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m But there’s a catch!!
Tidal acceleration due to background curvature will be ignored.

m This work - Tidal effects on an accelerated probe due to the
background curvature.

= How?
The effects are captured using the relation between the geodesic
distance(A7geoq) and proper time(AT,..) of the trajectory.

B This Tyeod-Tace relation is used to study Unruh-deWitt detectors,
twin paradox and it gives insights into thermal properties
associated with accelerated trajectory.
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Introduction and motivation

s . . EP
Accelerated frames in Minkowski spacetime = to understand
processes in curved spacetime.

But there’s a catch!!
Tidal acceleration due to background curvature will be ignored.

This work - Tidal effects on an accelerated probe due to the
background curvature.

How?
The effects are captured using the relation between the geodesic
distance(A7geoq) and proper time(AT,..) of the trajectory.

This Tgeod-Tacc relation is used to study Unruh-deWitt detectors,
twin paradox and it gives insights into thermal properties
associated with accelerated trajectory.

With the available series expansion, it not clear about the
curvature contribution to this relation.
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Setting up the problem

Setting up the problem

m The accelerated trajectory C(r), 4-velocity

u(7) and a' = V,u’.

u'(7)

=20
t%7; A7)

' Z A,(geodesic)

p=zi(t— A7)

Figure: The geometric setup for the
problem.

for eg. see E. Poisson et al. LLR 14, 7(2011)
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Setting up the problem

m The accelerated trajectory C(r), 4-velocity
u(7) and a' = V,u’.

u'(7)

=20
t%7; A7)

® unique geodesic Ga, with parameter
proper time s.

m Construct Riemann Normal Coordinates! €
(RNC) at po, z%(p) = (As)t*(0; AT) and
t*(0, A7) obeys,

Z A,(geodesic)
p=zi(t— A7)
nabtA‘l(O; AT)?’(O; AT)=-1

. ~a ~a Figure: The geometric setup for the
m Equating 2%(—Tace) = () problem.

(Tgcod)2 - Uabéa(*Tacc)éb(*Tacc)

for eg. see E. Poisson et al. LLR 14, 7(2011)
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and convert all derivative to covariant derivatives
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Setting up the problem

m Assume the solution;

) n sk

ok B " [ d"2

z (T) o Z n! |:d7-n:|
n=0 7=0

and convert all derivative to covariant derivatives
m There are two assumptions:
i) Motion is hyperbolic?.
ii) Derivatives of curvature tensor V; Rapcq are "small”.
m Apply i) and ii), and relate d2?/dr with 4’ and d?2?/dr? with a'.

m Higher derivatives are computed from successive differentiation
of definition of acceleration.

2Rindler (1960)
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Setting up the problem

Results

m Implemented CADABRAS for the calculation and obtained the
relation to O(AT10):

1 1 X
2 _ 2 2_4 4 2 6
geod — Tacc + Sa Tacc + ((1/ +3a é771) Tacc

T 12 360 :
1 6 2 2 4 8
— 17662 + 1846,
+ 55160 (a® +17aE7 + 18a* &) Tave
8 6 4 22 2 @3 10
—_— 1a%&, &2 4 155a%6,
+ 514200 (a® + 81a’é, + 339a* &) + 155a°6))) Tac

+O(122) + %4

b

Here, &, := Ronon = Rapeau®nlun® and Za collectively represents all terms of

Riemann tensor with at least one index, neither 0 nor n.

3 Peeters (2007), Brewin (2009)
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Setting up th

Results

m Implemented CADABRAS for the calculation and obtained the
relation to O(AT10):

acc

7-g2eod acc + E acc + % (a —+ 3a2£n)

(a 4*17&2624%18a4£7) Taee

20160

6 4 02 2 3
+ 1814400 (a +81la’é, + 339a°6,; + 155a <§’n) Tace

+ O( acc) + %A

b

Here, &, := Ronon = Rapequ®nlun® and Z 4 collectively represents all terms of
y rep

Riemann tensor with at least one index, neither 0 nor n

m Main observation — exact summation to remarkable expression:

sinh ™!

