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I. Why Numerical Relativity at all?
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Gravitational Waves!

3Image credit: Kavli Foundation, LSC;
https://cqgplus.files.wordpress.com;

• Orbiting systems of stars evolve 
into binary black holes. They 
emit gravitational waves and 
lose orbital energy.

• Orbits keeps tightening till the 
black holes collide. Remnant is 
also a black hole.

• Remnant black hole is very 
distorted at birth. It emits 
gravitational waves and settles 
down to a quiescent state.

https://cqgplus.files.wordpress.com/


GW observations: these black holes are heavy!
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Massive binaries ➔ Strong-field nonlinear general 
relativistic dynamics becomes measurable!

Decreasing 
binary mass
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Numerical simulations are necessary for BBH science
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Image credit: Harald Pfeiffer, SXS Collaboration;
Abbott ..PK..et al (2016), Phys. Rev. Lett. 116, 061102;

For BBH, last ~10 orbits, merger and 
ringdown, can only be computed with full 
numerical solutions of Einstein’s equations.

Without Numerical Relativity:
• GW events like GW150914,GW151226, 

GW170104 - would have had much lower 
significance (“probable” vs “confident” 
detection)

• If GW150914’s source merged 25% further 
away, it would not even have been 
detected in Livingston

• We would only very approximately 
determine black hole characteristics from 
the GW signal

• We could not have tested GR
60 - 90 Mʘ

60 - 70 Mʘ

GW150914 
parameter 
estimation



II. Simulating Compact Binary Coalescence
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GR and Einstein’s Equations
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• Newtonian gravity:
Flat Space-time

• Einsteinian gravity:

(i) Curved space-time

(ii) Geometry represented by the 
space-time metric                  , a,b = { x,y,z,t }. 

Metric is determined by solving Einstein 
Field Equations 
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100 kFlops*

* https://en.wikipedia.org/wiki/IBM_7090
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Solving Einstein Equations: 3+1 split
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• Goal: Space-time metric  gab satisfying

• Split space-time into  space and time

Evolution equations

Constraints
Ti
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Snapshots of 
evolution 

domain at 
different times
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• Goal: Space-time metric  gab satisfying

• Split space-time into  space and time

Evolution equations

Constraints
Maxwell’s equations

Ti
m

e 

Space

Snapshots of 
evolution 

domain at 
different times

Solving Einstein Equations: 3+1 split



Goals: What makes it challenging
 Multiple length/time scales, Courant limit, Accuracy required
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1. Multiple length scales:

• Size of BH ~ O(1M)

• Separation ~ O(10M)

• Wavelength λGW ~ O(100M)

• Wave extraction ~ several λGW 

• GW flux, that drives the inspiral, is small:



Goals: What makes it challenging
 Multiple length/time scales, Courant limit, Accuracy required

17

1. Multiple length/time scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially: for many years decades

5. Resolving shocks (discontinuities)

6. Computational Challenges:
• 20–50 variables
• Global timestep too small
• Computing efficiency

7. High accuracy required by LIGO:

• Absolute phase error <<  1 rad / 20+ orbits
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1. Multiple length/time scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially: for many years decades

5. Resolving shocks (discontinuities)

6. Computational Challenges:
• 20–50 variables
• Global timestep too small
• Computing efficiency

7. High accuracy required by LIGO:

• Absolute phase error <<  1 rad / 20+ orbits

But, in vacuum, solutions are smooth   

⇒  Spectral methods



Spectral Einstein Code (SpEC*)
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Goal: Solve Einstein’s equations to enable robust gravitational-wave science

In development since 2002

650,000 lines,  130 publications

Brief timeline of developments:

2005, Pretorius:                                          First BBH merger

2006, Goddard group & UBT group:  BBH mergers with different formulation

2007, BBH mergers with SpEC code: Now leading code to provide waveforms for LIGO

* http://www.black-holes.org/

Simulations of Extreme Spacetimes (SXS) collaboration



SpEC: (non-local) Spectral discretization
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Evolution quantities are smoothly varying.

