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summary

® The universe is magnetized: Planets, Stars, nearby and high Z
Galaxies, Plasma in Galaxy clusters, Inter galactic medium in
voids! How do such coherent magnetic fields arise?

Cosmic Batteries and seed magnetic fields.
Turbulence — Fluctuation dynamo in galaxies and clusters

The large scale turbulent dynamos (LSDs): Stars/Galaxies

© o o o

Inflationary magnetogenesis? Caveats and constraints?
Gravitational wave predictions.

K. Subramanian, From primordial seed magnetic fields to the galactic dynamo,
Galaxies, Vol 7, Issue 2, p47, arXiv:1903.03744,

A. Shukurov and K. Subramanian, Astrophysical Magnetic fields: From Galaxies to
the Early Universe, CUR 2021.
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Measuring B fields:Synchrotorn Radiation
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Synchrotron polarization gives B |
E xn x [(f—p) x dB/dt] « dB/dt
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Galactic Magnetic Fields: Observations

M51 at 6 cm (Fletcher and Beck)

® Galactic B fields
via Synchrotron
radiation:
Intensity (B),
polarization (B )
and Faraday
rotation (By))-

® Few ;.G mean Fields
coherent on 10 kpc
scales and larger
random fields.
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® Similar magnetic field
strengths in younger
galaxies at z ~ 1.
(Bernet et. al., 2008)

,,,,, ’ / ’ (1 pc is 3.26 light years)
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Cluster Magnetic fields
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Clarke et al., ApJd, 547, L111, 2001
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Statistical RM study
B ~ 5(1/10kpe) /2 uG
embedded sources
background sources
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Our Galaxy B seen by Planck

B from polarized emission (353 GHz) by elongated Dust grains (Planck)
(https://www.cosmos.esa.int/web/planck/picture-gallery)

® Chandrasekhar-Fermi 1953 estimate of galactic B from dust polarization.
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Galactic Magnetic Fields: Observations

SOFIA Legacy Program, M51: Borlaff....KS..et. al, ApJ (2021)

(FIR 145 .m) (Radio 6 cm Fletcher et. al)
How do such large scale galactic fields arise? Mean field dynamo?
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Maintaining magnetfic fields

® Magnetic fields decay if not maintained: Lorentz force Driving motions,
which are damped by Viscosity or become turbulent and then decay

$® EM induction by Motions can maintain magnetic fields
OB/0t=—-cV xE, E=—(VxB)/c+ (J/o);

(OB/0t) = —cVXxE=V x (VxB-nV xB); n=c’/inc
The field back reacts on V via the Lorentz force J x B
If n — 0, the flux ® = [ B - dS is ’frozen’ — d®/dt — 0.

BA = constant and p Al = constant — B/p «x l,and A « 1/(pl)

| L

® Magnetic and Fluid Reynolds number: R, = vl/n, Re = vl/v.
Galaxy, ionized: R,,, ~ 3 x 1019, R. ~ 4.6 x 107, 1 = 100pc, v = 10kms~—!.

» Magnetic Field almost frozen to moving plasma. Need initial B field -
“Battery”. Need kinetic to magnetic energy conversion — dynamos
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The first “seed” fields in the universe

® Astrophysical Batteries using postive/negative charge asymmetry

® Biermann Batteries: Eg;., = —Vpe/ene + ...
(0B/0t) = —cV X ERjer = —(ck/ene)Vne x Ve

#® Re-lonization fronts: B < 1019 G (Subramanian, Narasimha,
Chitre, MN, 1994; Gnedin, Ferrara and Zweibel, Apd, 2000)

® Curved Structure formation Shocks (Kulsrud et al, 1997)

® Take curl, use Ampere, neglect Hall, inertial terms

9B _ G« [V xB-n(VxB) - %8V

x VT.
ot e MNe

® Fields generated from zero if VT not parallel to V.

