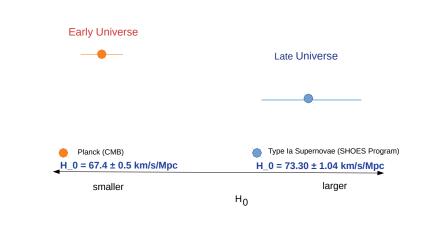
A Growing Universe... and Tension Cosmology With Low-Redshift Observations: Any Signal For New Physics at Early Times?

Ruchika

IIT, Bombay

Feb 5, 2022

Reference: Phys. Rev. D 97,103511(2018) Jarah Evslin, Anjan A Sen, Ruchika Reference: Phys. Rev. D 102.103525(2020) C. Krishnan, E. O Colgain, Ruchika, A. A. Sen, Sheikh-Jabbari and T. Yang

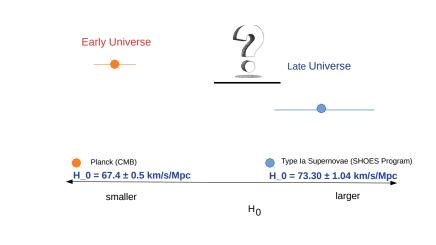

> Centre for Strings, Gravitation and Cosmology IIT, Madras

Outline of the talk \diamond

- How Early Dark Energy was proposed to be a solution to Hubble Tension?
- Is Early Dark Energy a solution to Hubble Tension?

(日)

Tension between Early and Late Universe \diamond


Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology

Feb 5, 2022 3 / 20

(日)

Tension between Early and Late Universe \diamond

Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology

Feb 5, 2022 4 / 20

< □ > < □ > < □ > < □ > < □ > < □ >

The Price of Shifting the Hubble Constant. Jarah Evslin, Anjan A Sen, Ruchika Phys. Rev. D 97,103511(2018) Question: How Early Dark Energy was proposed to be a solution to Hubble Tension?

Question : If we fix H_0 to SH0ES value, how much low-redshift data(BAO+Masers+TDSL) shifts the value of Sound Horizon at drag epoch r_d ? \diamond

Maximum Likelihood values and 1D marginalised 68% confidence intervals of parameters for respective models. Taking value of *H*₀ = 73.24 ± 1.24 Km/s/M pc.

	Ω_m0	rd	W0	wa
ACDM	0.295 ± 0.019	139.2 ± 3.2	N/A	N/A
wCDM	0.277 ± 0.027	135.3 ± 3.8	-0.76 ± 0.14	N/A
CPL	0.241 ± 0.084	136.4 ± 3.9	-0.77 ± 0.17	0.44 ± 0.53

Also, $H_0 = 136.41 \pm 3.82$ confirmed model independently by Salvatore et al.(2018).

	Planck	Loca	I Measurements
H ₀	67.37 ± 0.54 Km/sec/Mpc	\Rightarrow	73.24 \pm 1.24 Km/s/M pc.
r _d	$147.26\pm0.29\textit{Mpc}$	⇔	$139.2 \pm 3.2 Mpc$

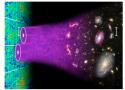
Answer: The shift in value of sound horizon is more than 2 σ away than Planck inferred r_d value.

Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology

Feb 5, 2022 6 / 20

Interpretation: How Early Dark Energy was a proposed solution to Hubble Tension? \diamond


BAO together with measurement of H_0 by Strong Lensing and Local Distance Ladder, give r_d which is significantly smaller than that from Planck-2018 for LCDM. r_d is the Sound Horizon at drag epoch

$$r_d = \int_0^{t(zd)} c_s(1+z) dt$$

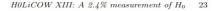
Physics: sound waves in early Universe propagate until radiation and matter decouple.

Lower r_d as compared to Planck suggets:

changing z_d
modifying the speed of sound
changing the age of universe at drag epoch
changing primodial fluctuations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Credit: Blake & Moorfield


Feb 5, 2022 7 / 20

- Along with Hubble Tension, there is a similar tension involving sound horizon at drag epoch from low-redshift and Planck measurements.
- ♦ It does not depend on dark energy behaviour.
- ♦ Solution: One needs to modify the early Universe cosmology.

