Gravitational wave observations: What have we learned so far?

Surabhi Sachdev University of Wisconsin, Milwaukee

Chennai Symposium on Gravitation and Cosmology February 4, 2022

Background image credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

Outline

- Gravitational waves
- Compact Binary Coalescences
- Analysis workflow of Advanced LIGO and Virgo data
- Highlights from the third observing run
- Going Forward Near Term Multi-messenger astronomy
- What we have learned from GW observations

Gravitational Waves

$$F = m_1 a = G \frac{m_1 m_2}{r^2}$$

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Instantaneous action at a distance

Information about changing gravitational field is carried by gravitational radiation at the speed of light

Effect of gravitational waves

Sean Carrol, Lecture notes on General Relativity

$$h \sim \frac{\Delta L}{L}$$

GW: Sources

Binary megers

Binary Neutron Stars, Neutron Star Black Holes, Binary Black Holes

Burst

Continuous waves

Non-axisymmetric pulsars

Supernovae

Stochastic

Radiation from early universe, superposition of CBCs

LIGO, Virgo, KAGRA

 $h \sim \frac{\Delta L}{L}$

Binary Neutron Star (BNS) range in O3: LIGO Hanford: ~ 110 Mpc LIGO Livingston: ~ 135 Mpc Virgo: ~ 45–50 Mpc

Expected in O4:

LIGO: ~ 160–190 Mpc Virgo: ~ 80–115 Mpc KAGRA: > 1 Mpc

BNS range is the distance at which on average a 1.4 : 1.4 M_{\odot} source would produce an SNR of 8.

KAGRA, illustrated at top right, will join a network of gravitational-wave observatories that includes LIGO Hanford (top left), LIGO Livingston (bottom right), and Virgo (bottom left). Image credit: ICRR, Univ. of Tokyo/LIGO Lab/Caltech/MIT/Virgo Collaboration.

First Observing Run

O1: September 12, 2015 to January 19, 2016

"Was that you I heard just now, or was it two black holes colliding?" THE NEW YORKER, Feb 12, 2016

First Observing Run

Phys. Rev. X 6, 041015 (2016)

Second Observing Run

O2: November 30, 2016 to August 25, 2017

Virgo joins the observing run Start of multi-messenger astronomy

- Understand how the short Gamma Ray Bursts (GRB) are powered
- Study the kilonova light curve
- Measure the Hubble constant
- Compare the **speed of gravity** to light
- Production site for elements heavier than Fe

Chennai Symposium, 2022

GW170817

Nutsinee Kijbunchoo

Stellar graveyard: GWTC-1 Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

UNIVERSITY of WISCONSIN

Caltech (O) VRG KAGRA Stellar graveyard: GWTC-2.1 Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

UNIVERSITY of WISCONSIN

Stellar graveyard GWTC-3 Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

UNIVERSITY of WISCONSIN

Third Observing Run

- April 1, 2019 1500 UTC: start of Advanced LIGO's and Advanced Virgo's third observing run
- April 2, 2019 20:00 UTC: start of **public alerts**
- One month break in October
- Suspension of O3 on March 27, 2020

Detection Workflow

Modified from Ryan Magee et al 2021 ApJL 910 L21

Matched-Filtering

A powerful technique in signal processing, used to extract signals from noisy data, **if we know the signal form we are looking for**

Matched-filtering searches

Intrinsic

- m_1, m_2 : masses
- $s_{1x}, s_{1y}, s_{1z}, s_{2x}, s_{2y}, s_{2z}$: spins

Extrinsic

- α, δ : right ascension, declination
- i, Ψ : inclination, polarization angle
- D : luminosity distance
- Φ_{coal} : coalescence phase
- *t*_{coal} : coalescence time

Complex SNR time series:

$$z(t) = 4 \int_0^\infty \frac{\tilde{s}^*(f)\tilde{h}(f)}{S_n(f)} e^{2\pi i f t} df$$

