S CENTRE for THEORETICAL SCIENCES

SIMULATING EXTREME SPACETIMES

Black holes, neutron stars, and beyond ...

Numerical Relativity for Gravitational-Wave Astronomy: the Past, Present & Future!

Prayush Kumar International Center for Theoretical Sciences

Chennai Symposium on Gravitation and Cosmology February 4, 2022

Centre for Strings, Gravitation and Cosmology, Department of Physics, Indian Institute of Technology Madras, Chennai Chennai Mathematical Institute, Chennai The Institute of Mathematical Sciences. Chennai

I. Why Numerical Relativity at all?

Gravitational Waves!

- Orbiting systems of stars evolve into binary black holes. They emit gravitational waves and lose orbital energy.
- Orbits keeps tightening till the black holes collide. Remnant is also a black hole.
- Remnant black hole is very distorted at birth. It emits gravitational waves and settles down to a quiescent state.

GW observations: these black holes are heavy!

Massive binaries → Strong-field nonlinear general relativistic dynamics becomes measurable!

Role of Numerical Relativity

Numerical simulations are **necessary** for BBH science

For BBH, last ~10 orbits, merger and ringdown, can only be computed with full numerical solutions of Einstein's equations.

Without Numerical Relativity:

- GW events like GW150914, GW151226, GW170104 - would have had much lower significance ("probable" vs "confident" detection)
- If GW150914's source merged 25% further away, it would not even have been detected in Livingston
- We would only very approximately determine black hole characteristics from the GW signal
- We could not have tested GR

Image credit: Harald Pfeiffer, SXS Collaboration; Abbott ..PK..et al (2016), Phys. Rev. Lett. **116**, 061102;

II. Simulating Compact Binary Coalescence

GR and Einstein's Equations

• Newtonian gravity: Flat Space-time

$$\vec{\nabla}^2 \Phi = 4\pi G\rho \qquad \vec{a} = -\vec{\nabla} \Phi$$

• Einsteinian gravity:

(i) Curved space-time

(ii) Geometry represented by the space-time metric $g_{ab}(\vec{x},t)$, $a,b = \{x,y,z,t\}$. Metric is determined by solving Einstein Field Equations

$$R_{ab}[g_{ab}(ec{x},t)]=0, \qquad a,b=0,\dots 3$$

$$R_{ab} = \sum_{d=0}^{3} \partial_d \Gamma^d_{ab} - \sum_{d=0}^{3} \partial_b \Gamma^d_{da} + \sum_{c,d=0}^{3} \Gamma^c_{cd} \Gamma^d_{ab} - \sum_{c,d=0}^{3} \Gamma^d_{bc} \Gamma^c_{da}$$

$$\Gamma^a_{bc} = \sum_{d=1}^4 (g_{ad})^{-1} \left(\partial_b g_{db} + \partial_c g_{bd} - \partial_d g_{bc}
ight)$$

The Two-Body Problem in Geometrodynamics

SUSAN G. HAHN

International Business Machines Corporation, New York, New York

AND

RICHARD W. LINDQUIST

100 kFlops*

The numerical calculations were carried out on an IBM 7090 electronic computer. The parameters a and μ_0 were both set equal to unity; the mesh lengths were assigned the values $h_1 = 0.02$, $h_2 = \pi/150 \approx 0.021$, yielding a 51×151 mesh. The calculations of all unknown functions, including a great number of input-output operations and some built-in checking procedures, took approximately four minutes per time step. Different check routines indicated that results close to the point $\mu = 0$, $\eta = 0$ lost accuracy fairly quickly. Since these would, in the long run, influence meshpoints further away, the computations were stopped after the 50th time step, when the total time elapsed was approximately 1.8. Some of the results are shown in Table I.

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius^{1,2,*}

¹Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA ²Department of Physics, University of Alberta, Edmonton, AB T6G 2J1 Canada

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius^{1,2,*}

¹Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA ²Department of Physics, University of Alberta, Edmonton, AB T6G 2J1 Canada

Solving Einstein Equations: 3+1 split

•

Solving Einstein Equations: 3+1 split

• Goal: Space-time metric g_{ab} satisfying

 $R_{ab}[g_{ab}] = 0$

- Split space-time into space and time
- **Evolution equations**

 $\partial_t g_{ij} = \dots$ $\partial_t K_{ij} = \dots$ Snapshots of evolution domain at different times

Constraints

 $egin{aligned} R[g_{ij}]+K^2-K_{ij}K^{ij}&=0\
onumber\
onumber$

14

Solving Einstein Equations: 3+1 split

• Goal: Space-time metric g_{ab} satisfying

 $R_{ab}[g_{ab}] = 0$

- Split space-time into space and time
- **Evolution equations**

 $\partial_t g_{ij} = \dots$ $\partial_t K_{ij} = \dots$ Snapshots of evolution domain at different times

