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Introduction Timelike geodesics Null geodesics

Singularity theorems structure

Definition

A spacetime is singular if it possesses at least one incomplete geodesic.
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1. The initial or boundary condition
There exists a trapped surface (null geodesics) or a spatial slice with
negative expansion (timelike goedesics)
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Introduction Timelike geodesics Null geodesics

Singularity theorems structure

2. The energy condition
Restriction on the stress-energy tensor expressing “physical”
properties of matter.

Null geodesics: Null energy condition (NEC) `µ: null vector
Timelike geodesics: Strong energy condition (SEC) Uµ: timelike vector

Physical form Geometric form Perfect fluid
Tµν`

µ`ν ≥ 0 Rµν`
µ`ν ≥ 0 ρ+ P ≥ 0

(Tµν −
Tgµν
n − 2

)UµUν ≥ 0 RµνU
µUν ≥ 0

ρ+ P ≥ 0 and
(n − 3)ρ+ (n − 1)P ≥ 0
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Introduction Timelike geodesics Null geodesics

Singularity theorems structure

3. Causality condition
There is a Cauchy surface: spacelike hypersurface which intersects
causal geodesics once and only once

Proof structure

1. Initial condition: Geodesics start focusing

2. Energy condition: Focusing continues

3. Causality condition: No focal points

⇒ Geodesic incompleteness
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Introduction Timelike geodesics Null geodesics

From classical to semiclassical singularity theorems

Problem

Pointwise energy conditions are violated by many classical and all
quantum fields

TµνU
µUν ≥ 0

Question

Can we have singularity theorems with weaker energy conditions?

∫
γ

f 2TµνU
µUν ≥ −(Bound)

Question

Can we have semiclassical singularity theorems?
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Singularity theorems with weakened energy conditions

Theorem [Fewster, E-AK, 2019]

1. Energy condition

∫ τ

0

f (t)2

ρ︷ ︸︸ ︷
RµνU

µUν dt ≥ −Qm‖f (m)‖2 − Q0‖f ‖2, ‖f ‖2 =

∫
γ

f 2dt

and Scenario 1: ρ ≥ 0 for [0, τ0]: SEC obeyed for a short time
or Scenario 2: ρ < 0 for [−τ0, 0]: SEC violated before we measure K

2. Initial condition: K ≤ −ν(Qm,Q0, τ0, τ)

3. Causality condition: There exists a Cauchy surface.

⇒ The spacetime is geodesically incomplete.
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Introduction Timelike geodesics Null geodesics

Towards semiclassical singularity theorems

(A) Prove quantum energy inequalities (QEIs) for the relevant quantities
for timelike and null geodesics
Example of a QEI (bound on energy density in Minkowski
spacetime) ∫

dt f 2〈:TµνUµUν :〉ω ≥ −
1

16π2

∫
f ′′(t)2dt

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

(B) Singularity theorems require a geometric condition. Use of the
semiclassical Einstein equation

8πGN〈Tµν〉ω = Gµν .

(C) Estimate the required initial contraction for physical spacetimes

8 / 20



Introduction Timelike geodesics Null geodesics

Towards semiclassical singularity theorems

(A) Prove quantum energy inequalities (QEIs) for the relevant quantities
for timelike and null geodesics
Example of a QEI (bound on energy density in Minkowski
spacetime) ∫

dt f 2〈:TµνUµUν :〉ω ≥ −
1

16π2

∫
f ′′(t)2dt

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

(B) Singularity theorems require a geometric condition. Use of the
semiclassical Einstein equation

8πGN〈Tµν〉ω = Gµν .