Need Dynamos to explain observed fields and maintain against decay

Chandrasekhar Lecture, 2nd Chennai Symposium on Gravitation and Cosmology-2022, Feb 3, 2022 - p.8/31



Magnetic fields from Reionization

-

HI, gas density, temperature and B field; Gnedin, Ferrara, Zweibel, 2000, ApJ
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Flucutation/Small scale dynamo

N

© o o o

Turbulence common: Stars, galaxies, galaxy clusters: leads to
Random Stretching + “Flux freezing” = Growth of B

@ O

BA = constant and p Al = constant — B/p < l,and A « 1/(pl)

Cancellation (Eyink, 2011) and Resistance limits growth.
(Stretching vs dissipation — v/l ~ n/1% — Ig ~ 1/Ry/%)

Random B grows if Ry = vi/n > Rerit ~ 30 — 100 (Kazantsev 1967)

Growth rate fast ~ v/1 (107 yr: Galaxies; 10° yr clusters).

Field intermittent: Eddy scale [, to "resistive” scale ~ [ /an/ <

How does it saturate? Important for young galaxy/cluster/IGM
Faraday RM and mean field dynamos?
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The fluctuation dynamo simulations

102

10— i

10°

® Turbulence driven on scale of box. Random seed field amplified to
Saturation. Field intermittent (Pallavi Bhat 2012).

® Renormalized 1, drives efective Ry; — Rerit, ls ~ L/RY2 (KS, PRL, 99; 03).

crit

® OrReduced stretching BUT (5 ~ L /Rllw/ 2 (Schekochihin et al., ApJ, 04)

| Closure models approximate and simulations limited to R,,/R..i; ~ 20 — 30.
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Helically forced furbulent dynamaos

® Remarkable change if
turbulence is helical!

® Helical turbulence
driven 1/15 scale of box

=1 (Axel Brandenburg,

2001....2012).

$» Rapid large-scale field
growth in kinematic
stage conserving

= magnetic helicity.

9o Further Slow Growth

on resistive timescale to

) Box scale! (dissipating
small-scale helicity)

B,/B
2
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Turbulent Mean-Field Dynamo

® V=V-+v,B=B+b: Mean + Stochastic fields
® Mean satisfies DYNAMO equation, with £ = v x b:

® The stochastic small-scale field satisfies:
8b =Vx(Vxb+vxB-nVxb+G

® For short correlation times (), neglect G, also assume
statistical isotropy of the random v :

£ =1uvx /t dt' (9b/0t') = v(t) X /t dt'[—v(t') - VB + B - Vo (/)]

€ =aB —n(V x B) WlThOéN—gT’U (V x v), mz%Tﬁ
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Helicity from rofation and strafification
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The turbulent galactic dynamo.

® 0OB/0t=V x (Vx§+a§—(77t+n)(VX§));

A~ —3TU W~ —3V0urb, "t~ §TU2 ~ glturbvturb

® Galactic differential rotation (shear) generates B, from B,.

Supernovae drive HELICAL turbulence (Due to Rotation +
stratification) Helical motions generate 5, from B5,,

® Exponential growth of B, ¢ .., ~ 10° — 107 yr

® Seenin DNS of SNe driven turbulence in local galactic patch
(Gressel + 2008; Gent, Shukurov + 2013; Bendre + 2013/15)
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Helicity and dynamo quenching

Anvar and Natasha Shukurov 2009
9 Helical motions transfer helicity between WRITHE AND TWIST Helicities

< Lorentz force of small-scale twist Helicity grows to kill the dynamo

® Unless one has helicity fluxes. Simplest due to outflows!
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{ Galactic outflows and magnetic spiral
o

(Chamandy, Shukurov, Subramanian, MN, 2014)
Winding up Spiral with enhanced F>"* along spiral

10.250 Gyr

y (kpc)

-9 -6 -3 0 3 6 9
z (kpc)
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Both dynamos (FD and LSD) unified?

