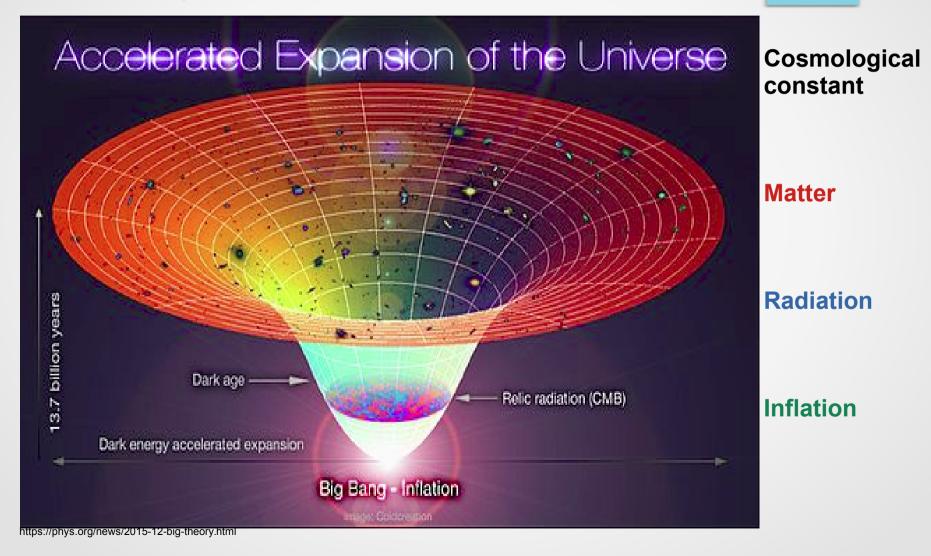
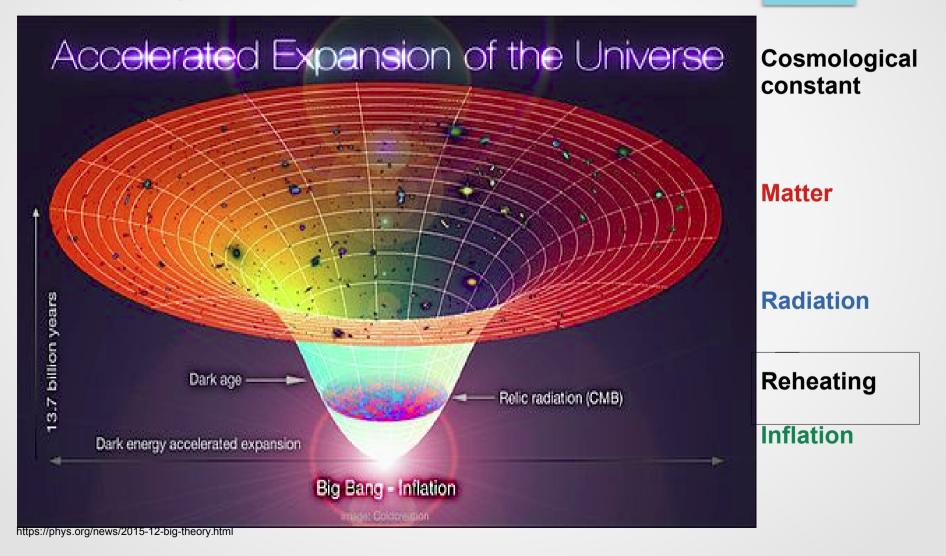
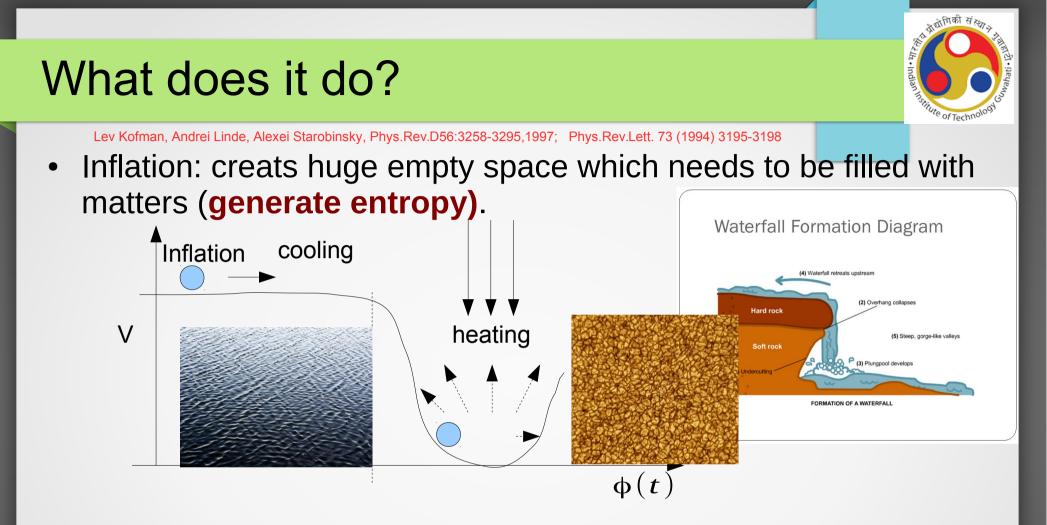
Gravitational reheating and its observable effects

