Tidal vs absolute acceleration effects on Rindler probes

Chennai Symposium on Gravitation and Cosmology

Hari K

based on K. Hari and D. Kothawala, Phys. Rev. D 104, 064032 (2021); arXiv:2106.14496 [gr-qc]

Department of Physics

Indian Institute of Technology, Madras

February 2, 2022

Outline

- 1 Introduction and motivation
- 2 Setting up the problem
- 3 Symmetric spaces
- 4 Applications

Outline

1 Introduction and motivation

- 2 Setting up the problem
- 3 Symmetric spaces
- 4 Applications
- 5 Summary

■ Accelerated frames in Minkowski spacetime ⇒ to understand processes in curved spacetime.

- Accelerated frames in Minkowski spacetime ⇒ to understand processes in curved spacetime.
- But there's a catch!! Tidal acceleration due to background curvature will be ignored.

- Accelerated frames in Minkowski spacetime ⇒ to understand processes in curved spacetime.
- But there's a catch!! Tidal acceleration due to background curvature will be ignored.
- This work Tidal effects on an accelerated probe due to the background curvature.

- Accelerated frames in Minkowski spacetime ⇒ to understand processes in curved spacetime.
- But there's a catch!! Tidal acceleration due to background curvature will be ignored.
- This work Tidal effects on an accelerated probe due to the background curvature.

■ How?

The effects are captured using the relation between the geodesic distance($\Delta \tau_{\rm geod}$) and proper time($\Delta \tau_{\rm acc}$) of the trajectory.

- Accelerated frames in Minkowski spacetime ⇒ to understand processes in curved spacetime.
- But there's a catch!! Tidal acceleration due to background curvature will be ignored.
- This work Tidal effects on an accelerated probe due to the background curvature.

■ How?

The effects are captured using the relation between the geodesic distance($\Delta \tau_{\rm geod}$) and proper time($\Delta \tau_{\rm acc}$) of the trajectory.

■ This τ_{geod} - τ_{acc} relation is used to study Unruh-deWitt detectors, twin paradox and it gives insights into thermal properties associated with accelerated trajectory.

- Accelerated frames in Minkowski spacetime ⇒ to understand processes in curved spacetime.
- But there's a catch!! Tidal acceleration due to background curvature will be ignored.
- This work Tidal effects on an accelerated probe due to the background curvature.

■ How?

The effects are captured using the relation between the geodesic distance($\Delta \tau_{\rm geod}$) and proper time($\Delta \tau_{\rm acc}$) of the trajectory.

- This τ_{geod} - τ_{acc} relation is used to study Unruh-deWitt detectors, twin paradox and it gives insights into thermal properties associated with accelerated trajectory.
- With the available series expansion, it not clear about the curvature contribution to this relation.

Analogue from 2D - circle,

$$\Delta \tau_{\rm geod} = 2r \sin\left(\frac{\Delta \tau_{\rm acc}}{2r}\right)$$

Analogue from 2D - circle,

$$\Delta \tau_{\rm geod} = 2r \sin\left(\frac{\Delta \tau_{\rm acc}}{2r}\right)$$

For Minkowski spacetime,

$$\Delta \tau_{\rm geod} = \frac{2}{a} \sinh\left(\frac{a\Delta \tau_{\rm acc}}{2}\right)$$

Outline

- 1 Introduction and motivation
- 2 Setting up the problem
- 3 Symmetric spaces
- 4 Applications
- 5 Summary

The accelerated trajectory $C(\tau)$, 4-velocity $u^i(\tau)$ and $a^i = \nabla_u u^i$.

¹ for eg. see E. Poisson et al. LLR 14, 7(2011)

- The accelerated trajectory $C(\tau)$, 4-velocity $u^i(\tau)$ and $a^i = \nabla_u u^i$.
- unique geodesic $\mathcal{G}_{\Delta\tau}$ with parameter proper time *s*.

¹ for eg. see E. Poisson et al. LLR 14, 7(2011)

■ The accelerated trajectory
$$C(\tau)$$
, 4-velocity $u^i(\tau)$ and $a^i = \nabla_u u^i$.