SNR maximized over phase and time: $z = \max_t |z(t)|$

Template bank

- Template bank used by GSTLAL in O3
- During O3, in low latency, the bank was divided into two banks, by separating every other template
- The banks were run in different computing clusters CIT and UWM checkerboarding
- If one cluster goes down, lose some sensitivity but not all

- If noise were stationary & Gaussian, SNR could be used as a ranking statistic
- Noise is not Gaussian, we use **likelihood-ratio** \mathcal{L} instead

$$\mathcal{L} = \frac{P(\vec{D_H}, \vec{O}, \vec{\rho}, \vec{\xi^2}, \vec{\phi}, \vec{t} \mid \mathbf{s})}{P(\vec{D_H}, \vec{O}, \vec{\rho}, \vec{\xi^2}, \vec{\phi}, \vec{t} \mid \mathbf{n})}$$

- Noise is estimated from non-coincident triggers, and signal from semianalytical models
- $P(\mathcal{L}/n)$ is estimated by sampling the noise distributions and used to assign FAR (false alarm rate) to candidates

- FAR is calculated using the background distribution of the ranking statistic used by the search pipeline
- $p_{\rm astro}$ also considers the foreground distribution of the ranking statistic
- Searches estimate membership probabilities for astrophysical source classes: $p_{astro} = p_{BNS} + p_{NSBH} + p_{BBH} = 1 - p_{terr}$
- Class membership is based on component masses only, no necessary implication that the objects are actually BHs or NSs
- Since the foreground rate of binary black holes (BBH) is higher compared to that of binary neutron stars (BNS) and neutron star - black holes (NSBH), the astrophysical probability inferred at a fixed FAR is greater for BBH than for BNS and NSBH

Parameter Estimation

- Posteriors on parameters: Masses and 3D spins, location, orientation of the binary
- Incorporate more physics, such as spin-induced precession effects, and sub-dominant multipole moments
- Mass, spin, redshift distribution of the binaries give us a clue to the formation channel of the binaries
- Non-GR and tidal parameters can be added to the waveforms to perform tests of GR and to infer NS equationof-state (EoS)

- 90 events so far with $p_{astro} > 0.5$: 11 in GWTC-1, 44 added in GWTC-2.1, 35 added in GWTC-3
- ~10 % contamination
- Cross-correlation studies of sub-threshold candidates between different astrophysical surveys could lead to a multi-messenger discovery
- We also released deep sub-threshold list; 2194 total events in O3 with $p_{\rm astro}$ < 0.5 and FAR < 2/day
- ~1-2 % purity in the sub-threshold list of candidates
- Search results and sky localizations are available via Zenodo:

O3a - <u>10.5281/zenodo.5148739</u> O3b - <u>10.5281/zenodo.5546665</u>

Exceptional events in O3

GW190412

Abbott et al. Astrophys. J. Lett. 896, L44 (2020)

Phenom PHM 0.4EOBNR PHM 0.3 $\chi_{
m eff}$ 0.20.10.20.30.40.5q

- mass ratio $q = m_2/m_1 = 0.28^{+0.12}_{-0.07}$
- First detection with unequal masses
- First evidence for sub-dominant, higher order multipole moments

$$\chi_{\rm eff} = \frac{m_1 s_{1z} + m_2 s_{2z}}{m_1 + m_2}$$

GW190425

Astrophys. J. Lett. 892, L3 (2020)

Second BNS observation

Galactic binaries:

 $M_{
m tot}$: 2.50 to 2.89 ${
m M}_{\odot}$ m: 1.12 to 1.24 ${
m M}_{\odot}$

Gaussian fit to $M_{\rm tot}$ for galactic binaries:

 $2.69\pm0.12~M_{\odot}$ Nicholas Farrow et al 2019 ApJ 876 18

SEOBNR PHM

Phenom PHM

80

100

 $m_1 \left[M_{\odot} \right]$

120

140

NRSur PHM

GW190521

Masses within the pair instability gap

 $P(m_1 < 65 M_{\odot}) = 0.32\%$

 $P(m_1 \in [65, 120] \ M_{\odot}) = 99 \ \%$ $m_1 = 85^{+21}_{-14} M_{\odot} \qquad m_2 = 66^{+17}_{-18} M_{\odot}$

