Observation and astrophysics of gravitational waves:

Antracha Gupta
The University at Mississippi

Based on LVK's population paper, arXiv:2111.03634

Second Chennai Symposium on Gravitation and Cosmology

Masses in the Stellar Graveyard

Masses in the Stellar Graveyard

Masses in the Stellar Graveyard

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

- How these binary mergers form?
- What are the astrophysical environments in which these mergers take place?
- Is there a lower mass gap?
- Is there a higher mass gap?
- What is the rate of star formation throughout the Universe?
- New observations, new questions!
momomem in ||
Quasi-circular orbits
Intrinsic parameters: $m_{1}, m_{2}, \chi_{1}, \theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}$

Extrinsic parameters: $D_{L}, l, \delta, \alpha, \psi, t_{c}, \phi_{c}$

momomem M||
Quasi-circular orbits
Intrinsic parameters: $m_{1}, m_{2}, \chi_{1}, \theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}$

$$
\begin{aligned}
\text { Chirp mass: } & \mathscr{M}_{c}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}} \\
\text { mass ratio: } & q=\frac{m_{2}}{m_{1}}
\end{aligned}
$$

effective inspiral spin: $\quad \chi_{\text {eff }}=\frac{m_{1} \chi_{1} \cos \theta_{1}+m_{1} \chi_{1} \cos \theta_{2}}{m_{1}+m_{2}}$
effective precessing spin: $\quad \chi_{\mathrm{p}}=\max \left[\chi_{1} \sin \theta_{1},\left(\frac{3+4 q}{4+3 q}\right) q \chi_{2} \sin \theta_{2}\right]$

Analysis Setup:

[More on detection and parameter estimation in

- GWTC-3:
- events from O1, O2 and O3
- 90 CBCs with $P_{\text {astro }}>0.5$
- With FAR $<0.25 \mathrm{yr}^{-1}$ in at least one detection pipeline: $2 \mathrm{BNSs}, 2$ NSBHs and 63 BBHs
- High purity set of events whose selection biases are understood
- Expect only 1 event to be not of astrophysical origin
- With FAR <1 yr $^{-1}$: 69 BBHs
- relative proportion of background events remains below 10%
- Expect only 4.6 events to be not of astrophysical origin
- NS and BH are distinguished based on EOS maximum NS mass

Population Analysis Framework

- Hierarchical Bayesian approach

- Marginalize over the uncertainty in the estimate of individual event parameters
$\mathscr{L}\left(\{d\}, N_{\mathrm{det}} \mid \Lambda, N_{\mathrm{exp}}\right) \propto N^{N_{\mathrm{det}}} e^{-N_{\mathrm{exp}}} \prod_{i=1}^{N_{\mathrm{det}}} \int \mathscr{L}\left(d_{i} \mid \theta\right) \pi(\theta \mid \Lambda) d \theta$
$N=\frac{N_{\text {exp }}}{\xi(\Lambda)}$
$\xi(\Lambda)$: fraction of mergers that are detectable for a population with parameter Λ
$\mathscr{L}\left(d_{i} \mid \theta\right)$: single-event likelihood described by parameter set θ
$\pi(\theta \mid \Lambda)$: prior governing the population distribution on event parameters θ for a given value of hyperparameters Λ

Marginalizing the likelihood after imposing the a log-uniform prior on N
$\mathscr{L}(\{d\} \mid \Lambda) \propto \prod_{i=1}^{N_{\mathrm{det}}} \frac{\int \mathscr{L}\left(d_{i} \mid \theta\right) \pi(\theta \mid \Lambda) d \theta}{\xi(\Lambda)}$
$\mathscr{L}\left(d_{i} \mid \theta\right)$ are computed using default prior $\pi_{\emptyset}(\theta)$, hence
$\mathscr{L}(\{d\} \mid \Lambda) \propto \prod_{i=1}^{N_{\mathrm{det}}} \frac{1}{\xi(\Lambda)}\left\langle\frac{\pi(\theta \mid \Lambda)}{\pi_{\emptyset}(\theta)}\right\rangle$
Using this posterior on Λ can be computed

Population Model Assumptions

Parametric Mass Models: NS masses

-For analyses exclusively focused on the NS-containing events
-POWER: Power Law
-PEAK: Gaussian
-With sharp minimum and maximum mass cutoffs

-Components of BNSs are drawn independently from the common NS mass distribution
-For NSBHs, we assume a uniform BH mass distribution and random pairing with NSs