• unique geodesic
$$\mathcal{G}_{\Delta \tau}$$
 with parameter proper time *s*.

Construct Riemann Normal Coordinates¹ (RNC) at p_0 , $\hat{x}^a(p) = (\Delta s)\hat{t}^a(0; \Delta \tau)$ and $\hat{t}^a(0, \Delta \tau)$ obeys,

$$\eta_{ab}\widehat{t}^a(0;\Delta\tau)\widehat{t}^b(0;\Delta\tau) = -1$$

¹ for eg. see E. Poisson et al. LLR 14, 7(2011)

■ The accelerated trajectory
$$C(\tau)$$
, 4-velocity $u^i(\tau)$ and $a^i = \nabla_u u^i$.

• unique geodesic
$$\mathcal{G}_{\Delta \tau}$$
 with parameter proper time *s*.

Construct Riemann Normal Coordinates¹ (RNC) at p_0 , $\hat{x}^a(p) = (\Delta s)\hat{t}^a(0; \Delta \tau)$ and $\hat{t}^a(0, \Delta \tau)$ obeys,

$$\eta_{ab}\widehat{t}^a(0;\Delta\tau)\widehat{t}^b(0;\Delta\tau) = -1$$

• Equating $\hat{z}^a(-\tau_{\rm acc}) = \hat{x}^a(p)$

$$(\tau_{\rm geod})^2 = \eta_{ab} \hat{z}^a (-\tau_{\rm acc}) \hat{z}^b (-\tau_{\rm acc})$$

¹ for eg. see E. Poisson et al. LLR 14, 7(2011)

Assume the solution;

$$\hat{z}^k(\tau) = \sum_{n=0}^{\infty} \frac{\tau^n}{n!} \left[\frac{\mathrm{d}^n \hat{z}^k}{\mathrm{d}\tau^n} \right]_{\tau=0}$$

and convert all derivative to covariant derivatives

²Rindler (1960)

Assume the solution;

$$\hat{z}^k(\tau) = \sum_{n=0}^{\infty} \frac{\tau^n}{n!} \left[\frac{\mathrm{d}^n \hat{z}^k}{\mathrm{d}\tau^n} \right]_{\tau=0}$$

and convert all derivative to covariant derivatives

• There are two assumptions:

²Rindler (1960)

• Assume the solution;

$$\hat{z}^k(\tau) = \sum_{n=0}^{\infty} \frac{\tau^n}{n!} \left[\frac{\mathrm{d}^n \hat{z}^k}{\mathrm{d}\tau^n} \right]_{\tau=0}$$

and convert all derivative to covariant derivatives

- There are two assumptions:
 - i) Motion is hyperbolic².

²Rindler (1960)

• Assume the solution;

$$\hat{z}^k(\tau) = \sum_{n=0}^{\infty} \frac{\tau^n}{n!} \left[\frac{\mathrm{d}^n \hat{z}^k}{\mathrm{d}\tau^n} \right]_{\tau=0}$$

and convert all derivative to covariant derivatives

- There are two assumptions:
 - i) Motion is hyperbolic².
 - ii) Derivatives of curvature tensor $\nabla_i R_{abcd}$ are "small".

²Rindler (1960)

Assume the solution;

$$\hat{z}^k(\tau) = \sum_{n=0}^{\infty} \frac{\tau^n}{n!} \left[\frac{\mathrm{d}^n \hat{z}^k}{\mathrm{d}\tau^n} \right]_{\tau=0}$$

and convert all derivative to covariant derivatives

- There are two assumptions:
 - i) Motion is hyperbolic².
 - ii) Derivatives of curvature tensor $\nabla_i R_{abcd}$ are "small".
- Apply i) and ii), and relate $d\hat{z}^i/d\tau$ with \hat{u}^i and $d^2\hat{z}^i/d\tau^2$ with \hat{a}^i .