Constraints

 $egin{aligned} R[g_{ij}]+K^2-K_{ij}K^{ij}&=0\
onumber\
onumber$

Solving Einstein Equations: 3+1 split

• Goal: Space-time metric g_{ab} satisfying

 $R_{ab}[g_{ab}] = 0$

• Split space-time into space and time

Evolution equations

$$\partial_t \boldsymbol{g}_{ij} = \dots$$

 $\partial_t \boldsymbol{K}_{ij} = \dots$

Snapshots of evolution domain at different times t=T3

Constraints

 $egin{aligned} R[g_{ij}]+K^2-K_{ij}K^{ij}&=0\
onumber\
abla_j\left(K^{ij}-g^{ij}K
ight)&=0 \end{aligned}$

Maxwell's equations

$$\partial_t \vec{E} = \nabla \times \vec{B}$$

 $\partial_t \vec{B} = -\nabla \times \vec{E}$
 $\nabla \cdot \vec{E} = 0$
 $\nabla \cdot \vec{B} = 0$

Goals: What makes it challenging

Multiple length/time scales, Courant limit, Accuracy required

1. Multiple length scales:

- Size of BH ~ O(1M)
- Separation ~ O(10M)
- Wavelength λ_{GW} ~ O(100M)
- Wave extraction ~ several λ_{GW}
- GW flux, that drives the inspiral, is small:

$$\dot{E}/E \sim 10^{-5}$$

Goals: What makes it challenging Multiple length/time scales, Courant limit, Accuracy required

- 1. Multiple length/time scales
- 2. Which coordinates to use (for a spacetime one doesn't know yet)?
- 3. Putting Black holes (singularity) on a grid
- 4. Einstein constraints grew exponentially: for many years decades
- 5. Resolving shocks (discontinuities)
- 6. Computational Challenges:
- 20–50 variables
- Global timestep too small
- Computing efficiency

7. High accuracy required by LIGO:

• Absolute phase error << 1 rad / 20+ orbits

Goals: What makes it challenging Multiple length/time scales, Courant limit, Accuracy required

- 1. Multiple length/time scales
- 2. Which coordinates to use (for a spacetime one doesn't know yet)?
- 3. Putting Black holes (singularity) on a grid
- 4. Einstein constraints grew exponentially: for many years decades
- 5. Resolving shocks (discontinuities)
- 6. Computational Challenges:
- 20–50 variables
- Global timestep too small
- Computing efficiency
- 7. High accuracy required by LIGO:
- Absolute phase error << 1 rad / 20+ orbits

But, in vacuum, solutions are smooth ⇒ Spectral methods

Spectral Einstein Code (SpEC*)

Goal: Solve Einstein's equations to enable robust gravitational-wave science

In development since 2002

650,000 lines, 130 publications

Brief timeline of developments:

2005, Pretorius:

First BBH merger

2006, Goddard group & UBT group: BBH mergers with different formulation

2007, BBH mergers with SpEC code: Now leading code to provide waveforms for LIGO

SpEC: (non-local) Spectral discretization

Evolution quantities are smoothly varying.

Expand them in basis-functions, solve for coefficients

$$u(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi_k(x)$$

• Compute spatial derivatives *exactly*

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$

Compute nonlinearities in physical space

Spectral

Finite differences

Goals: What makes it challenging Multiple length/time scales, Courant limit, Accuracy required

- 1. Multiple length/time scales ⇒ Adaptive Meshes
- 2. Which coordinates to use (for a spacetime one doesn't know yet)?

⇒ Gen. Harmonic

- 3. Putting Black holes (singularity) on a grid ⇒ Excision
- 4. Einstein constraints grew exponentially ⇒ Modified evolution system
- 5. Resolving shocks (discontinuities)
- 6. Computational Challenges
- 7. High accuracy required by LIGO

- ⇒ Duplicate Mesh
- ⇒ Spectral methods
- ⇒ Spectral methods,
 - Optimizations

III. Results

Early Waveforms with SpEC: 2007

First open-access catalog of simulations: 2013

In 2013, first catalog of 174 SpEC simulations was made open-access: https://www.blackholes.org/wavefor <u>ms/</u>

FIG. 3: Waveform polarizations $(r/M)h_+$ (blue) and $(r/M)h_{\times}$ (orange) in a sky direction parallel to the initial orbital plane of each simulation. The unit of the time axis corresponds to 1000M = 0.1s for binaries with total mass $M = 20M_{\odot}$.

BBH Simulation: GW150914

And more ...: 2016

In 2016, another catalog of 95 simulations was made open-access: <u>https://www.black-h</u> oles.org/waveforms/

Figure 2. Waveforms computed by CCE plotted as a function of time in units of 1000M. Plotted are gravitational wave strains rh/M emitted in a sky direction parallel to the orbital plane of each simulation. All modes through l = 8 are summed over, except the non-oscillatory m = 0 modes. The waveforms are labeled by their SXS catalog numbers in bold, and the BBH parameters q, χ_1, χ_2 .