Parametric Mass Models: BH masses

- Fiducial Power Law + Peak (PP) model + redshift evolution

$$
p\left(m_{1}, q, z\right) \propto q^{\beta} p\left(m_{1}\right)(1+z)^{\kappa-1}
$$

- Merger rate normalization is chosen such that

$$
\mathscr{R}(z)=\frac{d N}{d V_{c} d t}(z)=\mathscr{R}_{0}(1+z)^{\kappa}
$$

- The corresponding redshift distribution
$p(z \mid \kappa) \propto \frac{1}{1+z} \frac{d V_{c}}{d z}(1+z)^{k}$

Parametric Mass Models: BH masses

- Power Law + Dip + Break model (PDB)
- To fit the distribution of BH and NS masses, we use a parameterized model, consisting of a broken power law with a notch filter

$$
\begin{aligned}
& \text { notch filter with depth A applied } \\
& \text { between } M_{\text {low }}^{\text {gap }} \text { and } M_{\text {high }}^{\text {gap }} \\
& p(m \mid \lambda)=n\left(m \mid M_{\text {low }}^{\mathrm{gap}}, M_{\text {high }}^{\mathrm{gap}}, A\right) \times l\left(m \mid m_{\max }, \eta\right) \\
& \times\left\{\begin{array}{l}
m^{\alpha_{1}} \text { if } m<M_{\text {high }}^{\text {gap }} \\
m^{\alpha_{2}} \text { if } m>M_{\text {high }}^{\text {gap }} \\
0 \text { if } m>m_{\max } \text { or } m<m_{\min }
\end{array}\right. \\
& \text { low pass filter with powerlaw } \eta \\
& \text { applied at mass } m_{\text {max }}
\end{aligned}
$$

- Two pairing probability:
- Random: $p\left(m_{1}, m_{2} \mid \Lambda\right) \propto p\left(m=m_{1} \mid \Lambda\right) p\left(m=m_{2} \mid \Lambda\right) \Theta\left(m_{2}<m_{1}\right)$
- power-law-in-mass-ratio: $p\left(m_{1}, m_{2} \mid \Lambda\right) \propto p\left(m=m_{1} \mid \Lambda\right) p\left(m=m_{2} \mid \Lambda\right) q^{\beta} \Theta\left(m_{2}<m_{1}\right)$

BH Spin Models

- Default spin model
- Spin magnitude drawn from Beta distribution $p\left(\chi_{i} \mid \alpha_{\chi}, \beta_{\chi}\right) \propto \chi_{i}^{\alpha-1}\left(1-\chi_{i}\right)^{\beta-1}$
- Spin tilts are mixture of isotropic and aligned

$$
p\left(\cos \theta_{i} \mid \zeta, \sigma_{t}\right)=\frac{1}{2}(1-\zeta)+\zeta \mathcal{N}_{[-1,1]}\left(\cos \theta_{i} ; 1, \sigma_{t}\right)
$$

4 model parameters

- Gaussian spin model
- Bivariate Gaussian in $\chi_{\text {eff }}$ and χ_{p}

$$
p\left(\chi_{\mathrm{eff}}, \chi_{\mathrm{p}} \mid \mu_{\mathrm{eff}}, \sigma_{\mathrm{eff}}, \mu_{\mathrm{p}}, \sigma_{\mathrm{p}}, r\right) \propto \mathcal{N}\left(\chi_{\mathrm{eff}}, \chi_{\mathrm{p}} \mid \mu, \boldsymbol{\Sigma}\right)
$$

$$
\mu=\left(\mu_{\mathrm{eff}}, \mu_{\mathrm{p}}\right) \text { and } \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{eff}}^{2} & r \sigma_{\mathrm{eff}} \sigma_{\mathrm{p}} \\
r \sigma_{\mathrm{eff}} \sigma_{\mathrm{p}} & \sigma_{\mathrm{p}}^{2}
\end{array}\right)
$$

> | 5 model |
| :--- |
| parameters |

Merger Rates

$\left.\begin{array}{c|c|c|cccc} & & & & & \\ \hline \hline & \text { BNS } & \text { NSBH } & \text { BBH } & \text { NS-Gap } & \text { BBH-gap } & \text { Full } \\ & m_{1} \in[1,2.5] M_{\odot} & & m_{1} \in[2.5,50] M & m_{1} \in[2.5,100] M_{\odot} & m_{1} \in[2.5,5] M_{\odot} & m_{1} \in[2.5,100] M_{\odot}\end{array} m_{1} \in[1,100] M_{\odot}\right)$