• Expand them in basis-functions, solve for 
coefficients

• Compute spatial derivatives exactly

• Compute nonlinearities in physical space

Spectral

Finite differences



Goals: What makes it challenging
 Multiple length/time scales, Courant limit, Accuracy required
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1. Multiple length/time scales                               ⇒ Adaptive Meshes

2. Which coordinates to use (for a spacetime one doesn’t know yet)? 

                                                                                            ⇒ Gen. Harmonic 

3. Putting Black holes (singularity) on a grid ⇒ Excision

4. Einstein constraints grew exponentially    ⇒ Modified evolution system

5. Resolving shocks (discontinuities)                 ⇒ Duplicate Mesh

6. Computational Challenges                               ⇒ Spectral methods

7. High accuracy required by LIGO                     ⇒ Spectral methods, 

                                                                                                Optimizations



III. Results
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Early Waveforms with SpEC: 2007

Boyle et al, Phys.Rev.D76:124038, (2007)

Einstein constraints 
under control

Simulation Accuracy
__

__
__

__
__

__
_

Equal-mass, non-spinning, 15 orbits



First open-access catalog of simulations: 2013
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Mroue et al, Phys. Rev. Lett. 111, 241104 (2013) 

In 2013, first 
catalog of 174 

SpEC simulations 
was made 

open-access: 
https://www.black-
holes.org/wavefor

ms/

https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/


BBH Simulation: GW150914
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http://www.youtube.com/watch?v=c-2XIuNFgD0


And more …: 2016
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Chu, Fong, PK, et al, Class. Quant. Grav. Vol 33, No 16 (2016)

2013

In 2016, another 
catalog of 95 

simulations was 
made open-access: 

https://www.black-h
oles.org/waveforms/

https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/


And more …: 2018
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APS 2018 Talk by Catherine Woodford for SXS

2013

Shortly, another 
major release of 

~1000 simulations 
was made: 

https://www.black
-holes.org/wavefo

rms/
2017: 345
2018: 1400+

https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/


And more …: 2019
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Class.Quant.Grav. 36 (2019) 19, 195006

2013

Shortly, another 
major release of 

~2000 simulations 
was made: 

https://www.black
-holes.org/wavefo

rms/
2017: 345
2018: 1400+

https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
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Broken one barrier: Stability

Szilagyi et al, PRL 115, 031102 (2015);
PK, et al, Phys. Rev. D 92, 102001 (2015)

Due to AMR, and better control systems, we can now 
perform longer stable simulations: O(101-2) orbits. 

q = 7, non-spinning, 180 orbits!

 

Orbital phase tracking : 
better than 1 rad over 

1000+ rads of evolution



Accuracy & Cost
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Simulation Accuracy:

NR errors at 0.1% level

Computational cost: 
(1-2) x 20,000  CPU-hours (~20 orbits)

Cost can vary depending on 
length/accuracy requirement & black hole 

parameters

Physical time

Physical time

M
1 / M

2 =1.2; |S
1 | = |S

2 | = 0.85

⇒ Simulation errors small 
enough for LIGO Science

Figure: APS 2018 Talk by Catherine Woodford for SXS; PK (unpublished)



IV. Applications to GW Astronomy
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Spinning-Precessing

NR-based Waveform Models
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Pan et al, Phys. Rev. D 84, 124052 (2011)

Pan et al, Phys. Rev. D 89, 084006 (2014)

All waveform models used to infer astrophysical information from LIGO-Virgo’s 
observations are calibrated to SpEC simulations, in addition to simulations 

from other NR groups

Aligned-Spinning

Non-Spinning

Bohé, ..PK.. et al, Phys. Rev. D 95, 044028 (2017)

Eccentric

Huerta, ..PK.. et al, Phys. Rev. D 97, 024031 (2018)



Phys. Rev. D 94, 064035 (2016);  Phys. Rev. D 96, 104041 (2017)

Key:
● Green solid [dashed] contour -

NR with l = 2 [l <= 3] modes
● Black / Blue / Red: Models

Mtotal (M☉
)
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Parameter estimation with NR

Large heterogeneous set of 1100+ numerical 
simulations from SXS/RIT/GT/BAM. 