Helical turbulence at k. = 4 + Uniform Shear S+ = 0.38, R,, = 812, P, = 10.
Signature of Two dynamos :-) (Pallavi Bhat, KS, AB 2019)
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B fields in disk galaxy formation

Pakmor et al, MNRAS, 481, 4410 (2018)

B [pi3] By iG] By [
. O e . 0 e
—F=Ad=3=2~-1 0 ¥ & 3 4 5 -8-4-3=2-=10 1L X §F d & =1512-=4-=30 3 & 0 25
oLl T T T T ™ T L T T T T T T L) )
F a L
15 | = N 4 P
1wk g gl { eral oy _
W S ) ]
h A 44 ; ": % A #
- ) AR - RO ) 1 = T ’
1 o . ¥ -
SR (LWL L AT, (¥ .8
=) !
I-. e 3 ¥ ‘b ..-‘ Sl -
- *
— 1) | === = ; . ._J_u i i & a
R - S e i i q i |
= F - . . L i ]
LY o s .
20 I e .F'_d L L | I I | L L i i i
=3 =48 =10 =0 ¢ 5 M 15K B -f O B N =W -5 =10 =85 0 & 10 15 M)
x {kpe] = fhepe
I‘l ] ] .|" - q 1 ] ] ] 1 1 1 ] ] i ] ] (] 1 1 . L]
E _‘i l\ .‘dg 1 ‘J n = L i-r 1 B =1
E T - - - =
I.TE L1 I- L] ‘F‘. N [ LA o '_ s - e T.?g-":-::‘:.‘_r_i' » | i | “ E J
v L # g
B i ! N & i . J
_l“ 1 1 ] 1 i 1 /| 1 1 i 1 | i 1 i 1 | i | '] i
-2y =<F5 =10 =5 & 5 MW b HN-F-=IG-M0 =5 0 & I i HA-M-153-10 =60 5 10 I5 X
» [ipe] r [lepe] c [lepe]

Chandrasekhar Lecture, 2nd Chennai Symposium on Gravitation and Cosmology-2022, Feb 3, 2022 - p.19/31




Structure formation: Millenium Simulation

The Cosmic web at Redshift = 0 or t = 13.6 Gyr
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Gamma-Ray Consfraints on void B

Secondary ¥-ray emission from the electromagnetic cascade

TeV ¥ rays are absorbed in
interactions with
Extragalactic background As a result, e’-¢
light (EBL) pairs with energy
B m (s

[ y0

are produced in
the itergalactic
space

Blazar

In the presence of magnetic
field are deflected away from
the observer. Deflection regime
depends on the correlation
length of the magnetic field.

L O=DUR =
~3x10* [B /10" G] [F /10 TeV]*
A, <<D, 8=V(D A) IR, =
=5%107 [B / 107 G] [E /10 TeVI™[A_/ 1 kpc]™
levgen Vovk

Constraints on the EGMF from Fermi/LAT
observations of TeV blazars

e’-¢ pairs upscatter CMB
radiation and produce
secondary, GeV photons with
energy )
E,~ R e, (E/mc)’ =

~ 88 [F /10 TeV] GeV
vo

Primordial magne
fempe, 31.03.2011

B in voids bigger than 10~ Gauss!
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Planck Consfraints on primordial B & np

» CMB signals fromm metric and velocity perturbations
Alfvén waves: (KS,JDB PRL,98; Durrer+98, TRS,KS, PRL, 01)

® Bfield Dissipation — lonization, Heating

(Sethi,KS MNRAS, 05,Kunze/Komantsu 15, Chluba+15)
Ade et al. arXiv:1502.01594v1 (Paoletti)

™ | |

B Planck TT+lowP:C
S B Planck TT+lowP:C+P

np
0

0 2 4 6
B1 Mpc [HG]

$® Strong sub nano Gauss upper limit from CMB Non-Gaussianity
(TRS, KS, PRL, 2009; Trivedi, TRS, KS, PRL, 2012; Trivedi, KS, TRS, PRD, 2014 )

Chandrasekhar Lecture, 2nd Chennai Symposium on Gravitation and Cosmology-2022, Feb 3, 2022 — p.22/31



Primordial fields origin during Inflafion?