- Self consistent measure of merger rate of all detected CBCs
- Subdivided into astrophysically interesting mass ranges
- Constant co-moving volume merger rate density
-BBH merger rates are consistent with previously published estimates
- For BNS/NSBH, the inferred rate depends on the presumed mass distribution
- Different approaches arrive at different binary mass distributions between $1 M_{\odot}$ and $2.5 M_{\odot}$
- Highlights the importance of modeling systematics when drawing inferences about populations with few confident members

Lower mass gap

- NSs are expected to have a maximum mass of $\sim 3 M_{\odot}$
- Heaviest NS observed to date has mass $2.01 \pm 0.04 M_{\odot}$
- PSR J0740+6620 'may' host a ~2.07-2.08 M_{\odot} NS
- X-ray observations found a dearth of objects in the 3-5 M_{\odot} range
- Population synthesis models with rapid supernova instabilities can not produce BHs of mass $<5 M_{\odot}$
- Thus, we don't expect to observe binaries with component masses in $\sim 3-5 M_{\odot}$ in GWs

Belczynski et al, 2012

- provided they are formed in a way similar to the binaries observed with EM radiation

- A reduction in the rate above NS masses
- Unable to confidently infer absence or presence of a subsequent rise in merger rates from lower mass gap masses
- Neither find evidence for nor rule out the existence of a two-sided lower mass gap
- Rates in mass gap are 1 or 2 order of magnitude different; GW data suggest two distinct populations of compact objects
- If a lower mass gap does exists, it may not be totally empty

Possible ways to populate this gap

- Remnants of binary neutron stars (Gupta et al, 2020)
- Hierarchical merger of stellar few-body systems (Safarzadeh et al, 2020, Lu et al, 2020)
- BHs of primordial origin (García-Bellido, 2019)
- Still a mystery that what the secondary of GW190814 is?
- Primary of GW190425 ($\left.m_{1} \in[1.61,2.52] M_{\odot}\right)$ could be a low-mass gap BH

Masses

NS masses in binaries

-Classification criteria: probability that at least one of the component masses is less than the maximum NS mass > 50\%

- $M_{\text {max, TOV }}=2.21_{-0.21}^{+0.31} M_{\odot}$ from 2106.05313 based on pulsar timing, GW and X-ray observations of NSs

Name	$\mathrm{FAR}_{\min }\left(\mathrm{yr}^{-1}\right)$	$P\left(m<M_{\max , \mathrm{TOV})}\right.$	$P\left(m<M_{\mathrm{low}}^{\text {gap }}\right)$	Classification
GW170817	$<1 \times 10^{-5}$	0.99	0.98	BNS
GW190425	3.38×10^{-02}	0.68	0.73	BNS
GW100814	$<1 \times 10^{-5}$	0.06	0.19	BBH
GW200105	2.04×10^{-01}	0.94	0.74	NSBH
GW200115	$<1 \times 10^{-5}$	0.95	0.97	NSBH
GW190426	9.12×10^{-01}	0.82	-	NSBH
GW190917	6.56×10^{-01}	0.56	-	NSBH

Power: $\quad \alpha=-2.0_{-7.0}^{+5.1}$

$$
\text { Peak: } \quad \sigma=1.1_{-0.8}^{+0.8} M_{\odot} \text { and } \mu=1.5_{-0.4}^{+0.4} M_{\odot}
$$

- GW observations to date do not support a NS mass distribution with a pronounced single peak
- In contrasts with the Galactic BNS subpopulation whose mass distribution is sharply peaked around $1.35 M_{\odot}$
- Mass distribution of NSs observed in GWs is broader and has greater support for high-mass NSs
- Galactic NS population distribution has a double-peaked shape

$$
m_{\min }=1.2_{-0.2}^{+0.1} M_{\odot} \quad m_{\max }=2.0_{-0.2}^{+0.3} M_{\odot}
$$

GW190814 is an outlier

 from the secondary masses in BNS and NSBH systems$\max _{5}\left(m_{2}\right)$: the largest observed secondary mass after 2 BNS observations and 3 NSBH observations

BH masses in binaries

FAR threshold of $1 \mathrm{yr}^{-1}$ and redshift dependance

BH mass distribution is consistent with GWTC-2

-The inferred mass spectrum decays more rapidly
-Expected because new observations in GWTC-3 contain a greater fraction of lower mass systems
-The inferred mass ratio distribution is less peaked towards equal mass binaries compared to GWTC-2
-Inconclusive evidence for an upper mass gap ($\left.\sim 50-150 M_{\odot}\right)$

High-mass gap: what theory says?

