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Introduction to GUP

• Heisenberg uncertainty principle tells us, there should be a fundamental limit for the measurement 
accuracy, with which certain pairs of physical observables, such as the position and momentum and 
energy and time, can not be measured, simultaneously at arbitrary accuracy. 

ΔxΔp ≥
ℏ
2

• What if someone probes a high energy limit (high momentum)? Do we not need to consider 

    gravitational effects since such high energies affect the background space-time? 

Of course, yes



Well-known GUP theories

• Heisenberg algebra gets modified at large momentum, with the Planck scale as the characteristic scale

    at which the modification occurs.


•

[xa, pb] = iℏΘa
b(x, p)

• Different approaches assume different deformation of algebra, some of the famous approaches are      
given below.

−i
ℏ

[X, P] = 1 + βp2

= 1 − αp + α2p2

=
1

1 − βp2

(A. F. Ali, S. Das, E. C. Vagenas) 

(Kempf,  Mangano, Mann)

(Pedram)



• In general, the modification of Heisenberg algebra leads to non-commutativity in position or 

    momentum or both.

 Θab → Θab(p)

If

[xa, xb] ≠ 0

[pa, pb] = 0

If

Θab → Θab(x) [xa, xb] = 0

[pa, pb] ≠ 0

And 

Θab → Θab(x, p) [xa, xb] ≠ 0

[pa, pb] ≠ 0



• The generalisation and interpretation of the Heisenberg algebra in a fully relativistic theory, 

which is also invariant under general coordinate transformations is not straightforward.

• The key issue is trivially evident from the explicit appearance of  in the commutator relationships, 
which spoils any hope of general covariance.

̂xi

• This is a big difficulty since general covariance is also the first step towards generalization a theory 

    to a curved background space, or spacetime.

• Therefore, a curved space(-time) generalisation of the Heisenberg algebra requires a covariant 

   definition.

A covariant approach to GUP

Normal coordinates



Φa = λta(𝒫0)

𝒫0

λ

λ

ℳ, g

T𝒫0
ℳ

Exp𝒫0

ta(𝒫0)

Exponential map

Φa = − ηabei′￼

b ∇i′￼
σ

ηabΦaΦb = 2σ(x′￼, x)

Normal Coordinates
• The Riemannian exponential map establishes a local parametrization of a small region 


     around a location  in terms of coordinates of the flat vector space


       . 


𝒫0 ∈ ℳ

T𝒫0
ℳ

• And this is referred to as representing the manifold in 

    normal coordinates .


•

Φa



Normal Coordinates

Φa(𝒫) = λta (𝒫0)

[δta (𝒫0)]λ fixed = Ka
bε

b

δΦa(𝒫) = λ[δta (𝒫0)]λ fixed + ta (𝒫0)[δλ]ta fixed

δΦa(𝒫) = (λKa
b − tatb) εb .

• The variation of the Normal coordinates gives us,



Normal Coordinates

• In flat spacetime, it follows from the geometry of the equi-geodesic surfaces, 


λKa
b − tatb = δa

b .

• When  represents the spacetime manifold, the normal coordinates ,  and the variation

   of normal coordinates suggest  the commutator between  and the operator  generating the shift


   of origin by :

ℳ Φa(𝒫) ≡ xa

xa pb
εb

[xa, pb]
def:= iℏ (λKa

b − tatb)

[xa, pb] = iℏδa
b



• We will now turn to the case when  represents the momentum space, and look for the kind of 
deformations that the geometry of the momentum space can produce in the commutators.

ℳ

• We need information about the equi-geodesic surface and its extrinsic curvature in the momentum 
space, and for this, we need to first characterise the geometry of the momentum space. 

• The motivation to construct the curved momentum space can be taken from relative velocities of two 
points with velocities  and ⃗v ⃗v + ⃗dv

dl2
v =

dv2

1 − v2
+

v2

1 − v2
(dθ2 + sin2θ . dϕ2)

= dχ2 + sinh2χdΩ2

L. D. Landau, E. M. Lifshitz, Classical theory of fields 



Geometry of momentum space

• We write the four dimensional line element by demanding the following conditions, 

1. The four momentum geometry to be Lorentzian.

2. For points in momentum space that have zero relative velocity i.e. , the metric gives the 

difference in rest masses (or rest energies) associated with the corresponding momenta.
dlrel = 0

dl2 = − dm2dl2
rel = 0

• Considering all the points, we get the momentum space metric as,

dl2 = − dm2 − p2dl2
rel

dl2 = −
p2F′￼2

F
dm2 + μ2dl2

rel



dl2 = −
p2F′￼2

F
dm2 + μ2dl2

rel

• Where  denotes different dispersion relationsF(p2) = − m2

p2 = − m2 Flat Minkowski metric in hyperbolic coordinate 

• Modified dispersion relations  correspond to curved momentum space, with the 

   following curvature,

F(p2) = − m2

R =
6F
μ2 {−

2F′￼′￼

F′￼3
+ ( 1

F
+

1
μ2F′￼) (1 −

1
F′￼)}

Geometry of momentum space



Our GUP Formalism

• In terms of the dispersion relation , the commutators are given by 
F(p2) = − m2