Second Chennai Symposium on Gravitation and Cosmology February 2-5, 202


Debaprasad Maity@IIT Guwahati, India

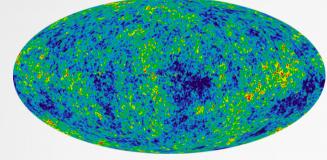
How the present state of our universe has been created?

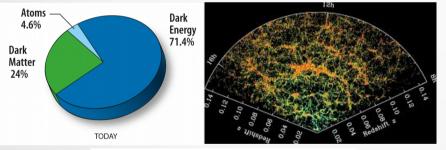

Time evolving cosmos


Based on large number of observations

Time evolving cosmos

Based on large number of observations


Conventional Reheating mechansim: Non-perturbative, Perturbative decay of inflaton,


From the observational perspective little attention has been paid: Difficulties: Equilibriation processes assumed to erase information, large possibilities of inflaton decay channels, difficult to identify observables and observe the phase

Given the inflationary phase: What do we observe today?

P.A.R Ade et. al. ArXiv:1502:01589 Extremely homogeneous Universe Many more...

Reheating gives us right proportion of all these and this information must be imprinted into Background+fluctuation that we see today in some way

Background + Fluctuations of all fundamental fields but not inflaton

Scalar type

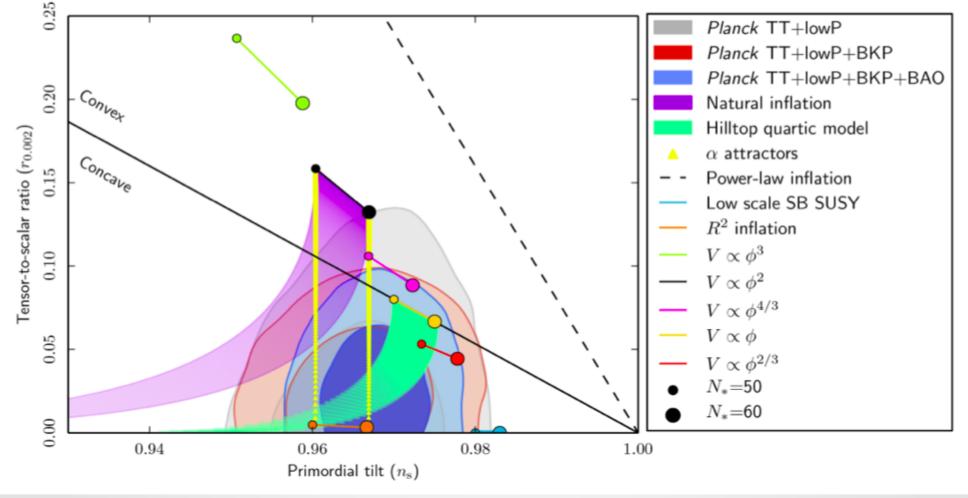
CMB

DM

PGW

Density(curavature) fluctuations, Dark Matter, Dark energy...