Inconclusive evidence for upper mass gap

- A gap is defined as a rapid decline and a rapid rise in merger rate at significantly higher mass
- No evidence is found for such a gap
- The PPISN mass gap could start at higher mass than theory expects
- Or the high-mass binaries in GWTC-3 could be formed in a way that avoids PPISN

Possible ways to populate this gap

[More in Vishal and Parthapratim's Talks]

- Hierarchical BBH mergers
- Stellar mergers
- BH remnants of population III stars

- Stellar triples in the field of the galaxy
- Growth via accretion in an Active Galactic Nuclei (AGN)

GW190814 and GW190917 are outliers from the secondary masses in BBH systems

$\mathrm{m}_{\text {min }}$: minimum recovered BH mass

Evolution of rates with redshift

- Initially there was a preference for a rate that increased with redshift but still consistent with a non-evolving merger rate
- But with GWTC-3 we are confident that BBH rate is evolving with redshift

$$
\mathscr{R}(z)=\frac{d N}{d V_{c} d t}(z)=\mathscr{R}_{0}(1+z)^{\kappa}
$$

Spin distribution in BBHs

BBH spin distribution is

 consistent with GWTC-2

Again excluded the case of perfect spin-orbit alignment and now data strongly favor a broad or isotropic distribution of spin tilts

- As with GWTC-2 we again infer a $\chi_{\text {eff }}$ distribution compatible with small but nonvanishing spins, with a mean centered at $0.06_{-0.05}^{+0.04}$
- χ_{p} measurements can be explained either by a broad distribution centered at $\chi_{p}=0$, or a narrow distribution centered at $\chi_{p} \approx 0.2$

Evidence of extreme spin-orbit misalignment

- Spin tilts $>90^{\circ}$ unlikely for BBH formation from isolated stellar progenitors (Kalogera, 2000)
- $\chi_{\text {eff }}<0$ would serve as a strong indicator of dynamical interaction during BBH evolution
- Extended the Gaussian model to truncate $\chi_{\text {eff }}$ on the range $\chi_{\text {eff,min }} \leq \chi_{\text {eff }} \leq 1\left(\right.$ rather than $\left.-1 \leq \chi_{\text {eff }} \leq 1\right)$ and hierarchically measured $\chi_{\text {eff,min }}$
- $\chi_{\text {eff,min }}<0$ at 99.8% credibility
- There were objection that unless BBH spin models are expanded to allow the existence of a secondary subpopulation with vanishingly small spins and spins allowed to correlate with other BBH parameters like the mass ratio
- Repeat the inference of $\chi_{\text {eff,min }}$ but under an expanded model that allows for a narrow subpopulation of BBHs with extremely small $\chi_{\text {eff }}$
- Data still prefer a negative $\chi_{\text {eff,min }}$ but with lower significance, $\chi_{\text {eff,min }}<0$ at 88.4% credibility

Summary

- Mass and spin distributions are consistent with GWTC-2
- More BBHs with preferentially negatively aligned spins but it could be by chance as well
- The BBH merger rate density increases with redshift
- A relative dearth of observations with component masses between 3 and $5 M_{\odot}$
- No strong evidence for lower and higher mass gaps
- The inferred NS mass distribution, albeit based on a limited sample of observations, does not exhibit a peak at $1.35 M_{\odot}$
- GW190814 is an outlier for the secondary mass of BNS/NSBH and BBH population

- LIGO-Virgo-KAGRA
- Stellar mass NS/BH merger up to redshift $z \sim 1$

Loud Future for

- 2G: Voyager (Livingston, Hanford, Pisa, Hingoli, Kamioka) GW science
- 4-5 times better sensitivity, detections up tp redshift $z \sim 10$
- 3G: Einstein Telescope, Cosmic Explorer
- 20 times better sensitivity, detections up tp redshift $z \sim 30$
- Other: LISA, TianQin, DECIGO, Pulsar Timing array
- Explore lower frequency regime and new sources

Thank You!