²Rindler (1960)

Assume the solution;

$$\hat{z}^k(\tau) = \sum_{n=0}^{\infty} \frac{\tau^n}{n!} \left[\frac{\mathrm{d}^n \hat{z}^k}{\mathrm{d}\tau^n} \right]_{\tau=0}$$

and convert all derivative to covariant derivatives

- There are two assumptions:
 - i) Motion is hyperbolic².
 - ii) Derivatives of curvature tensor $\nabla_i R_{abcd}$ are "small".
- Apply i) and ii), and relate $d\hat{z}^i/d\tau$ with \hat{u}^i and $d^2\hat{z}^i/d\tau^2$ with \hat{a}^i .
- Higher derivatives are computed from successive differentiation of definition of acceleration.

²Rindler (1960)

Results

• Implemented CADABRA³ for the calculation and obtained the relation to $O(\Delta \tau^{10})$:

$$\begin{split} \tau_{\text{geod}}^2 &= \tau_{\text{acc}}^2 + \frac{1}{12} a^2 \tau_{\text{acc}}^4 + \frac{1}{360} \left(a^4 + 3a^2 \mathscr{E}_n \right) \tau_{\text{acc}}^6 \\ &+ \frac{1}{20160} \left(a^6 + 17a^2 \mathscr{E}_n^2 + 18a^4 \mathscr{E}_n \right) \tau_{\text{acc}}^8 \\ &+ \frac{1}{1814400} \left(a^8 + 81a^6 \mathscr{E}_n + 339a^4 \mathscr{E}_n^2 + 155a^2 \mathscr{E}_n^3 \right) \tau_{\text{acc}}^{10} \\ &+ O(\tau_{\text{acc}}^{12}) + \mathscr{R}_A \end{split}$$

Here, $\mathscr{E}_n := R_{0n0n} = R_{abcd} u^a n^b u^c n^d$ and \mathscr{R}_A collectively represents all terms of Riemann tensor with at least one index, neither 0 nor n

³Peeters (2007), Brewin (2009)

Results

• Implemented CADABRA³ for the calculation and obtained the relation to $O(\Delta \tau^{10})$:

$$\begin{aligned} \tau_{\text{geod}}^2 &= \tau_{\text{acc}}^2 + \frac{1}{12} a^2 \tau_{\text{acc}}^4 + \frac{1}{360} \left(a^4 + 3a^2 \mathscr{E}_n \right) \tau_{\text{acc}}^6 \\ &+ \frac{1}{20160} \left(a^6 + 17a^2 \mathscr{E}_n^2 + 18a^4 \mathscr{E}_n \right) \tau_{\text{acc}}^8 \\ &+ \frac{1}{1814400} \left(a^8 + 81a^6 \mathscr{E}_n + 339a^4 \mathscr{E}_n^2 + 155a^2 \mathscr{E}_n^3 \right) \tau_{\text{acc}}^{10} \\ &+ O(\tau_{\text{acc}}^{12}) + \mathscr{R}_A \end{aligned}$$

Here, $\mathscr{E}_n := R_{0n0n} = R_{abcd} u^a n^b u^c n^d$ and \mathscr{R}_A collectively represents all terms of Riemann tensor with at least one index, neither 0 nor n

• Main observation \rightarrow exact summation to remarkable expression:

$$\tau_{\text{geod}} = \frac{2}{\sqrt{-\mathscr{E}_n}} \sinh^{-1} \left[\sqrt{\frac{-\mathscr{E}_n}{a^2 - \mathscr{E}_n}} \sinh\left(\frac{\sqrt{a^2 - \mathscr{E}_n} \tau_{\text{acc}}}{2}\right) \right] + \mathscr{R}_A$$

³Peeters (2007), Brewin (2009)

Outline

- 1 Introduction and motivation
- 2 Setting up the problem
- 3 Symmetric spaces
- 4 Applications

5 Summary

Application to well known spacetimes

• *Maximally symmetric spacetimes*: $\Re_A = 0$ due to the structure of Riemann tensor,

$$\tau_{\rm geod} = \frac{2}{\sqrt{\Lambda}} \sinh^{-1} \left[\sqrt{\frac{\Lambda}{a^2 + \Lambda}} \sinh\left(\frac{\sqrt{a^2 + \Lambda} \tau_{\rm acc}}{2}\right) \right]$$

For anti-de Sitter spacetime, since $\Lambda < 0$, and for $a^2 > \Lambda$, there will be an upper-bound.