Is there an early Universe solution to Hubble tension? Chethan Krishnan, Eoin Ó Colgáin, Ruchika, Anjan A. Sen, M. M. Sheikh-Jabbari, Tao Yang Phys. Rev. D 102, 103525(2020) Question: Is Early Dark Energy a solution to Hubble Tension?

H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars \diamond

K C Wong et al Feb 5, 2022

10 / 20

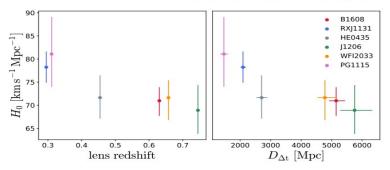


Figure A1, H₀ constraints for the individual H0LiCOW lenses as a function of lens redshift (left) and time-delay distance (right). The trend of smaller H_0 value with increasing lens redshift and with increasing $D_{\Delta t}$ has significance levels of 1.9 σ and 1.8 σ , respectively.

Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology

If the H0LiCOW result is substantiated, Implications are as follows:

 \diamond First, this trend cannot be explained by keeping ACDM and adjusting the sound horizon using early Universe physics , since this will only raise and lower the trend

 \diamond Thus may be staring at preliminary evidence for a new cosmology at late times

(4) (日本)

Data Sets Used: \diamond

- $\bullet\,$ Isotropic BAO measurements by the 6dF survey (z = 0.106), SDSS-MGS survey (z = 0.15)
- Anisotropic BAO measurement by BOSS-DR12 at z = 0.38, 0.51, 0.61
- Angular diameter distances from megamaser hosting galaxies: UGC 3789, NGC 6264, NGC 6323, NGC 5765b, CGCG 074-064 and NGC 4258 in the range $0.002 \le z \le 0.034$
- Cosmic chronometer (CC) data for z ${\leq}0.7$
- We incorporate 924 Type Ia SNe from the Pantheon dataset in the range 0.01 < z \leq 0.7 [32], including both the statistical and systematic uncertainties.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Constraints while taking datasets \leq 0.7 \diamond

Table: Best-fit values for cosmological parameters

$H_0 \left[\frac{\mathrm{km}}{\mathrm{s Mpc}}\right]$	Ω_m	<i>r_d</i> [Mpc]	М
$69.74^{+1.60}_{-1.56}$	$0.30\substack{+0.02\\-0.02}$	$144.83^{+3.44}_{-3.34}$	$-19.36\substack{+0.05\\-0.05}$

♦ **If we don't do binning,** we get value of H_0 around 69.74^{+1.60}_{-1.56}, So now it is conceivable that the Planck result for flat Λ CDM is an "averaged" value, which is essentially a *coarse-grained* value for H_0 .

And then we introduce the bining! \diamond

Bin	Data
1	Masers, SNe
2	iso BAO, SNe, CC
3	SNe, CC
4-6	aniso BAO, SNe, CC

TABLE I: Summary of the data in each bin.

bin 1:	$\bar{z}_1 =$	$0.021 \in (0, 0.029],$
bin 2:	$\bar{z}_2 =$	$0.122 \in (0.029, 0.21],$
bin 3:	$\bar{z}_3 =$	$0.261 \in (0.21, 0.321].$
bin 4:	$\bar{z}_{4} =$	$0.38 \in (0.321, 0.47],$
bin 5:	$\bar{z}_{5} =$	$0.51 \in (0.47, 0.557],$
bin 6:	$\bar{z}_6 =$	$0.61 \in (0.557, 0.7],$

A D N A B N A B N A B N

Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology

Feb 5, 2022 14 / 20

And then we introduce the bining! \diamond

Bin	Data
1	Masers, SNe
2	iso BAO, SNe, CC
3	SNe, CC
4-6	aniso BAO, SNe, CO

TABLE I: Summary of the data in each bin.

