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Summary



De Sitter spacetime

Maximal analytic extension of the spacetime of inflationary
universe:

ds2 = −dτ2 +
1

H2
cosh2(Hτ)dΩ2 .

dΩ2: the metric on the unit 3-sphere; H: the Hubble constant.

2-dimensional de Sitter spacetime with H = 1:

ds2 = −dτ2 + cosh2 τ dχ2 ,

χ parametrises a circle of radius 1: χ ∼ χ+ 2π. We take
−π < χ ≤ π.
With sinh τ = tanT :

ds2 =
1

cos2 T
(−dT 2 + dχ2) .

−π/2 < T < π/2, −π < χ ≤ π.
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De Sitter spacetime

2D de Sitter spacetime: the hypersurface

−(X0)2 + (X1)2 + (X2)2 = 1(= 1/H2) ,

in 3D Minkowski spacetime with metric

ds2M = −(dX0)2 + (dX1)2 + (dX2)2 .

Figure: from Les Houches Lectures in de Sitter Space by Spradlin,
Strominger and Volovich



De Sitter spacetime

With

X0 = tanT , X1 =
cosχ

cosT
X2 =

sinχ

cosT
,

ds2 =
1

cos2 T
(−dT 2 + dχ2) .

If we let

X0 = sin θ sinh t , X1 = sin θ cosh t , X2 = cos θ , 0 < θ < π .

ds2 = −(dX0)2 + (dX1)2 + (dX2)2

= − sin2 θ dt2 + dθ2 .

Static patch: X1 > 0 and −X1 < X0 < X1.



De Sitter spacetime

With

X0 = tanT , X1 =
cosχ

cosT
X2 =

sinχ

cosT
,

ds2 =
1
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de Sitter spacetime: Carter-Penrose diagram

global: ds2 =
1

cos2 T
(−dT 2 + dχ2) ,−π/2 < T < π/2.

static: ds2 = − sin2 θ dt2 + dθ2 , 0 < θ < π .

The static coordinates cover only Region I.
Region I (Right): (X0, X1, X2) = (sin θ sinh t, sin θ cosh t, cos θ),
X1 > 0, −X1 < X0 < X1.
Region III (Left):
(X0, X1, X2) = (− sin θ sinh t,− sin θ cosh t, cos θ),
X1 < 0, X1 < X0 < −X1.



de Sitter spacetime: Carter-Penrose diagram

global: ds2 =
1
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Thermal state and Euclidean field theory

Quantum (scalar) field theory in static spacetime:

ds2 = −f(x)dt2 + gab(x)dxadxb.

A (possibly mixed) state ρ is uniquely determined by the N -point
functions

∆(x1, x2, . . . , xN ) = Tr {ρT [φ(x1)φ(x2) · · ·φ(xN )]} ,

where ρ =
∑

n,m |m〉ρmn〈n| is a density matrix (i.e. the state)
which is Hermitian, positive and satisfies Trρ = 1.
(Tr Ω =

∑
n〈n|Ω|n〉)



◦ Let t = −itE:

ds2 = f(x)dt2E + gab(x)dxadxb,

and identify the points (tE + β,x) with (tE,x).

◦ The N -point functions can be defined in the Euclidean
quantum field theory:

◦ The propagator ∆(x, y) is the unique Green’s function
satisfying [

−∇a∇a +m2
]

∆(x, y) = δ(x, y) .

◦ The N -point correlation function is calculated by the
usual Feynman rules with this propagator.

◦ The state defined by the N -point functions obtained by
analytic continuation from those in this Euclidean field theory
is a thermal state in the original Lorentzian field theory with
temperature T where β = 1/kBT .



The Hartle-Hawking state in the static patch of de Sitter
spacetime

The metric in the static patch:

ds2 = − sin2 θ dt2 + dθ2 , 0 < θ < π .

Let t = −itE :

ds2 = dθ2 + sin2 θ dt2E . 0 < θ < π .

If we identify tE ∼ tE + 2π, then this is a smooth sphere.

The Hartle-Hawking state is defined as follows:

◦ The N -point correlation functions are defined in the Euclidean
field theory.

◦ The N -point functions in the static patch of de Sitter space is
obtained by analytic continuation.

◦ These N -point functions define a thermal state with inverse
temperature 1/kBT = 2π/H, i.e. kBT = H/2π.
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Static patch → sphere (t = −itE):

X0 = sin θ sinh t , X1 = sin θ cosh t , X2 = cos θ

−→ X0 = −iX0
(E) = −i sin θ sin tE , X1 = sin θ cos tE , X2 = cos θ ,

0 < tE < 2π .

We have the sphere (X0
(E))

2 + (X1)2 + (X2)
2 = 1.

