Black hole hair removal for $\mathcal{N} = 4$ CHL models

Shanmugapriya Prakasam, CMI

CSGC Feb 2022

Based on 2010.02240 with Subhroneel Chakrabarti, Suresh Govindarajan, Yogesh K. Srivastava and Amitabh Virmani.

≻ Puzzle

➤ Model of interest

Service & Fermionic hair candidates

⊁ Hair modes

⊱ Resolution of the puzzle - hair removal

≻ Puzzle

➤ Model of interest

Solution Section Section Section 2018 Sectio

⊁ Hair modes

≫ Resolution of the puzzle - hair removal

Black hole hair

- John Wheeler famously made the statement : "Black holes have no hair."
- ➤ No hair theorem → in the presence of no matter content other than Maxwell's field, a black hole is completely described by its mass, electric and magnetic charge and spin.
- For more complicated set-ups (higher dimensions, form-fields, fermions), black hole hair is possible.
- In our context, black hole hair is defined as smooth, normalisable, bosonic and fermionic degrees of freedom that live entirely outside the horizon.
 Jatkar, Sen, Srivastava 2009

Why black hole hair?

- Black hole entropy in terms of microscopic degrees of freedom insensitive to nature of solution away from the horizon.
 - ⇒ Two different black holes with identical near horizon geometries have the same microscopic indices.
- > Counterexample:

BMPV black hole in flat space and in Taub-NUT space - identical near horizon geometries, but microscopic indices mismatch.

Proposed resolution for the above conundrum - hair removal.

Banerjee, Mandal, Sen - 2009 ; Jatkar, Sen, Srivastava - 2009

> Motivated by this: hair removal for (general) Z_N CHL models.

≻ Puzzle

➤ Model of interest

≫ Bosonic & Fermionic hair candidates

⊁ Hair modes

≫ Resolution of the puzzle - hair removal

CHL Models

- > Exact calculation of microscopic indices with $\mathcal{N} = 4$ supersymmetry has seen enormous progress over the years.
- > CHL models provide a rich arena for such discussions.
- ➤ Chaudhuri, Hockney, Lykken models are obtained as Z_N orbifolds of IIB theory on $K3 \times S^1 \times \tilde{S}^1$.
- For a class of CHL models, in the lower dimensional viewpoint, black holes can be described in terms of six dimensional (2,0) supergravity coupled to nt tensor multiplets.

Field content

Six dimensional (2,0) supergravity coupled to n_t tensor multiplets - many fields.

- Bosonic Sector: metric, self-dual and anti-self-dual 2-form fields, scalars.
- **Fermionic sector**: gravitinos, other Majorana fermions.

Solutions we consider

- scalars are set to constant and spin 1/2 fermions and anti-self-dual 2-forms are set to zero.
- preserve 4 of the 16 supersymmetries.

BMPV black hole

For simplicity - Non-rotating BMPV black hole:

> BMPV black hole : 5D black hole (in 6 dim.) from now on.

$$ds^{2} = \psi^{-1}(r) \left[du dv + (\psi(r) - 1) dv^{2} \right] + \psi(r) dw^{i} dw^{i},$$

$$u = x^5 - t$$
, $v = x^5 + t$.

> BMPV black hole in Taub-NUT: 4D black hole (in 6 dim.) from now on. Replace ds_{flat}^2 with

$$ds_{TN}^{2} = \chi(r)^{-1} (dx^{4} + \cos\theta \, d\phi)^{2} + \chi(r) d\Omega_{3}^{2},$$

$$\psi(r) = \left(1 + \frac{r_{0}}{r}\right), \qquad \chi(r) = \left(\frac{4}{R_{4}^{2}} + \frac{1}{r}\right).$$

The black holes have identical near horizon geometry.

≻ Puzzle

➤ Model of interest

Service & Fermionic hair candidates

⊁ Hair modes

≫ Resolution of the puzzle - hair removal

Which hair to cut?

Aim: Construct black hole hair - what kinds do we have and how many of each?

- > Analysing all possible hair is hard no proof that only these hair exist.
- Even if all hair candidates are not known, the mismatch of indices may be explained with the knowledge of just a few - there could be other hair, equal in number for both black holes.

For these two black holes, we will study only these three:

- $\checkmark\,$ Garfinkle-Vachaspati hair
- ✓ Form field hair
- ✓ Fermion hair

Bosonic hair candidates

→ Garfinkle-Vachaspati transform: Solution generating technique to add wave like deformations on a metric.

 $\succ \text{ Known solution} \xrightarrow{\text{Garfinkle-Vachaspati}} \text{New exact solutions}$

- ➤ Requirements:
 - a vector field *k*^{*M*}: null, hypersurface orthogonal and Killing.
 - matter fields mild conditions (do not transform).

Transform:

$$G_{MN}' = G_{MN} + e^A T k_M k_N,$$

for some scalars *A* and *T* such that $\nabla^2 T = 0$ and $k^M \partial_M T = 0$.