2
Tgeod — \/?gn

3 Peeters (2007), Brewin (2009)
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Symmetric spaces

Application to well known spacetimes

m Maximally symmetric spacetimes: %4 = 0 due to the structure of
Riemann tensor,

2 . p Va2 + ATy
Tgeod = \ﬁ sinh 2 sinh —

For anti-de Sitter spacetime, since A < 0, and for a? > A, there
will be an upper-bound.
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Symmetric spaces

Application to well known spacetimes

® Maximally symmetric spacetimes: %4 = 0 due to the structure of
Riemann tensor,

a2+ASlIl B

VA

For anti-de Sitter spacetime, since A < 0, and for a® > A, there
will be an upper-bound.

2 . _
Tgeod = —=sinh !

h <V02+A7acc>]

m Static, Spherically symmetric spacetimes: For motion is ¢ — r plane,
number of n and 0 on Riemann tensor, == %4 = 0. Generally,
V Raped 7 0, result will only be approximate.
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Twin paradox

m The de Sitter and anti-de Sitter results
u') agrees with literature®*.
t%(z; A7)

Po=12(2)

€ ¢ ac(geodesic)

p=7(— A7

Figure: The geometric setup for the
problem.

4Rindler (1960), Sokolowski (2016)
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Twin paradox

m The de Sitter and anti-de Sitter results
u') agrees with literature®.
t%(z; A7)

Po=12(2)

m Radial motion in Schwarzschild, but there
will be variation due to V,,, Raped-

€ 7 p(geodesic) 40| Tgeod [r,

30
p=1zi(t— A7)
— Schwarzschild
20
— Minkowski
— de Sitter
Figure: The geometric setup for the — Anti-de Siter
problem. 10

Tace [r,

5 10 15 20 25 30 35

4Rindler (1960), Sokolowski (2016)
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Unruh-de Witt detector

m Transition rate which is the time derivative of response function
of the detector given by,

Flw)=2 /0 dsRe [e ™G (7', 7/ — 5)]

5Kay (1991), Radzikowski (1996)
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Unruh-de Witt detector

m Transition rate which is the time derivative of response function
of the detector given by,

f(w) = 2/0 dsRe [efi“’SG+(T’, i~ s)]

m The Wightmann two-point function in a Hadamard state is given
by®,

Gt (z,2') = 1 (A +v(z,2) In [0? (2, 2")]

42 \ o2(x,a’)

5Kay (1991), Radzikowski (1996)
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Applications

m Computation similar to Rindler motion in Minkowski spacetime
yields
. ~1
Flw;t) = 2% exp (UfB;}éﬁz> — 1| +(Za,VRupeq terms)

with [kgT)es, = h/2mVa? — &,.

6for dS and AdS see Deser and Levin (1997)
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Applications

m Computation similar to Rindler motion in Minkowski spacetime

yields
—1
f(w;T) = 2% exp (Uth;]éz) —1| +(Za, VRaupeq terms)
with [kpT]s, 1= h/2m\/a% — &,.
m For spherical symmetric spacetimes, ¢"" = —goo = f(r),
T, = 2 |2 = O L 0V Ru)

2
Po

6for dS and AdS see Deser and Levin (1997)
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Applications

m Computation similar to Rindler motion in Minkowski spacetime

yields
-1
f(w;T) = ;T [exp (Uth;]éz) —1| +(Za, VRaupeq terms)
with [kpT]s, 1= h/2m\/a% — &,.
m For spherical symmetric spacetimes, g"™" = —goo = f(7),

710)

92 + O(VRabcd)

Po

m For maximally symmetric spacetimes(’, with curvature length
scale A, &, = —A

h
[k‘BT]gn = ? Va2 +A

™

6for dS and AdS see Deser and Levin (1997)
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Equivalence Principle

m Consider a static detector in a static spacetime, with timelike
Killing vector, £, = (—N?,0,0,0).
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Equivalence Principle

m Consider a static detector in a static spacetime, with timelike
Killing vector, £, = (—N?,0,0,0).