(C) Estimate the required initial contraction for physical spacetimes

8 / 20



Introduction Timelike geodesics Null geodesics

Towards semiclassical singularity theorems

(A) Prove quantum energy inequalities (QEIs) for the relevant quantities
for timelike and null geodesics
Example of a QEI (bound on energy density in Minkowski
spacetime) ∫

dt f 2〈:TµνUµUν :〉ω ≥ −
1

16π2

∫
f ′′(t)2dt

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

(B) Singularity theorems require a geometric condition. Use of the
semiclassical Einstein equation

8πGN〈Tµν〉ω = Gµν .

(C) Estimate the required initial contraction for physical spacetimes

8 / 20



Introduction Timelike geodesics Null geodesics

(A) Quantum strong energy inequality

Difference QEIs∫
γ

〈:ρ:〉ωf 2 =

∫
γ

〈ρ〉ω
↑

state of interest

f 2dt −
∫
γ

〈ρ〉ω0
↑

reference state

f 2dt ≥ −〈
bound︷ ︸︸ ︷

Qω0 (f )〉ω .

For the minimally coupled quantum scalar field:

QSEI

∫
γ

〈:ρU :〉ωf 2dt ≥ −
∫ ∞

0

dα

π
((∇U⊗∇U)W0)(f̄α, fα)− M2

n − 2

∫
γ

〈:φ2:〉ωf 2dt

[Fewster, E-AK, 2018]

W0:Two-point function of the reference state

(f̄α, fα): Fourier transform

〈:φ2:〉ω: Wick square of state of interest ω
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(B) The semiclassical Einstein equation

Problem

It is generally very difficult (or impossible) to find closed form expressions
for two-point functions of reference states in curved spacetimes.

Idea

For test functions of sufficiently small support the bound continues to
hold if W0 is the two-point function of Minkowski vacuum.

For n = 2m spacetime dimensions∫
γ

〈:ρU :〉ωf 2dt ≥ −~ πS2m−2

2m(2π)2m

∫
γ

dt|f (m)|2 − M2

n − 2

∫
γ

〈:φ2:〉ωf 2dt

Using the SEE∫
dτ f 2(t)RµνU

µUν ≥ −4π~S2m−2

m(2π)2m
||f (m)||2 − 4πM2φ2

max

m − 1
||f ||2 ,

Where we assumed that there is a class of states for which∣∣〈 : φ2 : 〉ω
∣∣ ≤ φ2

max ,
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Partition of unity

Idea

Break the geodesic into n pieces each of support Tt and sum the
resulting inequalities.

0 τ

1

t

ϕn(t)

∞∑
n=1

‖(f φn)(m)‖2 ≤
m∑
j

cj(T0, τ)‖f (j)‖2 ≡ |||f |||2
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The singularity theorem

[Fewster, E-AK, 2021]

1. ∫
dtf 2(t)RµνU

µUν ≥ −Qm|||f |||2 − Q0||f ||2

Qm =
~S2m−2

(2π)2m−2
, and Q0 =

4πM2φ2
max

m − 1

and RµνU
µUν ≥ 0 holds for t ∈ [0, τ0]

3. the initial extrinsic curvature of S satisfies

K ≤ −ν(M, φmax,T0, τ0, τ)

4. There exists a Cauchy surface.

⇒ The spacetime is timelike geodesically incomplete.
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(C) Cosmological application

We use the ΛCDM model and data from [PLANCK, 2018]:
Ωm0 = 0.31 and ΩΛ0 = 0.69

The SEC was last satisfied when t∗ = 2.41× 1017s,

H∗ = 3.14× 10−18 s−1

We want to estimate: ν(M, φmax,T0, τ0, τ) and compare with H∗

Parameters

M (the mass of the field), φmax (the maximum magnitude of the scalar
field), T0 (timescale for valid Minkowski QEI at S), τ (timescale for
singularity) and τ0 (timescale that the SEC is assumed).