GV hair Candidates

- Deformation *T* is independent of *u* new solution also possesses the same null, Killing vector field and *v* dependence is unconstrained.
- > It adds deformation only to the $G_{\nu\nu}$ component of the metric:

 $\delta(ds^2) = \psi(r)^{-1} T(v, \vec{x}) dv^2.$

	5D black hole	4D black hole
GV deformation	$T(\nu, \vec{w}) = f_i(\nu) w^i$	$\widetilde{T}(v, \vec{y}) = g_i(v) y^i$
Hair candidates	Four arbitrary scalar functions f_i , periodic in v .	Three arbitrary scalar functions g_i , periodic in v .

 \hookrightarrow Deformations of the form field of the Taub-NUT space

- > Taub-NUT space is equipped with a self-dual, harmonic 2-form field ω_{TN} .
 - An anti-self-dual 3-form field can be constructed

 $\delta H^s_{MNP} = h^s(v) dv \wedge \omega_{TN}, \qquad 1 \le s \le n_t.$

(one deformation for each multiplet)

- Collateral damage: metric deformations - in order to satisfy the bosonic sector equations:

 $\delta(ds^2) = \psi^{-1}(r)\tilde{S}(v,r)dv^2,$ $\tilde{S} \rightarrow$ quadratic in $h^s(v)$.

> Form field deformations are characterized by the n_t arbitrary scalar functions $h^{s}(v)$.

Fermionic hair candidates

> Solve fermionic sector equations, obtain the deformation Ψ_M^{α} .

Our fermionic solution is

 $- \Psi_{M}^{\alpha} = 0, \text{ if } M \neq v, \\ - \Psi_{v}^{\alpha} \text{ independent of } u.$

Possible fermionic hair:

 $\Psi_{v}^{\alpha(1)} = \psi(r)^{-3/2} \eta^{(1)}(v,\theta,\phi) \quad \text{or} \quad \Psi_{v}^{\alpha(2)} = \psi(r)^{-1/2} \eta^{(2)}(v,\theta,\phi).$

- > These Ψ_{ν}^{α} remain valid solutions even in the presence of GV deformations.
- Taub-NUT space does not have any effect on the fermionic deformations obtained.
- > For both black holes, independent arbitrary functions of v four each for $\Psi_v^{\alpha(1)}$ and $\Psi_v^{\alpha(2)}$.

≻ Puzzle

➤ Model of interest

⊁ Bosonic & Fermionic hair candidates

⊁ Hair modes

⊱ Resolution of the puzzle - hair removal

Hair modes

To hair or not to hair?!

Need to pass three tests for a deformation to be a hair:

- ✓ Smoothness checks are the deformations smooth near the horizon? Define suitable coordinates that are smooth across the horizon.
- ✓ SUSY preservation checks no additional SUSY is broken by the deformations. Is the Killing spinor analysis affected by the deformed solutions?
- ✓ Support is only outside the horizon each of the smooth deformations need to vanish at the horizon.

And the culprits are...

Deformation	5D black hole	4D black hole
Garfinkle-Vachaspati	×	\checkmark
Form field	NA	\checkmark
Fermion	\checkmark	\checkmark

➤ Spectrum of hair modes:

Hair	5D black hole	4D black hole
Bosonic	0	<i>n</i> _t + 3
Fermionic	4	4

≻ Puzzle

➢ Model of interest

Solution Section Section Section 2018 Sectio

⊁ Hair modes

⊱ Resolution of the puzzle - hair removal

Snip Snip 泽 泽

- Question: Do the hair modes correctly account for the mismatch factors for each N?
- > Z_N group action is on the form fields; generates twisted sectors with twist $e^{2\pi i s/N}$, for $1 \le s \le N 1$. Untwisted sector: s = 0.
- Split the form fields according to their twist.
 - Example: N = 2 Splitting is 19 = 11 + 8 and this reflects as

$$\begin{split} f(\rho) &\sim & \prod_{k=1}^{\infty} (1-q^{2k})^{11+5} \, \prod_{l=1}^{\infty} (1-q^{2l-1})^8 \\ &\sim & \eta(\rho)^8 \eta(2\,\rho)^8. \end{split}$$

– Example: N = 3

Splitting of 19 = 7 + 6 + 6 gives the correct factor

$$f(\rho) \sim \eta(\rho)^6 \eta(3\rho)^6.$$

≻ Puzzle

➢ Model of interest

≫ Bosonic & Fermionic hair candidates

⊁ Hair modes

≫ Resolution of the puzzle - hair removal

What have we done so far?

- > Explicit construction of hair modes for the 4D and 5D black holes.
- > Takeaway: There are n_t + 3 additional bosonic hair modes for the 4D black hole than the 5D black hole.
- For each *N*, these hair modes correctly account for the extra factors and solve the puzzle.

What is the path forward?

> $Z_M \times Z_N$ models involving twisting and twining.

A. Sen - 2010, S. Govindarajan - 2010.

Hair removal story for the above - A. Chowdhury, S. Govindarajan, S. Samanta, P. S, A.Virmani - Coming soon!

Thank you for your attention.

For comments and feedback: shanmugapriya@cmi.ac.in