But this sphere can be reached by analytic continuation from the
whole spacetime:

X0 = tanT , X1 =
cosχ

cosT
, X2 =

sinχ

cosT
,

(T = −iT(E))

−→ X0 = −iX0
(E) = −i tanhT(E) , X

1 =
cosχ

coshTE
, X2 =

sinχ

coshT(E)
.
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.



In particular the X0 = 0 circle ((X1)2 + (X2)2 = 1) in de Sitter
spacetime and the equator X0

(E) = 0 ((X1)2 + (X2)2 = 1) of the
Euclidean sphere are the same and include both the Right and Left
Regions:

To find the N -point functions on this circle, there is no need for
analytic continuation. One can simply calculate them in Euclidean
field theory.



Analytic continuation from the Euclidean field theory on the sphere
defines N -point functions on the whole de Sitter spacetime. What
is this state on the whole de Sitter spacetime?

The state in the whole de Sitter spacetime is a pure state (purified
KMS state) with entanglement between the fields in the Regions I
and III such that the state restricted to region I is the thermal
state described before. Jacobson (by path-integral) 1994; Sewell
(by axiomatic field theory) 1982. In this talk I explain this
statement in the context of perturbation theory.



Purified KMS state

Wedge-reflection operator J : (X0, X1)↔ (−X0,−X1)

Region I: (X0, X1, X2) = (sin θ sinh t, sin θ cosh t, cos θ):
field φ(R)(t, θ). (Right)

Region III: (X0, X1, X2) = (− sin θ sinh t,− sin θ cosh t, cos θ):
field φ(L)(t, θ). (Left) [t runs backwards.]

Jφ(R)(t, θ)J = φ(L)(t, θ); Jφ(L)(t, θ)J = φ(R)(t, θ).

The operator J is anti-unitary and J2 = I.



Purified KMS state

|n(R)〉: the energy eigenstates on the Right with eigenvalues En.

|n(L)〉: the energy eigenstates on the Left with eigenvalues En.

J |n(L)〉 = |n(R)〉, J |n(R)〉 = |n(L)〉.

H: The Hamiltonian (energy) operator on the Right.

The purified KMS state with inverse temperature β:

|ΩKMS〉 =
1√

Tr(e−βH)

∑
n(R)

e−βEn/2|n(L)〉 ⊗ |n(R)〉 .

This is a pure state.



|ΩKMS〉 =
1√

Tr(e−βH)

∑
n(R)

e−βEn/2|n(L)〉 ⊗ |n(R)〉 .

If the operator A(R) acts on the Right, then

〈ΩKMS|A(R)|ΩKMS〉

=
1

Tr(e−βH)

∑
n(R),n′(R)

e−β(En+En′ )/2〈n′(R)|A(R)|n(R)〉〈n′(L)|n(L)〉

=
1

Tr(e−βH)

∑
n(R)

e−βEn〈n(R)|A(R)|n(R)〉

=
1

Tr(e−βH)
Tr(e−βHA(R)) .

|ΩKMS〉 gives the thermal state with inverse temperature β on the
Right. We’ll see that the Hartle-Hawking state is |ΩKMS〉.



Purified KMS = Hartle-Hawking

We start from the purified KMS state:

|ΩKMS〉 =
1√

Tr(e−βH)

∑
n(R)

e−βEn/2|n(L)〉 ⊗ |n(R)〉 .

〈ΩKMS|φ(L)(t1, θ1)φ(L)(t2, θ2)φ(R)(t3, θ3)φ
(R)(t4, θ4)|ΩKMS〉

=
1

Tr(e−βH)

∑
n′(R),n(R)

e−β(En+En′ )/2〈n′(L)|φ(L)(t1, θ1)φ(L)(t2, θ2)|n(L)〉

× 〈n′(R)|φ(R)(t3, θ3)φ
(R)(t4, θ4)|n(R)〉

〈n′(L)|φ(L)(t1, θ1)φ(L)(t2, θ2)|n(L)〉
= 〈n′(L)|Jφ(R)(t1, θ1)J

2φ(R)(t2, θ2)J |n(L)〉
= 〈Jn′(R)|Jφ(R)(t1, θ1)φ

(R)(t2, θ2)|n(R)〉 ,

where 〈Jn′(R)| is the adjoint of J |n′(R)〉.
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〈ΩKMS|φ(L)(t1, θ1)φ(L)(t2, θ2)φ(R)(t3, θ3)φ
(R)(t4, θ4)|ΩKMS〉

=
1

Tr(e−βH)

∑
n′(R),n(R)

e−β(En+En′ )/2〈n(R)|φ(R)(t2, θ2)φ
(R)(t1, θ1)|n′(R)〉

× 〈n′(R)|φ(R)(t3, θ3)φ
(R)(t4, θ4)|n(R)〉

=
1

Tr(e−βH)