FermionType Baryonic Matter, Dark matter ?


Vector type

Primordial Large scale Magnetic field, EM radiation...

Tensor type Primodial Graviational wave(PGW), Higher spin, Kalb Ramond...

Where do we stand?

P. A. R Ade et. al. ArXiv:1502:01589

Planck-2015

Questions and Plan

- **1.** Reheating happens, Inflaton energy transfered into all the visible fields such that we obtain present state of the universe
- **2.** Such information must be imprinted into Back ground+fluctuation that we see today in some way.
- **Questions:** Where and how such information are imprinted?

How do we proceed to identify that?

This will help us resolve DM puzzle, Baryogenesis ...

- Gravitational reheating set up
- Predictions and constraints
- Conclusions

Reheating phenomenology

Usual approach:(preheating) Through
 parametric resonance +

Perturbative decay

$$\sim \alpha_1 \phi S^3, \alpha_2 \phi^2 S^2, \alpha_3 \phi \overline{f} f \dots$$

Many parameters to look for observables

Gravitational decay

$$\sim \frac{1}{M_P} h_{\mu\nu} T_i^{\mu\nu}, i=S, f, X, \phi$$

Universal in nature

 Gravitational decay channel was always ignored because of obvious reason. Actually no body has studied it before!!

Can gravitational decay reheat the universe?

How do we realise such scenario and why?

Vhy?
$$\sim \alpha_1 \phi S^3, \alpha_2 \phi^2 S^2, \alpha_3 \phi \overline{f} f, \alpha_4 \phi^3 S...$$

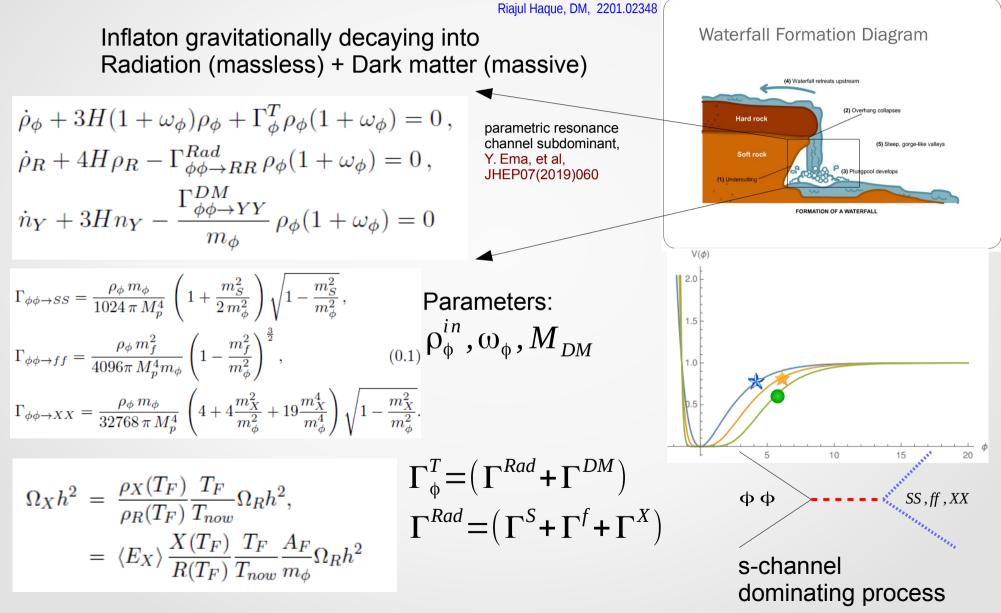
Universal reheating dynamics:

$$\sim \frac{1}{M_P} h_{\mu\nu} T_i^{\mu\nu}, i = S, f, X, \phi$$
$$\alpha_i = 0$$

observables

Too many unknown

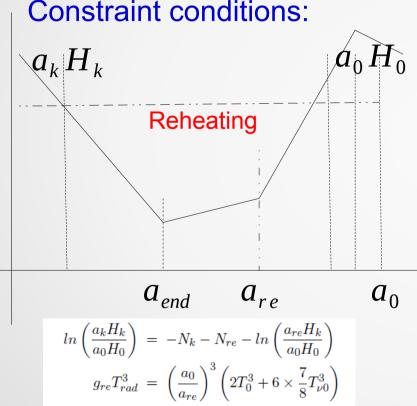
parameters to look for


⁹ of Techn

How?

