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The physical system

Figure: Merging compact objects (Credit: R. Hurt/Caltech-JPL)
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The non-relativistic treatment

▶ Multipole moments of the source distribution:

QL =

∫
ρx<L>d3x

▶ External tidal field:

EL = − 1

(ℓ− 2)!
∂LUext(0),

▶ Tidal Love number:

δQL = − 2(ℓ− 2)!

(2ℓ− 1)!!
kℓR

2ℓ+1EL

▶ No spin effects.
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The relativistic treatment

▶ Multipole moments of the asymptotic field Mℓ,Sℓ

(Gerosch-Hansen).

▶ Metric perturbation:

gab =g
(0)
ab + hab

hab =hextab + hrespab

▶ Tidal Love numbers (field):

δMℓ =λel
ℓ Eℓ

δSℓ =λmag
ℓ Eℓ
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Limitations

1. Valid for quasi-static/stationary processes:

1.1 Static tides.
1.2 Slow/linear time evolution.

2. Weak external tidal field.

3. Asymptotic regions of each black hole.

In practice:

1. Black holes get close:

1.1 Cannot isolate the asymptotic fields of each black hole.
1.2 Strong external tidal fields.
1.3 Highly dynamical.

2. Validity of perturbation theory?

3. Deformation of black holes in the strong field regime?

Requires a different treatment of the strong field tidal
deformability of black holes:

Dynamical Horizons
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Black hole horizons

Figure: Left: Collapse of a null fluid to form a black hole, followed by its
growth. Right: A dynamical horizon settling down to an isolated horizon
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Foliations of a Dynamical Horizon

Marginally Outer Trapped Surfaces (MOTS):

θℓ = q̃ab∇aℓb = 0 θn = q̃ab∇anb < 0

Salient features2:

1. Definitions of Mass, Angular momentum (Hayward, Ashtekar,
Krishnan +).

2. No teleological properties.

3. Generalized laws of black hole mechanics (Hayward, Ashtekar,
Krishnan +).

4. Uniqueness (Ashtekar, Galloway +).

5. Existence, Stability, evolutionary properties (Kolb, Krishnan
+).

6. Physics, properties of black holes (Booth, Jaramillo, Gupta,
Prasad +).

2The above reference list is not complete
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Source Multipole Moments of a Dynamical Horizon

Mn =
MSR

n
S

8π

∮
S
R̃Pn(ζ)d

2S ,

On each slice S of H+,
R̃ The 2D Ricci scalar of S, ζ: analogous to cosθ, Pn: Legendre
polynomials.

1. Are different from the GH field multipoles.

2. Characterize the intrinsic geometry of S.
3. Isolated Kerr black holes: Odd Mn zero, M0 is the Mass.

4. Evolve with time.
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Source Love numbers

1. Change in horizon geometry → δMn.

2. Expand δMn in Taylor Series in the strength of the external
tidal field (Caberro, Krishnan 2014):

δMn

Mn+1
td

=
∞∑

i ,j=1

α
(n)
ij

M i
tdM

j
tf

d i+j
.

▶ d : Distance of separation between the holes.

▶ Mtd : Mass of the tidally deformed black hole horizon.

▶ Mtf : Horizon mass of the source of external tidal field.

▶ Newtonian tidal interaction starts at 1/d3 =⇒ i + j ≥ 3.

▶ αn
ij : Dimensionless, scale-free tidal coefficients: Love

Numbers.
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Strategy

Model A :
M2

M3
td

=
a
(2)
3

d3
+ const. (1)

and

Model B :
M2

M3
td

=
a
(2)
3

d3
+

a
(2)
4

d4
+ const. (2)

a
(2)
3 =MtdM

2
tf α

(2)
12 +M2

tdMtf α
(2)
21 , (3)

a
(2)
4 =α

(2)
13 MtdM

3
tf + α

(2)
22 M

2
tdM

2
tf + α

(2)
31 M

3
tdMtf . (4)

1. Simulate binary black hole mergers.

2. Compute the source moments.

3. Analyzed the quadrupolar deformations.

4. Applications.
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Numerical Relativity Simulations
1. The Einstein Toolkit: Public, open source NR code.

2. Gauge, slicing: Punctures, BSSN, 1+log slicing, Gamma
driver shift.

3. Quasi-local computations: for DH related quantities.

Quasi-local calculations: Provided by QuasiLocalMeasures.
Fitting : An MPI based least squares finder.
Library : waveformtools.
Grid on the horizon: 37× 76

Non-spinning BBH Simulations

Mass ratio d M1 M2 pr pt
1.0 11.0 0.5 0.5 -7.220e-04 0.09019
0.85 12.0 0.54051 0.4595 -5.290e-04 0.08448
0.75 11.0 0.5714 0.4286 -6.860e-04 0.08828
0.6667 11.75 0.6 0.4000 -5.290e-04 0.08281
0.50 11.0 0.6667 0.3333 -5.720e-04 0.0802
0.40 11.25 0.7143 0.2857 -4.500e-04 0.07262
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Fits
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Figure: The multipole moment data and the distance d are plotted on a
logarithmic scale.



17/20

Tidal coefficients

Tidal coefficients: third order

Model α12 α21

A −0.15±0.21 −3.43±0.21
B −0.89±0.21 −5.45±0.21

Table: Tidal coefficient values estimated from a re-fit of the fit
coefficients a3, a4.

Tidal coefficients: fourth order

Model α13 α22 α31

B 1.79± 1.72 5.3± 3.65 4.68± 1.72

Table: Tidal coefficient values estimated from a re-fit of the fit
coefficients a3, a4.
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Conclusions

Brief summary:

▶ Tidal deformation of non-spinning black hole dynamical
horizons.

▶ Strong field, dynamical regime all the way upto merger.

▶ Numerical relativity: The Einstein toolkit.

▶ Computed tidal Love numbers (incorporating upto equivalent
1PN order).

▶ May be more important in the merger phase.

Several questions:

▶ Relationship with field Love numbers.

▶ Observational implications.



19/20

Thankyou!
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