∑
n′(R),n(R)

e−βEn/2〈n(R)|φ(R)(t2, θ2)φ
(R)(t1, θ1)|n′(R)〉

× e−βEn′/2〈n′(R)|φ(R)(t3, θ3)φ
(R)(t4, θ4)|n(R)〉

=
1

Tr(e−βH)

×Tr[e−βH/2φ(R)(t2, θ2)φ
(R)(t1, θ1)e

−βH/2φ(R)(t3, θ3)φ
(R)(t4, θ4)]



〈ΩKMS|φ(L)(t1, θ1)φ(L)(t2, θ2)φ(R)(t3, θ3)φ
(R)(t4, θ4)|ΩKMS〉

=
1

Tr(e−βH)

× Tr[e−βH/2φ(R)(t2, θ2)φ
(R)(t1, θ1)e

−βH/2φ(R)(t3, θ3)φ
(R)(t4, θ4)]

eiaHφ(R)(t, θ)e−iaH = φ(R)(t+ a, φ)

⇒ eβH/2φ(R)(t1, φ1)e
−βH/2 = φ(R)(t1 − iβ/2, θ)

⇒ φ(R)(t1, φ1)e
−βH/2 = e−βH/2φ(R)(t1 − iβ/2, θ).

〈ΩKMS|φ(L)(t1, θ1)φ(L)(t2, θ2)φ(R)(t3, θ3)φ
(R)(t4, θ4)|ΩKMS〉

=
1

Tr(e−βH)

× Tr[e−βHφ(R)(t2 − iβ/2, θ2)φ(R)(t1 − iβ/2, θ1)
× φ(R)(t3, θ3)φ

(R)(t4, θ4)]



〈ΩKMS|φ(L)(t1, θ1)φ(L)(t2, θ2)φ(R)(t3, θ3)φ
(R)(t4, θ4)|ΩKMS〉

=
1

Tr(e−βH)

× Tr[e−βHφ(R)(t2 − iβ/2, θ2)φ(R)(t1 − iβ/2, θ1)
× φ(R)(t3, θ3)φ

(R)(t4, θ4)]

=
1

Tr(e−βH)

× Tr[e−βHφ(R)(t2 − iπ, θ2)φ(R)(t1 − iπ, θ1)
× φ(R)(t3, θ3)φ

(R)(t4, θ4)]

because β = 2π.



Purified KMS = Hartle-Hawking

For simplicity let t1 = t2 = t3 = t4 = 0 (all points are on the
“equator” and all operators commute). Then, all points are on the
Euclidean sphere as well, so there is no need for analytic
continuation.

〈ΩKMS|φ(L)(0, θ1)φ(L)(0, θ2)φ(R)(0, θ3)φ
(R)(0, θ4)|ΩKMS〉

=
1

Tr(e−βH)

× Tr[e−βHφ(R)(−iπ, θ1)φ(R)(−iπ, θ2)φ(R)(0, θ3)φ
(R)(0, θ4)]



Purified KMS = Hartle-Hawking

〈ΩKMS|φ(L)(0, θ1)φ(L)(0, θ2)φ(R)(0, θ3)φ
(R)(0, θ4)|ΩKMS〉

=
1

Tr(e−βH)

× Tr[e−βHφ(R)(−iπ, θ1)φ(R)(−iπ, θ2)φ(R)(0, θ3)φ
(R)(0, θ4)]

Right: (X1, X2) = (sin θ cosh t, cos θ).
Left: (X1, X2) = (− sin θ cosh t, cos θ).

◦ The left-hand side is the 4-point function in |ΩKMS〉 with the
points at (X1, X2) = (− sin θ1, cos θ1), (− sin θ2, cos θ2),
(sin θ3, cos θ3), (sin θ4, cos θ4);

◦ The right-hand side is the 4-point function computed in
Euclidean field theory with the points at (X1, X2) =
(sin θ1 cosh(−iπ), cos θ1), (sin θ2 cosh(−iπ), cos θ2),
(sin θ3, cos θ3), (sin θ4, cos θ4).

Since cosh(−iπ) = cos(−π) = −1, the points are the same. Thus,
|ΩKMS〉 is the Hartle-Hawking state.



Summary

◦ One obtains a sphere by letting the time be imaginary for
de Sitter spacetime.

◦ The Hartle-Hawking state in de Sitter spacetime for
interacting scalar field theory is a state with the N -point
function obtained by analytically continuing those in the
Euclidean field theory on the sphere.

◦ The Hartle-Hawking state is the purified KMS state, which is
a pure state with entanglement between the two static
patches and which gives the thermal state with temperature
H/2π in the static patches.
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