- Z_2 Symmetry: $Z\phi = -\phi$; $Z\psi_{visible} = \psi_{visible}$ $\alpha_2\phi^2S^2$
- Shift symmetry, (inflation is guided by shift symmetry): $\frac{\beta_5}{M_P} \partial_{\mu} \phi \partial^{\mu} SS$
- Assuming: Z_2 and shift symmetry $\frac{1}{M_p^2} S^2 \partial_{\mu} \phi \partial^{\mu} \phi$

Gravitational reheating



Initial conditions and constraints

L. Dai, M. Kamionkowski and J. Wang, PRL. 113, 041302 (2014), J. L. Cook, etal JCAP 1504 (2015) 047; J. Ellis etal, JCAP 1507 (2015,, 050; Y. Ueno and K. Yamamoto, PRD 93 (2016) 083524; M. Eshaghi etal, PRD 93 (2016), 123517, A. Di Marco, etal, PRD 95 (2017),, 103502, S. Bhattacharya etal, PRD 96 (2017), 083522, DM, arXiv:1709.00251; DM, P. Saha, PRD 2018, ...

Unique Initial conditions:

$$\rho_{\phi}^{in} = 3 M_p^2 H_{end}^2, \ \rho_R = \rho_{DM} = 0$$

Present state of our universe

1. Entropy conservation

$$T_{re} = \left(\frac{43}{11 \, g_*^{re}}\right)^{1/3} \, \left(\frac{a_0 \, H_{end}}{k}\right) \, e^{-(N_k + N_{re})} \, T_0 \,,$$

With $k/a_0 = 0.05 \text{ Mpc}^{-1}$ and $T_0 = 2.725^0 \text{ K}$

2. Present DM abundance $\Omega_X h^2 = 0.12$

3. Universe must be radiation dominated for T_{re} > T_{BBN} ~ 10 MeV

4. Upper limit on Inflationary energy scale $H_{end}^{max} > \pi M_p \sqrt{r A_s/2} \sim 5 \times 10^{13} GeV$

Present state of the universe is completely fixed by H_{end} , ω_{ϕ} , M_{DM}

Model independent predictions:

• Assume slow roll inflation scenario (no specific model)

$$m_{\phi}^{end} \simeq \sqrt{(1+\omega_{\phi})(4+12\omega_{\phi})/(1-\omega_{\phi})^2} H_{end}$$
$$N_{re} = \frac{1}{3\omega_{\phi}-1} \ln \left(\frac{512 \pi M_p^2 (1+15 \omega_{\phi})}{3 (1+\gamma) H_{end} m_{\phi}^{end} (1+\omega_{\phi})} \right)$$

$$n_{f}^{com} \simeq \frac{3H_{end}^{3}}{2048\pi} \frac{1+\omega_{\phi}}{1-\omega_{\phi}} \left(\frac{m_{f}}{m_{\phi}^{end}}\right)^{2} \left(1-e^{-\frac{3N_{re}}{2}(1-\omega_{\phi})}\right),$$
$$\frac{3H^{3}}{2} \cdot (1+\omega_{\phi})$$

$$n_S^{com} = 8n_X^{com} = \frac{3H_{end}^3 \left(1 + \omega_\phi\right)}{512(\pi + 3\pi\omega_\phi)},\tag{0.12}$$

$$T_{re} = \left(\frac{9\,(1+\gamma)\,H_{end}^3\,m_{\phi}^{end}\,(1+\omega_{\phi}\,)}{512\,\beta\,\pi\,(1+15\omega_{\phi})}\,e^{-4\,N_{re}}\right)$$