Chu, Fong, PK, et al, Class. Quant. Grav. Vol 33, No 16 (2016)

And more ...: 2018

Shortly, another major release of ~1000 simulations was made: https://www.black -holes.org/wavefo rms/

And more ...: 2019

Broken one barrier: Stability

[Hz^{-1/2}]

 $|\tilde{h}_{22}(f)|f^{1/2}$

0.20

0.15

0.10

.22

10

10⁻²³

q=6

q=7

Buchman et al. '12

new long simulation

Due to AMR, and better control systems, we can now perform longer stable simulations: O(10¹⁻²) orbits.

Accuracy & Cost

Figure: APS 2018 Talk by Catherine Woodford for SXS; PK (unpublished)

IV. Applications to GW Astronomy

NR-based Waveform Models

<u>All</u> waveform models used to infer astrophysical information from LIGO-Virgo's observations are calibrated to SpEC simulations, in addition to simulations from other NR groups

Parameter estimation with NR

Large heterogeneous set of 1100+ numerical simulations from SXS/RIT/GT/BAM.

Both aligned-spin & precessing-spin

Black / Blue / Red: Models

260

240

220

200

180

Searches with NR: large BBH spins

Testing General Relativity

Q. Is the inspiral portion of a GW signal consistent with its merger, as predicted by GR?

 \Rightarrow We compare the mass \mathbf{M}_{f} & spin \mathbf{a}_{f} of the post-merger BH computed from either portion, for consistency

(m₁, m₂) from inspiral **mapped** to (M_f, a_f). This mapping comes from NR catalogs.

V. Future: Scaling up!

Goals: What made it challenging Multiple length/time scales, Courant limit, Accuracy required

- 1. Multiple length/time scales
- 2. Which coordinates to use (for a spacetime one doesn't know yet)?
- 3. Putting Black holes (singularity) on a grid
- 4. Einstein constraints grew exponentially
- 5. Resolving shocks (discontinuities)
- 6. Computational Challenges
- 7. High accuracy required by LIGO

What still makes it challenging

1. Multiple length/time scales

- 2. Which coordinates to use (for a spacetime one doesn't know yet)?
- 3. Putting Black holes (singularity) on a grid
- 4. Einstein constraints grew exponentially
- 5. Resolving shocks (discontinuities)
- 6. Computational Challenges
- 7. High accuracy required by LIGO

Back to the drawing board

- 1. Multiple scales
- 2. Computational Challenges
- 3. Shocks
- 4. High accuracy

- <u>Discretization scheme</u> that:

 a. is local at high order
 b. can handle discontinuities
 c. amenable to inhomogeneous grid

 <u>Parallelization scheme</u> that can scale, and use all computing available
- <u>Local time-stepping</u> to handle multiple time scales

Discretization: Discontinuous Galerkin (DG)

Spectral Methods	Local at low-order		
	Local at high-order		
	Handle discontinuities	¥	
	Inhomogeneous grids		

	Local at low-order	
	Local at high-order	¥
	Handle discontinuities	
	Inhomogeneous grids	

Discretization: Discontinuous Galerkin (DG)

• Solution expanded on a local basis

Discretization: Discontinuous Galerkin (DG)

Local time-stepping

- Evolve the solution in time depending on the local needs
- No wastage of computing due to one corner with high-frequency activity

Local time-stepping

- Evolve the solution in time depending on the local needs
- No wastage of computing due to one corner with high-frequency activity

Parallelization scheme: MPI Domain based

- Allocate one domain element per core
- Use MPI

task 0		
task 1		
task 2		
task 4		
work	time	-

⇒ ...terrible terrible idea for systems with length scales that span several orders of magnitude!

Parallelization scheme: Task-based

- Divide computation by tasks, not physical domain
- Make communication of data between elements also a task
- Communication-cost hidden behind computation

SpECTRE: scaling

- SpECTRE aims to combine the high-order accuracy of spectral methods with the local nature of finite-volume/element methods
- Future proof: Computing efficiently scales to ~600, 000 cores. Future proof: exascale computing!

Summary

- Numerical simulations of black hole binaries' coalescence is key to extracting scientific information from LIGO's observation of black hole binaries
- NR simulations contribute to GW science through waveform models. More recently, they have also been used directly to analyze GW data.
- **SpEC** is a flexible infrastructure for solving partial differential equations using multi-domain spectral methods
- **Spectre** is a radically forward-looking computational (astro)physics code that adopts cutting-edge computing paradigms that will enable exascale computing:
 - DG-FEM discretization
 - Local time-stepping
 - Task-based parallelism
- Einstein/MHD equations implemented. Boundary treatment nearly complete. Working on control systems!
- Spectre is open-source → <u>https://github.com/sxs-collaboration/spectre</u>

Thank You for Listening!

Questions?