[𝗑a, 𝗉b] = iℏ { F
p2F′￼

δa
b −

1
F ( F

p2F′￼

− 1) pap𝖻}

• By the use of the normal coordinates, and recognise that ‘ ’ represents the geodesic length 


    (from the origin) in the momentum space metric. The above expression then becomes: 

m

[𝗑a, 𝗉b] := iℏ {δa
b + ( F(p2)

p2F′￼(p2)
− 1) ha

b}

G2

G1



• The remaining commutators then follow from a straightforward application of the Jacobi identity

Our GUP Formalism

[pa, pb] = 0

[xa, xb] = 2iℏ (G2 − 2G′￼1 −
2G′￼1G2p2

G1 ) x[apb]

• Evidently, the modified dispersion relation introduces a non-commutativity in normal coordinates.
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Our GUP Formalism



Conclusion

• We have presented a geometric formalism for the generalised uncertainty principle which is 

    covariant and connects features of the underlying geometry with the deformation of canonical  

    commutation relations.

• Thus, our work  interconnects generalised uncertainty principle, momentum space geometry, and 
modified dispersion relations in a covariant setting.

• When the manifold  is the momentum space, we characterised its geometry in terms of a  four 
dimensional extension of the relative velocity (Lobachevsky) space, whose Riemann curvature is 
determined by the modified dispersion relation .F(p2) = − m2



THANK YOU



Biscalar and Synge’s world function

Base point

Field pointua

za(λ)
ua =

dza

dλ

x′￼

x

• Synge’s world function is a scalar function of the base point  and the field point . x′￼ x

σ(x, x′￼) =
λ1 − λ0

2 ∫
λ1

λ0

gabuaubdλ

σ =
(Δλ)2

2
ϵ

Unique geodesic between  and x′￼ x

• The world function  can be differentiated with respect to either argument ,σ(x, x′￼)

σa = Δλua, σa′￼
= − Δλua .



Synge’s world function..

• In flat spacetime, the geodesic linking x to x′ is a straight line, and 


•  behaves as a dual vector with respect to tensorial operations carried out at , but as a scalar with 

respect to operations carried out . 


σa x
x′￼

• The limiting behaviour of the bitensors  as  approaches  is called coincidence limit of the 
bitensor. 


σ... x x′￼

[σ] = 0, [σa] = 0

[σab] = gab [σabcd] = −
1
3

(Racbd + Rbdac)

σ =
1
2

ηab(x − x′￼)a(x − x′￼)b



Geometry of momentum space

dl2 = − dm2 + μ2dl2
rel

• Where, ,    is  the Lobachevsky metric of the relativistic velocity space.μ = f(m) dl2
rel = dχ2 + sinh2χdΩ2

• The construction is motivated by the two-particle system with masses  and four momenta    

     respectively and writing the energy of this system in it's center of momentum frame.

m1, m2
pi

1, pj
2

E2
com = (μ1 + μ2)2 + l2

l2 = 2μ1μ2(γrel − 1)

γrel = − u1 . u2, μ = f(m)



Geometry of momentum space

p2 = − μ2

p2 = − m2 μ = f(m)

F(p2) = − m2

• We interpret  as the measure of (squared) “three momentum distance” between the two particles l2

l2 = E2
com − [E2

com]vrel=0

“Rest energy” in the center-of- momentum frame 

| ⃗p |2 = E2 − m2 For a point particle 



Geometry of momentum space

ua(χ, ΩA) = (cosh χ)Ta + (sinh χ)Na

• Where  are arbitrary unit timelike, spacelike vectors in the tangent space , with , 

and .

Ta, Na T𝒫0
(M) TaNa = 0

ΩA = (θ, ϕ)

• parameterizing  in terms of standard Lorentz transformations 
ua

l2 = 2μ1μ2 (cosh χ1 cosh χ2 − sinh χ1 sinh χ2 cos Ω − 1)



•  is  the measure of (squared) ‘’three momentum distance" between the two particles.l2

g3−mom
ab = lim

ξa
2→ξa

1

∂2

∂ξa
1ξb

2 ( ℓ2

2 ) μ2dl2
rel = μ2(dχ2 + sinh2χdΩ2)

ξa = (μ, χ, ΩA)

• This, therefore, gives a rigorous justification for our definition of distance measure.

• It correctly gives a locally Lorentz invariant measure of relative momentum on the space of three 
momenta.

Geometry of momentum space