Both aligned-spin & precessing-spin

Post-merger BH mass/spin

Mtotal (M☉
)

GW150914 GW170104



M > 40 Mʘ   &   q <= 8  &  -1 <= χeff <= +0.75

This shows the 
performance of an 
NR-only spinning bank 
for the O1 noise curve

PRELIMINARY
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GW150914

GW170104

GW170814

Searches with NR: large BBH spins

PK et al (unpublished)



Testing General Relativity
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LIGO-Virgo Collaborations, arxiv:1602.03841 (2016)

Q. Is the inspiral portion of a GW signal 
consistent with its merger, as predicted 
by GR?

⇒ We compare the mass Mf & spin af of 
the post-merger BH computed from 
either portion, for consistency

(m1 , m2) from inspiral mapped to 
(Mf , af). This mapping comes 

from NR catalogs.

(Mf , af) from post-inspiral 
signal



V. Future: Scaling up!
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Goals: What made it challenging
 Multiple length/time scales, Courant limit, Accuracy required
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1. Multiple length/time scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially

5. Resolving shocks (discontinuities)

6. Computational Challenges

7. High accuracy required by LIGO



What still makes it challenging
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1. Multiple length/time scales

2. Which coordinates to use (for a spacetime one doesn’t know yet)?

3. Putting Black holes (singularity) on a grid

4. Einstein constraints grew exponentially

5. Resolving shocks (discontinuities)

6. Computational Challenges

7. High accuracy required by LIGO

Szilagyi et al (2014); Foucart et al (2016)



Back to the drawing board
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1. Discretization scheme that:
a. is local at high order
b. can handle discontinuities
c. amenable to 

inhomogeneous grid

2. Parallelization scheme that can 
scale, and use all computing 
available

3. Local time-stepping to handle 
multiple time scales

1. Multiple scales
2. Computational 

Challenges
3. Shocks
4. High accuracy

Szilagyi et al (2014); Foucart et al (2016)
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Discretization: Discontinuous Galerkin (DG)

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)
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● Solution expanded on a local basis

 

Discretization: Discontinuous Galerkin (DG)

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)
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● Solution expanded on a local basis
● Exponential convergence in smooth regions
● … and formulation allows “arbitrary” fluxes ⇒ 

can handle shocks!

 

Local at 
low-order

Local at 
high-order

Handle 
discontinuities

Inhomogeneous 
grids

Discretization: Discontinuous Galerkin (DG)

Images adapted from: Francois Hebert (Caltech), Allan P. Engsig-Karup (TU Dresden)



● Evolve the solution in time depending on the local needs
● No wastage of computing due to one corner with high-frequency activity
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Local time-stepping

Szilagyi et al (2014)



● Evolve the solution in time depending on the local needs
● No wastage of computing due to one corner with high-frequency activity

44
PC: Throwe and Teukolsky

Local time-stepping
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Parallelization scheme: MPI Domain based

● Allocate one domain element per 
core

● Use MPI

⇒ ...terrible terrible idea for systems 
with length scales that span several 
orders of magnitude!

Szilagyi et al (2014).



● Divide computation by tasks, not physical domain
● Make communication of data between elements also a task
● Communication-cost hidden behind computation
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Parallelization scheme: Task-based

Kidder et al (2016); Stark et al (2014).



47

SpECTRE: scaling

● SpECTRE aims to combine the high-order accuracy of spectral methods with the 
local nature of finite-volume/element methods

● Future proof: Computing efficiently scales to ~600, 000 cores. Future proof: 
exascale computing!

Current codes

Kidder et al (2016);



Summary
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• Numerical simulations of black hole binaries’ coalescence is key to extracting 
scientific information from LIGO’s observation of black hole binaries

• NR simulations contribute to GW science through waveform models. More recently, 
they have also been used directly to analyze GW data.

• SpEC is a flexible infrastructure for solving partial differential equations using 
multi-domain spectral methods

• Spectre is a radically forward-looking computational (astro)physics code that adopts 
cutting-edge computing paradigms that will enable exascale computing: 

○ DG-FEM discretization
○ Local time-stepping
○ Task-based parallelism

• Einstein/MHD equations implemented. Boundary treatment nearly complete. 
Working on control systems!

• Spectre is open-source → https://github.com/sxs-collaboration/spectre

https://github.com/sxs-collaboration/spectre


Thank You for Listening!

Questions?
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