Application to well known spacetimes

• *Maximally symmetric spacetimes*: $\Re_A = 0$ due to the structure of Riemann tensor,

$$\tau_{\rm geod} = \frac{2}{\sqrt{\Lambda}} \sinh^{-1} \left[\sqrt{\frac{\Lambda}{a^2 + \Lambda}} \sinh\left(\frac{\sqrt{a^2 + \Lambda} \tau_{\rm acc}}{2}\right) \right]$$

For anti-de Sitter spacetime, since $\Lambda < 0$, and for $a^2 > \Lambda$, there will be an upper-bound.

Static, Spherically symmetric spacetimes: For motion is t - r plane, number of n and 0 on Riemann tensor, $\Rightarrow \mathscr{R}_A = 0$. Generally, $\nabla R_{abcd} \neq 0$, result will only be approximate.

Outline

- 1 Introduction and motivation
- 2 Setting up the problem
- 3 Symmetric spaces
- 4 Applications

5 Summary

agrees with literature⁴.

The de Sitter and anti-de Sitter results

Twin paradox

Figure: The geometric setup for the problem.

⁴Rindler (1960), Sokolowski (2016)

Twin paradox

 $p_{0} \equiv z^{i}(\tau)$ \mathcal{C} $\mathcal{$

- The de Sitter and anti-de Sitter results agrees with literature⁴.
- Radial motion in Schwarzschild, but there will be variation due to $\nabla_m R_{abcd}$.

⁴Rindler (1960), Sokolowski (2016)

Twin paradox

 $p_{0} \equiv z^{i}(\tau)$ \mathcal{C} $\mathcal{$

- The de Sitter and anti-de Sitter results agrees with literature⁴.
- Radial motion in Schwarzschild, but there will be variation due to $\nabla_m R_{abcd}$.

⁴Rindler (1960), Sokolowski (2016)

Twin paradox

 $p_{0} \equiv z^{i}(\tau)$ \mathcal{C} $\mathcal{$

Figure: The geometric setup for the problem.

- The de Sitter and anti-de Sitter results agrees with literature⁴.
- Radial motion in Schwarzschild, but there will be variation due to $\nabla_m R_{abcd}$.

⁴Rindler (1960), Sokolowski (2016)

Unruh-de Witt detector

 Transition rate which is the time derivative of response function of the detector given by,

$$\dot{\mathcal{F}}(\omega) = 2 \int_0^{\tau'-\tau_0} \mathrm{d}s \operatorname{Re}\left[e^{-i\omega s} G^+(\tau',\tau'-s)\right]$$

⁵Kay (1991), Radzikowski (1996)

Unruh-de Witt detector

 Transition rate which is the time derivative of response function of the detector given by,

$$\dot{\mathcal{F}}(\omega) = 2 \int_0^{\tau'-\tau_0} \mathrm{d}s \operatorname{Re}\left[e^{-i\omega s} G^+(\tau',\tau'-s)\right]$$

• The Wightmann two-point function in a Hadamard state is given by⁵,

$$G^{+}(x,x') = \frac{1}{4\pi^{2}} \left(\frac{\Delta^{\frac{1}{2}}(x,x')}{\sigma_{\epsilon}^{2}(x,x')} + v(x,x') \ln \left[\sigma_{\epsilon}^{2}(x,x') \right] \right)$$

⁵Kay (1991), Radzikowski (1996)

Computation similar to Rindler motion in Minkowski spacetime yields

$$\dot{\mathcal{F}}(\omega;\tau) = \frac{\omega}{2\pi} \left[\exp\left(\frac{\hbar\omega}{[k_{\rm B}T]_{\mathscr{E}_n}}\right) - 1 \right]^{-1} + (\mathscr{R}_A, \nabla R_{abcd} \text{ terms})$$

with $[k_{\mathrm{B}}T]_{\mathscr{E}_n} := \hbar/2\pi\sqrt{a^2 - \mathscr{E}_n}.$

⁶ for dS and AdS see Deser and Levin (1997)