3. Universe must be radiation dominated for $T_{re} > T_{BBN} \sim 10 MeV$

4. Upper limit on Inflationary energy scale $H_{end}^{max} > \pi M_p \sqrt{r A_s/2} \sim 5 \times 10^{13} GeV$

$$\Omega_Y h^2 = \frac{m_Y n_Y (A_{re}) A_{re}}{\rho_R (A_{re}) A_{re}^4} \frac{A_{re} I_{re}}{T_0} \Omega_R h^2 = 0.12$$

$$m_{\phi}^{end} \simeq \sqrt{(1 + \omega_{\phi})(4 + 12\omega_{\phi})/(1 - \omega_{\phi})^2} H_{end}$$

$$(1 \times (10^9 - 5 \times (10^{13})) G_{end} H_{end} = 0.12$$

 $(A) A^{3} A T$

$$\begin{split} H_{end} = & (1 \times 10^9, 5 \times 10^{13}) GeV \rightarrow T_{re} = & (10^8, 10^{-3}) GeV \\ \omega_{\phi} = & (0.6, 0.99) \\ & \text{Reheating phase dominated by stiff matter} \end{split}$$

- 1. Entropy conservation
- 2. Present DM abundance

 $\begin{cases} 62 < N_{efold} < 63 \\ 2 \times 10^5 < m_f < 3 \times 10^8 \ GeV \\ 50 < (m_s, (1/8)m_x) < 1000 \ eV \end{cases}$

1/4

Imprints on Primordial GW

R. Haque, DM, S. T. Paul, L. Sriramkumar, Phys.Rev.D 104 (2021) 6, 063513, Riajul Haque, DM, 2201.02348

 The existence of primordial gravitational waves (GWs) is one of the profound predictions of inflation

10-8

0_{6w}^k h²

10-18

10-23

10

LTSA

-Planck 2018 + BICEP2 / Keck

10

f (Hz)

10⁶

WMAP7 + SPT

10-4

$$\Omega_{GW}^{k}h^{2} \simeq \Omega_{R}h^{2}P_{T}(k)\frac{4\mu^{2}}{\pi}\Gamma^{2}\left(\frac{5+3\omega_{\phi}}{2+6\omega_{\phi}}\right)\left(\frac{k}{2\mu k_{re}}\right)^{n_{GW}}$$
$$\mu = \frac{1}{2}\left(1+3\omega_{\phi}\right) \qquad P_{T}(k) = \frac{1}{H_{end}^{2}}/12\pi^{2}M_{p}^{2}.$$

• Index of the GW spctrum:

$$n_{GW} = \frac{(6 \omega_{\phi} - 2)}{(3 \omega_{\phi} + 1)} \longrightarrow 0.57 \le n_{GW} \le 0.99$$

$$\omega_{\phi} = (0.6, 0.99)$$

Summary of model independent predictions and constraints

Gravitational Reheating predicts

- Fermionic dark matter: $2 \times 10^5 < m_f < 3 \times 10^8 GeV$
- Bosonic dark matter: $50 < (m_s, (1/8)m_x) < 1000 eV$
- GW spectral index: $0.57 \leq n_{GW} \leq 0.99$

• Inflaton equation of state $\omega_{\phi} = (0.6, 0.99)$

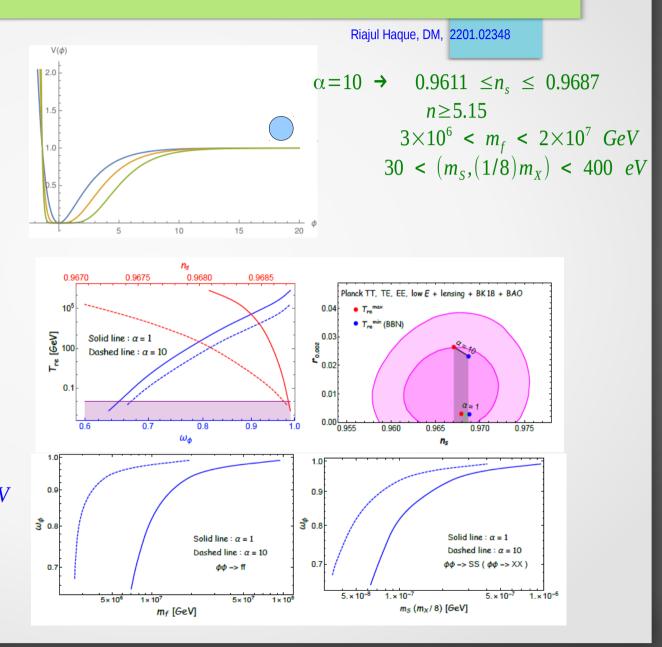
- Energy scale of inflation $H_{end} = (1 \times 10^9, 5 \times 10^{13}) GeV$ Inflaton sector
- Inflationary e-folding number $62 < N_{efold} < 63$