Particle optimal τ in s ν∗ in s−1 minT0 in s

Pion 2.02× 1020 3.57× 10−20 1.05× 10−10

Proton 4.16× 1018 1.73× 10−18 1.51× 1011

Higgs 2.33× 1014 3.09× 10−14 1.14× 10−13

and τ0 ≈ T0/2
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Null quantum energy inequalities

Timelike average of null energy density

For a massless scalar field in Minkowski spacetime∫
dt〈:Tµν :`µ`ν〉ωf 2(t) ≥ − 1

12π2

∫
dtf ′′(t)2

[Fewster, Roman, 2002]

Can we have the same QEI over a null geodesic?∫
dλ〈:Tµν :`µ`ν〉ωf 2(λ) ≥ −c

∫
dλf ′′(λ)2

The counterexample

Considered a sequence of vacuum-plus-two-particle states in which the
three-momenta of excited modes are unbounded and become more and
more parallel to the spatial part of the null vector `µ. [Fewster, Roman,
2002]
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(A) The smeared null energy condition (SNEC)

Idea

In quantum field theory there is often an ultraviolet cutoff `UV which
restricts the three-momenta. We can write GN / `2

UV/N.

SNEC conjecture∫
dλ〈:Tµν :`µ`ν〉ωf 2(λ) ≥ −4B

GN

∫
dλf ′(λ)2

where B is an undefined number. [Freivogel, Krommydas, 2019]

It is well-motivated to consider B � 1. In order to saturate SNEC, we
need to saturate the inequality NGN / `2

UV. Not saturated in controlled
constructions: the UV cutoff of the theory is far from Planck scale

Satisfies the Fewster-Roman counterexample 4

Proof for free fields in Minkowski [Fliss, Freivogel, 2021] 4

Curved spacetimes, interacting fields, limit of `UV → 0 7
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Introduction Timelike geodesics Null geodesics

Double null smearing

Idea

Smear over both null directions x+ and x−.

For even free massless scalar on Minkowski spacetime∫
d2x±g(x±)2〈T−−〉ω ≥ −Pn

(∫
dx+(g

(n/2)
+ (x+))2

) n−2
2n

×
(∫

dx−(g
(n/2)
− (x−))2

) n+2
2n

.

[Fliss, Freivogel, E-AK, 2021]

Advantages

Rigorously proven from a general QEI

Can be generalized to curved spacetimes

The smearing can be controlled and does not depend on the theory
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(B) SNEC as the energy condition

SNEC ∫
dλ〈:Tµν :`µ`ν〉ωf 2(λ) ≥ −4B

GN

∫
dλf ′(λ)2

Using the SEE, SNEC becomes∫
f (λ)2Rµν`

µ`νdλ ≥ −32πB‖f ′‖2 .

Same form as∫
f (λ)2Rµν`

µ`ν dλ ≥ −Qm‖f (m)‖2 − Q0‖f ‖2,

with m = 1, Q1 = 32πB and Q0 = 0. [Freivogel, E-AK, Krommydas,
2020]
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(C) Application to evaporating black holes

We assume that the metric is well-approximated by Schwarzschild
geometry near the horizon so we know the mean normal curvature H of
spherically symmetric hypersurfaces.

Plan

Compare the Schwarzschild mean normal curvature with the required
H < −ν(Q1, τ0, τ) to satisfy the theorem for the two cases:

Scenario 1: ρ ≥ 0 for [0, `0]: NEC obeyed for a short time

Scenario 2: ρ < 0 for [−`0, 0]: NEC violated before we measure H
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(C) Application to evaporating black holes
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Conclusions and future work

Timelike geodesics

Semiclassical singularity theorem with a QSEI for minimally coupled
massive scalar fields

Curvature approximated using a partition of unity

Future work: Calculation of curvature using a absolute (Hadamard
renormalized QEI)

Null geodesics

Motivated the use of a null QEI, the SNEC

This condition can be used to prove a null singularity theorem

Future work: Use the double smeared null energy condition in a
singularity theorem

Cosmological and evaporating black hole toy models support the idea
that singularities are predicted semi classically but open questions remain.
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