Computation similar to Rindler motion in Minkowski spacetime yields

$$\dot{\mathcal{F}}(\omega;\tau) = \frac{\omega}{2\pi} \left[\exp\left(\frac{\hbar\omega}{[k_{\rm B}T]_{\mathscr{E}_n}}\right) - 1 \right]^{-1} + (\mathscr{R}_A, \nabla R_{abcd} \text{ terms})$$

with $[k_{\mathrm{B}}T]_{\mathscr{E}_n} := \hbar/2\pi\sqrt{a^2 - \mathscr{E}_n}.$

• For spherical symmetric spacetimes, $g^{rr} = -g_{00} = f(r)$,

$$[k_{\rm B}T]_{\mathscr{E}_n} = \frac{\hbar}{2\pi} \sqrt{\left. a^2 - \frac{f''(r)}{2} \right|_{p_0}} + O(\nabla R_{abcd})$$

⁶ for dS and AdS see Deser and Levin (1997)

Computation similar to Rindler motion in Minkowski spacetime yields

$$\dot{\mathcal{F}}(\omega;\tau) = \frac{\omega}{2\pi} \left[\exp\left(\frac{\hbar\omega}{[k_{\rm B}T]_{\mathscr{E}_n}}\right) - 1 \right]^{-1} + (\mathscr{R}_A, \nabla R_{abcd} \text{ terms})$$

with $[k_{\mathrm{B}}T]_{\mathscr{E}_n} := \hbar/2\pi\sqrt{a^2 - \mathscr{E}_n}.$

• For spherical symmetric spacetimes, $g^{rr} = -g_{00} = f(r)$,

$$[k_{\rm B}T]_{\mathscr{E}_n} = \frac{\hbar}{2\pi} \sqrt{a^2 - \frac{f''(r)}{2}}\Big|_{p_0} + O(\nabla R_{abcd})$$

For maximally symmetric spacetimes⁶, with curvature length scale Λ , $\mathcal{E}_n = -\Lambda$

$$[k_{\rm B}T]_{\mathscr{E}_n} = \frac{\hbar}{2\pi}\sqrt{a^2 + \Lambda}$$

⁶ for dS and AdS see Deser and Levin (1997)

Equivalence Principle

Consider a static detector in a static spacetime, with timelike Killing vector, $\xi_a = (-N^2, 0, 0, 0)$.

Equivalence Principle

- Consider a static detector in a static spacetime, with timelike Killing vector, $\xi_a = (-N^2, 0, 0, 0)$.
- Acceleration corresponding to the temperature to which the detector respond is

$$a_{\text{eff}} = \frac{1}{N} \sqrt{\kappa^2 - N^2 \mathscr{E}_n}$$

Here, κ/N is the magnitude of the acceleration of the detector and κ evaluated at horizon is surface gravity is κ_H

Equivalence Principle

- Consider a static detector in a static spacetime, with timelike Killing vector, $\xi_a = (-N^2, 0, 0, 0)$.
- Acceleration corresponding to the temperature to which the detector respond is

$$a_{\text{eff}} = \frac{1}{N} \sqrt{\kappa^2 - N^2 \mathscr{E}_n}$$

Here, κ/N is the magnitude of the acceleration of the detector and κ evaluated at horizon is surface gravity is κ_H

• In $N \rightarrow 0$ limit, the equivalence principle holds.

Introduction and motivation	Setting up the problem	Symmetric spaces	Applications	Summary

But for other observers, the acceleration measured in the local frame will be: $a = \kappa/N$.

Introduction and motivation	Setting up the problem	Symmetric spaces	Applications	Summary

- But for other observers, the acceleration measured in the local frame will be: $a = \kappa/N$.
- For the same observer, the local measurement gives acceleration, κ/N and detector in observer's frame corresponds to acceleration $1/N\sqrt{\kappa^2 N^2 \mathscr{E}_n}$.

Introduction and motivation	Setting up the problem	Symmetric spaces	Applications	Summary

- But for other observers, the acceleration measured in the local frame will be: $a = \kappa/N$.
- For the same observer, the local measurement gives acceleration, κ/N and detector in observer's frame corresponds to acceleration $1/N\sqrt{\kappa^2 N^2 \mathscr{E}_n}$.
- Since $a \neq a_{\text{eff}}$, the observer can distinguish the acceleration and gravitational effects in the local frame, this is at variance with the equivalence principle.

