Observing higher modes of gravitational radiation in future detectors

Divyajyoti^{1,2}, Preet Baxi^{1,2}, Chandra Kant Mishra^{1,2}, K. G. Arun³

¹Indian Institute of Technology Madras
²Center for Strings, Gravitation and Cosmology, IIT Madras
³Chennai Mathematical Institute

Phys. Rev. D 104, 084080, arXiv: 2103.03241

divyajyoti@physics.iitm.ac.in

Chennai Symposium on Gravitation and Cosmology (CSGC)

February 3, 2022

CHENNAI MATHEMATICAL INSTITUTE February 3, 2022

1/12

Observing HMs in future detectors

Introduction

- In GWTC-2, LIGO-Virgo Collaboration reported the detection of Higher Modes (HMs) for two events: GW190412 and GW190814.
- A few more events with large mass ratios have been added in GWTC-3.
- Relative contribution of HMs increases for binary systems which are asymmetric in masses, or non-optimally oriented.
- Detection of HMs increases the mass reach of the detectors, leads to better parameter estimation and measurement of cosmological parameters.
- We have performed three studies:
 - Detectability of HMs in $q \iota$ plane
 - Detection of HMs for GWTC-2 events if 3G detectors were operational
 - Population study using the next generation detector networks.

Detector networks

- Upgraded 2G detectors: LIGO-A+, Voyager
- 3G detectors:
 - Cosmic Explorer (CE): L-shaped, length of each arm = 40km.
 - Einstein telescope (ET): Equilateral triangle, length of each arm = 10km, setup will be underground.
 - Low frequency sensitivity in the range of 1-5Hz.

Label	Location	Type(s)
L	Louisiana, USA	CE/A+/Voyager
H	Washington, USA	CE/A+/Voyager
V	Cascina, Italy	CE/A+/Voyager
A	New South Wales, Australia	CE
E	Cascina, Italy	ET

Waveform and detection criteria

• Multipolar expansion of GW radiation:

$$h(t;\iota,\varphi_o) = \frac{1}{d_L} \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} h_{\ell m}(t,\lambda) Y_{\ell m}^{-2}(\iota,\varphi_o)$$
(1)

Waveform: IMRPhenomHM, Modes (ℓ, m): 22, 33, 44, 21, 32, 43.
Individual mode strain:

$$\tilde{h}_{\ell m}(f) = F_{+}(\theta, \phi, \psi) \, \tilde{h}_{+}^{\ell m}(f) + F_{\times}(\theta, \phi, \psi) \, \tilde{h}_{\times}^{\ell m}(f) \tag{2}$$

• Optimal SNR for each mode $(\rho_{\ell m})$ as:

$$\rho_{\ell m}^2 = 4 \int_{f_{\rm low}}^{f_{\rm cut}} \frac{|\tilde{h}_{\ell m}(f)|^2}{S_h(f)} df$$
(3)

• $f_{\rm low} = 5$ Hz for all the detectors.

• Criteria for detection: 22 mode: SNR \geq 10, HMs: SNR \geq 3

Divyajyoti (IIT Madras)

Higher modes in the $q - \iota$ plane

Fixed SNR=3, D_L = 3 Gpc, χ_{1z} = 0.9, χ_{2z} = 0.8, Detector: CE

HM SNRs in CE for GWTC-2 events

Evont	М	q	χ_{eff}	SNR in mode				
Dvent				22	33	44	21	32
GW190412	42.6	3.2	0.2	649	81	17	14	3.9
GW190519_153544	159.5	1.6	0.4	685	79	48	19	14
GW190521	279.8	1.4	0.1	424	22	19	7.1	7.5
$GW190602_175927$	173.8	1.4	0.1	330	15	9.4	4.3	4.7
$GW190630_{-}185205$	69.9	1.5	0.1	708	31	14	7.9	5.8
GW190706_222641	183.5	1.7	0.3	223	18	7.6	3.4	3.3
GW190814	27.2	9.0	0	982	172	33	32	4.4
GW190828_065509	44.4	2.4	0.1	418	34	7.2	6.7	3.0

LIGO-Virgo quoted the 33 mode network SNR as \sim 6.6 for GW190814.

Population Study: Models

- Models (from GWTC-2¹) for the parameter distributions chosen as:
 - Masses: POWER LAW + PEAK and BROKEN POWER LAW models. $m_1 \in (5, 100), \ q_{\max} = 18.$
 - Spins: DEFAULT MODEL for both χ_{1z} and χ_{2z} , range {-1,1}.
 - Luminosity Distance: Madau-Dickinson redshift evolution model², $z_{\rm max} = 10$.
 - Angles: $\cos(\iota)$ and $\cos(\theta)$ uniform between {-1,1}, ϕ and ψ uniform between $\{0,\pi\}$.
- Total number of population points for each mode: 10,000

Divyajyoti (IIT Madras)

¹R. Abbott et al. (LIGO Scientific, Virgo) (2020),arXiv:2010.14533.

²K. K. Y. Ng et al., Astrophys. J. Lett.913, L5 (2021), arXiv:2012.09876.

Injected Population

POWER LAW + PEAK (PLP)

BROKEN POWER LAW (BPL)

Population histograms

Comparison between mass models (PL+P and BPL) 3G Detector network: LAE Comparison between generations of detectors Detector network: LHV for both the detectors (Voyager, CE)

Results and Summary

- Different HMs activate different regions of the parameter space, and show symmetries in *ι* leading to bi- and tri- modality of contours.
- Several of the GWTC-2 events would've led to the detection of HMs if 3G detectors were operational now.
- For 3G network, 33 and 44 modes are detectable in nearly 30% of the population.
- For 10% of the sources, all five leading modes are detectable.
- Comparison between generations: Less than 10% sources show detectability of 33 and 44 modes for upgraded 2G detectors, whereas for 3G, this number is \sim 30%.

Thank You

Waveform

• Plus and cross polarizations associated with each mode:

$$\widetilde{h}_{+}^{\ell m}(f) = \left[(-)^{\ell} \frac{d_{2}^{\ell,-m}(\iota)}{d_{2}^{\ell m}(\iota)} + 1 \right] Y_{-2}^{\ell m}(\iota,\varphi_{0}) \widetilde{h}_{\ell m}^{\mathrm{R}}(f)
\widetilde{h}_{\times}^{\ell m}(f) = -\mathrm{i} \left[(-)^{\ell} \frac{d_{2}^{\ell,-m}(\iota)}{d_{2}^{\ell m}(\iota)} - 1 \right] Y_{-2}^{\ell m}(\iota,\varphi_{0}) \widetilde{h}_{\ell m}^{\mathrm{R}}(f)$$
(4)

where $ilde{h}^{ ext{R}}_{\ell m}(f) = A_{\ell m}(f) \, e^{i arphi_{\ell m}(f)}$

• Combining them with the detector pattern functions:

$$\tilde{h}_{\ell m}(f) = F_{+}(\theta, \phi, \psi) \, \tilde{h}_{+}^{\ell m}(f) + F_{\times}(\theta, \phi, \psi) \, \tilde{h}_{\times}^{\ell m}(f) \tag{5}$$