Important conclusion: Not all inflation models are consistent with Gravitational Reheating mechanism!

10-10 10

Visible sector

 $T_{re} = (10^8, 10^{-3}) GeV$


Constraining specific models

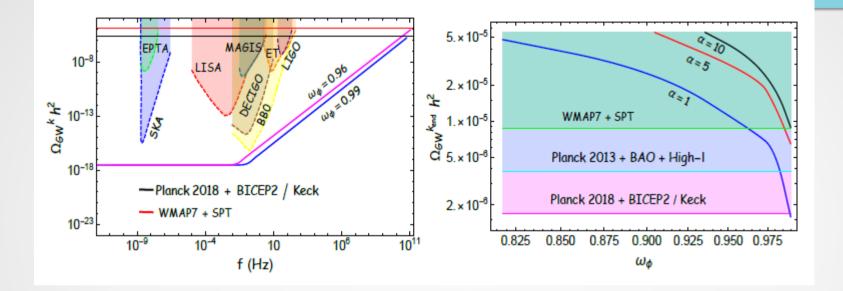
Linde etal ; JHEP 11 (2013) 198

$$V(\phi) = \Lambda^4 \left[1 - e^{-\sqrt{\frac{2}{3\alpha}}\phi/M_p} \right]^{2n}$$
$$1 - n_s \simeq 2/N_k, \ r \simeq 12 \ \alpha/N_k^2$$

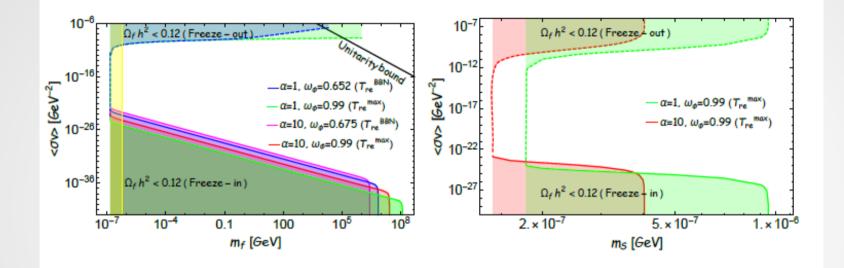
$$\omega_{\phi} = \frac{P_{\phi}}{\rho_{\phi}} = \frac{\langle \phi v'(\phi) \rangle - \langle 2V \rangle}{\langle \phi v'(\phi) \rangle + \langle 2V \rangle} = \frac{(n-1)}{(n+1)}$$

 $\begin{array}{rcl} \alpha = 1 & \rightarrow & 0.9681 \ \leq n_s \ \leq & 0.9687 \\ & n \geq 4.75 \\ & 7 \times 10^6 \ < \ m_f \ < \ 9 \times 10^7 \ GeV \\ & 60 \ < \ (m_s, (1/8)m_x) \ < \ 1000 \ eV \end{array}$

Conclusions and future directions


- Reheating is a poorly understood phase
- It can give a new physics which heppens at very high energy scale beyond the scope of laboratory experiments
- Cosmology behaves as laboratoy system where experiments has already been performed, observables need to be explained.
- We propose Gravitational reheating scenario with definite predictions
- Selects limited class of inflaton models which must provide efolding number within 62-63, narrow range of ns value.

Predicts: Very narrow range of DM mass, low reheating temperature, unique GW spectrum, Stiff reheating equation of state.


- Non-detection of any one of those will rule out such scenario.
- Systematic inclusion of interaction is imoprtant direction to study

Thank you

BBN constraint

Adding DM-Radiation coupling