First evidence of an intermediate mass black hole (IMBH)

 $M = 150^{+29}_{-17} M_{\odot}$ $m_2/m_1 = 0.79^{+0.19}_{-0.29}$

Pair Instability Mass Gap: Mass gap of range $65 - 120M_{\odot}$ due to pulsational pair instability supernovae, outer layers of the star are ejected, leaving no remnant or a lighter remnant

120

100

80

60

40

20

60

 $m_2 \; [M_\odot]$

Pair Instability Mass-Gap

Inferred rate of 190521-like systems : $R = 0.13^{+0.30}_{-0.11}$ Gpc⁻³ yr⁻¹

Secondary in putative mass gap

- Mass gap of $\,\sim\,3-5\,M_{\odot}$ is observed between most massive NSs and least massive BHs
- Secondary of GW190814 lies in this mass gap
- We cannot say for certain whether it is a black hole or a neutron star

Lowest mass-ratio detection so far

Strongest evidence for higher order modes, best dark siren

LVC 190425 (2020) + LVC 190412 (2020) + LVC 190814 (2020) + LVC GWTC-1 (2019)

Forming GW190814

Neutron Star - BH Binaries

Neutron Star - BH Binaries

Properties of full catalog

Formation channels

Isolated formation channel

- 1. Via common envelope or stable mass transfer
 - 1. Preference for equal mass
 - 2. Preference for aligned spins
- 2. Chemically homogeneous evolution
 - 1. Equal mass
 - 2. Aligned spins

Dynamical formation channel

- Higher masses than isolated channel
- Lower mass ratios more likely
- Spins isotropically distributed

Second Observing Run

GWTC-1 Phys. Rev. X 9, 031040 (2019)

- All the events are consistent with having equal masses
- Small spins Only two events hint at $\chi_{eff} > 0$
- Consistent with the isolated binary formation channel

Events of Note						
GW190521	Most massive binary system with total mass = 157.9 M_{\odot}					
GW190425	Least massive system & Closest event Total Mass = $3.4 M_{\odot}$; Distance = 0.16 Gpc					
GW190426_152155	Second lowest total mass (M = 7.2 M_{\odot}), NSBH or BBH					
GW190814	Most extreme mass ratio q = 0.11, NSBH or BBH					
GW190924_021846	Least massive definite BBH system with total Mass = 13.9 M_{\odot}					
GW190514_065416	Lowest effective spin perpendicular to orbital plane: χ_{eff} = -0.16					
GW190517_055101	Highest effective spin perpendicular to the orbital plane: χ_{eff} = 0.53					
GW190909_114149	Most distant event Luminosity distance = 4.77 Gpc; Redshift = 0.75					
GW190412	First event with evidence of higher multipole mode contribution Aside from GW190814, most unequal mass ratio: q = 0.28					

R.Ewing, R. Huxford, D. Singh, Pennsylvania State University

GWTC-2

Abbott et al. Phys. Rev. X 11, 021053 (2021)

GWTC-2.1

- Two additional events, *GW190403_051519* and *GW190426_190642*, besides *GW190521* with component **masses in the PISN mass gap.**
- $GW190917_{114630}$ has inferred parameters consistent with an NSBH, however, had it originally been classified as an NSBH by the detection pipeline, its $p_{\rm astro}$ would have been smaller than 0.5.