m Acceleration corresponding to the temperature to which the
detector respond is

Geoff = l\//{2 — N2&,

N

Here, x/N is the magnitude of the acceleration of the detector
and « evaluated at horizon is surface gravity is ki

Hari K , IIT Madras Tidal vs absolute acceleration effects on Rindler probes February 2, 2022



Equivalence Principle

m Consider a static detector in a static spacetime, with timelike
Killing vector, £, = (—N?,0,0,0).

m Acceleration corresponding to the temperature to which the
detector respond is

Qoff = i\//@2 — N2&,

N

Here, x/N is the magnitude of the acceleration of the detector
and « evaluated at horizon is surface gravity is kg

m In N — 0 limit, the equivalence principle holds.
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Applications

m But for other observers, the acceleration measured in the local
frame will be: @ = k/N.
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Applications

m But for other observers, the acceleration measured in the local
frame will be: @ = k/N.

m For the same observer, the local measurement gives acceleration,
x/N and detector in observer’s frame corresponds to

acceleration 1/N+/k? — N2&,.

solute acceleration on Rindler probes



Applications

m But for other observers, the acceleration measured in the local
frame will be: @ = k/N.

m For the same observer, the local measurement gives acceleration,
k/N and detector in observer’s frame corresponds to

acceleration 1/N+v/k? — N2&,,.

B Since a # aef, the observer can distinguish the acceleration and
gravitational effects in the local frame, this is at variance with
the equivalence principle.
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Conclusion and summary

m We obtained a semi-analytic expression for the relation between
the geodesic and proper time intervals which is analytic.

m [t is a combination of hyperbolic functions and depends on
acceleration @ only through the combination ¢ = va? — &,

m The expression gives novel insights into the role of tidal vs.
absolute acceleration, which usual Taylor expansion will not
give.

m For maximal symmetry, expression is exact and spherical
symmetry, result is approximate.

m Classical — differential ageing of twins.

®m Quantum — gives a thermal contribution to the detector response
with a modified Unruh temperature [kgT)s, = (h/27)vVa? — &,.

m We also encounter variation from equivalence principle due to
the contribution from the tidal part of the curvature.
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Thank You !
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m For Maximally symmetric spacetime with constant curvature A,

Rabcd = A (gacgbd - gadgbc)
Ray = DiMAgap
R = DDA
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m For Maximally symmetric spacetime with constant curvature A,

Rabcd = A (gacgbd - gadgbc)
Rab = DlAgab
R = DDA

m The bound in anti-de Sitter spacetime is;

2 |A 2
Tace — 2 sinh '/ 1A

<
a® —[A] Al 7 VIA]
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Hyperbolic motion and Rindler condition

m Imposing Serret-Frenet formula to spacetime curves gives;

Vaub = an® ;7 Vaua=0

Vunk au®

m The Rindler conditions immediately help us take care of all
covariant derivatives of a’ along u’ in Eq. 1, since they imply

(Vo)Pa* = a%Pu” (p=1,3,5,..)
(Vo)Pa® = a® Ik (p=24,6,..)
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m The Wightmann two-point function for the Hadamard state is
given by, G* (z,2') := <H ’J)(a:)éﬁ(z’) H> where z is the
coordinate position.

m The projection of this Wightmann function along the accelerated
trajectory G (7,7') = G (x,2'), is used for transition rate.

m The Wightmann two-point function in a Hadamard state is given
by,

T an? \ o2(x, )

Gt (z,2') = ! (Az(x,x’) +v(z,z’) In [a?(m,x’)])

where A(z,2') is the VVD, ¢ is a small positive parameter,
o2 (x,2') is the world function with ie prescription given as,
o%(z,2) = o?(z, ) + 2ie [T(z) — T(z')], where T'(x) is
increasing global time function and v(z, z’) is polynomial
function of o2 (x, z)
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