzschild solution at timelike infinity

- We write the Schwarzschild solution near timelike infinity in the Beig-Schmidt form by doing a series of coordinate transformation.
- The requisite Beig-Schmidt form at first order in expansion of $1/\tau$ not only satisfies k = 0 but also satisfies $k_{ab} = 0$.
- The field σ takes the value,

$$\sigma = -(GM)\left(
ho^{-1}+2
ho
ight), \qquad \Box\sigma = 3\sigma.$$
 (4.1)

Supertranslations at timelike infinity

Charges 000000 Summary 0000000

Schwarzschild solution at timelike infinity contd.

• We notice that as τ goes to infinity for fixed r, ρ goes to 0. Thus, the horizon r = 2GM intersects the timelike infinity hyperboloid \mathcal{H} at the origin $\rho = 0$.

Figure: Timelike infinity

Schwarzschild solution: Sources and Charges

- For the Schwarzschild solution the fields σ and $h_{ab}^{(1)} = -2\sigma h_{ab}^{(0)}$ are singular at $\rho = 0$.
- The charge integral is finite even on a $\rho = \varepsilon$ spherical surface *C*.

$$Q_{\omega} = -\frac{1}{4\pi G} \int_{C} \sqrt{q} d^2 x (\sigma \omega_b - \omega \sigma_b) r^b. \qquad (4.2)$$

- For the region r > 2GM of the Schwarzschild solution, timelike infinity is taken to be the hyperboloid *H* minus the origin.
- Thus we see that for a gravitationally bound system the origin at timelike inifinity acts as a source for the charge integrals.