GWTC-3

- Three candidates consistent with NSBHs
- Three candidates have the primary mass posterior partially overlapping with the PISN mass gap
- Two candidates showing significant support for $\chi_{\rm eff} < 0$
- One event showing significant support for mis-aligned spin

Binary populations

 $R_{\rm BBH} = 17.3 - 45 \,\rm Gpc^{-3}yr^{-1}$

Going Forward - Near Term

	01	— 02	O 3	04	• O5
LIGO	80 Мрс	100 Мрс	110-130 Mpc	160-190 Mpc	Target 330 Mpc
Virgo	30 Mpc		50 Mpc	90-120 Mpc	150-260 Mpc
KAGRA			8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India					Target 330 Mpc
2015	2016	2017 2018 2	2019 2020 202	1 2022 2023	2024 2025 2026

LIGO DCC P1200087-v58

GW170817

	/ /							
GW								
LIGO, Virgo								
γ-ray								
Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, S	wift, AGILE, CALET, H.E.S.S., HAWC, Kont	us-Wind						
X-ray								
Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL								
							/	
UV				-	-			
Swift, HST	Time with no EM	1 observations	;			-	/	
							/	
Optical			/					
Swope, DECam, DLT40, REM-ROS2, HST, Las Cu	umbres, SkyMapper, VISTA, MASTER, Mag	ellan, Subaru, Pan-STAR	ABS1,				1	
BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the	Sky, AST3-2, ATLAS, Danish Tel, DFN, T80	S, EABA	FE, TONOS,	ΙŅ				
IB		/					(
REM-ROS2, VISTA, Gemini-South, 2MASS, Spitze	r, NTT, GROND, SOAR, NOT, ESO-VLT, Ka	inata Telescope, HST						
						ши		
Badio						/		
ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR,	LWA ALMA, OVRO, EVN, e-MERLIN, Mee	erKAT, Parkes, SRT, Effe	Isberg	1				
		1						H II I
-100 -50 0 50	10-2	10 ⁻¹			100	/	10)1
t-t_ (s)			t-t _c (dav	s)		/		
				-/	1	/	/	

Modified from ApJL 848:L12

NS-NS Time Frequency

Early Warning: Motivation

Prompt radio emission

short coherent radio pulse near the instant of merger

Usov & Katz 2000; Hansen & Lyutikov 2001; Pshirkov & Postnov 2010; Lai 2012; Lyutikov 2013; Totani 2013; Ravi & Lasky 2014; Metzger & Zivancev 2016; Wang et al. 2016; Lyutikov 2018; Wang et al. 2018

Early UV/optical observations

properties of shock-heated ejecta, jet formation,... Metzger et al 2017 (arXiv:1710.05931)

X-ray signatures

prior to merger from NS-NS magnetosphere interaction, crust breaking immediately after merger, extended emission or X-ray plateaus in case of a long-lived post-merger NS, there may be X-ray/UV emissions *Ciolfi & Siegel 2015; Metzger & Piro 2014; Siegel & Ciolfi 2015*

• GRBs

O(s)

Early Warning: Predictions

Sachdev et al 2020 ApJL 905 L25

Evolving sky localization

Early Warning: Data Release

https://gstlal.docs.ligo.org/ewgw-data-release/

Early Warning: Replay Test

Magee-Chatterjee-Singer-Sachdev et al. ApJL 910 L21

- 11 June 2020 19 June 2020
- Data from O3 were replayed to replicate online conditions
- EW alert threshold set to 1 per day
- 5 EW alerts were sent out and later retracted

Early Warning: Replay Test

Magee-Chatterjee-Singer-Sachdev et al. ApJL 910 L21

- Since the first discovery of gravitational waves, Advanced LIGO and Virgo have observed a several dozens of black holes
- We have detected at least one BNS event (+ likely another BNS, and 2 NSBH events)
- BNS mergers are progenitors of short GRBs
- We have discovered BHs in both mass gaps, although it is not clear if these BHs were formed via conventional mechanisms
- BBH mass distribution shows several sub-features of potentially different formation mechanisms, possibly some of them being formed in dynamical environments
- NS in compact binaries mass distribution is different from that of NSs observed in the galaxy
- GWs can be used to measure the Hubble constant
- No evidence of sub-solar mass / primordial black holes yet
- No violations of GR have been observed
- No matter effects have been observed

Future detectors

http://cosmicexplorer.org

http://lisa.jpl.nasa.gov/gallery/lisa-waves.html

https://www.ego-gw.it/

Acknowledgements

Thank you ©