bin 1:	$\bar{z}_1 =$	$0.021 \in (0, 0.029],$
bin 2:	$\overline{z}_2 =$	$0.122 \in (0.029, 0.21],$
bin 3:	$\bar{z}_3 =$	$0.261 \in (0.21, 0.321].$
bin 4:	$\bar{z}_4 =$	$0.38 \in (0.321, 0.47],$
bin 5:	$\bar{z}_{5} =$	$0.51 \in (0.47, 0.557],$
bin 6:	$\bar{z}_6 =$	$0.61 \in (0.557, 0.7],$

イロト イヨト イヨト イヨト

$$\bar{z}_i = \frac{\sum_{k}^{N_i} z_k(\sigma_k)^{-2}}{\sum_{k}^{N_i} (\sigma_k)^{-2}},$$

Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology

Feb 5, 2022 15 / 20

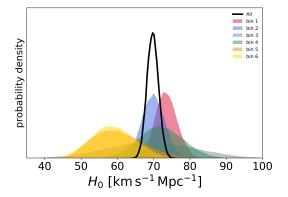
3

Results \diamond

1Z	$H_0 \left[\frac{\mathrm{km}}{\mathrm{s Mpc}}\right]$	Ω_m	r_d [Mpc]	M
0.021	$73.41\substack{+3.10 \\ -2.88}$	$0.51\substack{+0.33 \\ -0.34}$	-	$-19.26\substack{+0.09\\-0.09}$
0.122	$69.85\substack{+3.17 \\ -3.10}$	$0.26\substack{+0.10\\-0.09}$	$143.08\substack{+7.14\\-6.74}$	$-19.36\substack{+0.09\\-0.09}$
0.261	$69.10\substack{+12.46\\-12.12}$	$0.27\substack{+0.20 \\ -0.15}$	-	$-19.39\substack{+0.40\\-0.33}$
0.38	$71.90\substack{+6.42\\-6.03}$	$0.22\substack{+0.11 \\ -0.09}$	$143.94\substack{+9.94\\-8.91}$	$-19.33\substack{+0.15\\-0.15}$
0.51	$59.98\substack{+7.64\\-6.45}$	$0.37\substack{+0.12 \\ -0.10}$	$164.05\substack{+17.66\\-15.92}$	$-19.65\substack{+0.23\\-0.23}$
0.61	$58.72^{+6.40}_{-5.87}$	$0.44\substack{+0.12\\-0.10}$	$161.04\substack{+13.31\\-11.55}$	$-19.59\substack{+0.18\\-0.17}$

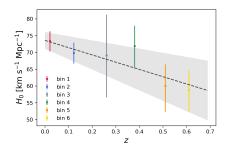
Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology


Feb 5, 2022 16

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト


16 / 20

Decreasing Trend of H_0 with redshift is verified! \diamond

• • • • • • • • • • • •

Decreasing Trend of H_0 with redshift is verified! \diamond

- We fit the same linear regression through the data with the original binned H_0 values and find that the slope of the data falls 2.1 σ (which is 1.7 σ in H0LiCOW) away from the slope of the null hypothesis.
- Concretely, we find the intercept $H_0 = 73.6 \pm 2.5$, which is curiously close to H0LiCOW's H_0 determination.

Conclusions \diamond

- Decreasing trend of *H*₀ with redshift as proposed by H0LICOW is verified.
- If the trend is true, Then all the Early Universe Solutions to Hubble Tension will be falsified.
- If we don't do binning we get value of H_0 around $69.74^{+1.60}_{-1.56}$, So now it is conceivable that the Planck result for flat Λ CDM is an "averaged" value, which is essentially a *coarse-grained* value for H_0 .

・ 何 ト ・ ヨ ト ・ ヨ ト

THANK YOU!

Ruchika (IIT, Bombay)

A Growing Universe... and TensionCosmology

Feb 5, 2022 20 / 20

3

メロト メポト メヨト メヨト