Outline

- 1 Introduction and motivation
- 2 Setting up the problem
- 3 Symmetric spaces
- 4 Applications

Conclusion and summary

- We obtained a semi-analytic expression for the relation between the geodesic and proper time intervals which is analytic.
- It is a combination of hyperbolic functions and depends on acceleration *a* only through the combination $q = \sqrt{a^2 \mathscr{E}_n}$
- The expression gives novel insights into the role of tidal vs. absolute acceleration, which usual Taylor expansion will not give.
- For maximal symmetry, expression is exact and spherical symmetry, result is approximate.
- $\blacksquare Classical \rightarrow differential ageing of twins.$
- Quantum \rightarrow gives a thermal contribution to the *detector response* with a modified *Unruh temperature* $[k_{\rm B}T]_{\mathscr{E}_n} = (\hbar/2\pi)\sqrt{a^2 \mathscr{E}_n}$.
- We also encounter variation from equivalence principle due to the contribution from the tidal part of the curvature.

Thank You !

• For Maximally symmetric spacetime with constant curvature Λ ,

$$R_{abcd} = \Lambda (g_{ac}g_{bd} - g_{ad}g_{bc})$$
$$R_{ab} = D_1\Lambda g_{ab}$$
$$R = DD_1\Lambda$$

↓ back

• For Maximally symmetric spacetime with constant curvature Λ ,

$$\begin{aligned} R_{abcd} &= \Lambda \left(g_{ac} g_{bd} - g_{ad} g_{bc} \right) \\ R_{ab} &= D_1 \Lambda g_{ab} \\ R &= D D_1 \Lambda \end{aligned}$$

↓ back

The bound in anti-de Sitter spacetime is;

$$\tau_{\rm acc} \leq \frac{2}{\sqrt{a^2 - |\Lambda|}} \sinh^{-1} \left[\sqrt{\frac{a^2 - |\Lambda|}{|\Lambda|}} \right] \leq \frac{2}{\sqrt{|\Lambda|}}$$

Hyperbolic motion and Rindler condition

Imposing Serret-Frenet formula to spacetime curves gives;

$$\begin{aligned} \nabla_{\boldsymbol{u}} u^k &= a n^k \; \; ; \; \; \nabla_{\boldsymbol{u}} a = 0 \\ \nabla_{\boldsymbol{u}} n^k &= a u^k \end{aligned}$$

The Rindler conditions immediately help us take care of all covariant derivatives of aⁱ along uⁱ in Eq. 1, since they imply

$$\begin{array}{rcl} (\nabla_{\boldsymbol{u}})^p a^k &=& a^{2p} u^k & (p=1,3,5,\ldots) \\ (\nabla_{\boldsymbol{u}})^p a^k &=& a^{2p-1} n^k & (p=2,4,6,\ldots) \end{array}$$

◀ back

- The Wightmann two-point function for the Hadamard state is given by, $G^+(x, x') := \left\langle \mathsf{H} \middle| \hat{\phi}(x) \hat{\phi}(x') \middle| \mathsf{H} \right\rangle$ where *x* is the coordinate position.
- The projection of this Wightmann function along the accelerated trajectory $G^+(\tau, \tau') = G^+(x, x')$, is used for transition rate.
- The Wightmann two-point function in a Hadamard state is given by,

$$G^{+}(x,x') = \frac{1}{4\pi^{2}} \left(\frac{\Delta^{\frac{1}{2}}(x,x')}{\sigma_{\epsilon}^{2}(x,x')} + v(x,x') \ln \left[\sigma_{\epsilon}^{2}(x,x') \right] \right)$$

where $\Delta(x, x')$ is the VVD, ϵ is a small positive parameter, $\sigma_{\epsilon}^2(x, x')$ is the world function with $i\epsilon$ prescription given as, $\sigma_{\epsilon}^2(x, x') := \sigma^2(x, x') + 2i\epsilon [T(x) - T(x')]$, where T(x) is increasing global time function and v(x, x') is polynomial function of $\sigma^2(x, x')$

▲ back