(Turner and Widrow, 1988; Ratra 1992; Martin, Yokoyoma 2008, Subramanian 2010/16)

$ Rapid expansion — vacuum fluctuations amplified and
stretched to long wavelength *classical” fluctuations

® Negligible charge density breaks flux freezing.

» BUT Need to break conformal invariance of ED (Couple to inflaton
¢, higer dimensional scale factor b(t), curvature R, axion 6 ...)

§— / V=g %z b(t)[- f2(¢)16iw W FMY — RAZ 4 gOF, FMY

® The mode function satisfies: A" + 2f7'[1’ 1+ k%A =0

$ EM wave amplified from vacuum fluctuations

® After reheating E shorted out and B frozen in.
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Inflation and perfurbations

Courtesy Prof. Aseem Paranjape

Length Scales

log(A)
H|lo
/ . ///inflationéends
// | radi:ation-matter l ( )
equality 0g\4a
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Consistent Inflationary Magnetogenesis?

harma, Sandhyaq, Seshadri, Subramanian, PRD, 2017; Sharma, Subramanian, Seshadri 2018

® Scale invariant magnetic spectrum when f « o or f x a3

BO ~ 5 X 10_10G (10%1\41)
p

® Strong backreaction for f « a3 due to E field growth. For f « a2,
'’charge’ ex = ¢/ f?, can become very large/small. (Demozzi et al, 2009)

® Schwinger effect creates charge if electric field is large
enough, and freezes B amplification? Kobayashi, Afshordi, 14

® Consider models with matter dominated epoch after inflation
before reheating, where f decreases back to 1.

® Forkn<1l,A=cy+co de/f2 ; for growing/decaying f, ci/co
branch is growing mode

® When [ transits from growth to decay, the dominant mode
fransits from ¢; 1o 5 branch, spectrum transits to blue:

dpg/dInk o k*
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Consistent Inflafionary Magnhetfogenesis

Sharma, SJ, TRS, KS, PRD, 96, 083511, 2017; Sharma, KS, TRS, PRD, 97, 083503, 2018
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°

Require low scales of inflation and reheating to avoid back reaction

°

Reheating at 7" = 100 GeV (EW), gives initial comoving B ~ 6 x 10~ 7G,
L. ~ 3 x 10%°cm ; and after turbulent decay including inverse transfer,
B~7x10713G, L. ~ 0.2 kpc

® Helical: Initially B ~ 3.4 x 10~7G, same L. , decay with inverse cascade
gives B ~ 2.6 x 107G, L. ~ 70 kpc

Chandrasekhar Lecture, 2nd Chennai Symposium on Gravitation and Cosmology-2022, Feb 3, 2022 — p.26/31



Gravitational Wave Predictions

Sharma, KS, TRS, PRD, 101, 103526, 2020
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Predictions for 1% in EM energy and Tz = 100 GeV
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Gravitational Wave Predictions

Sharma, KS, TRS, PRD, 101, 103526, 2020
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Where do we stand?

!

o

9

Universe is Magnetized!

Cosmic batteries can provide the first seed fields.

Dynamos required to amplify/maintain fields.

Field coherence when fluctuation dynamo saturates?

For Large scale dynamos: Helicity Conservation? FD vs LSD?

Primordial field required to explain B in Intergalactic voids?
Inflationary magnetogenesis? Leads — blue spectrum?

Traditional probes from radio, optical and infrared astronomy.

New probes from v-ray and GW Astronomy?
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Opftical/Infrared polarization probes B

!

Polarization: Optical and FIR

Both depend on aligned grains.
Orientation of E-vector of optical polarization is
orthogonal to that of the emitted radiation.

Unpolarized
star radiation
(optical)

, Q
Dust grain

Transmitted
(optical)

o IR dust radiafion
http://www.planck.fr/article263.html
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Gamma-Ray Constfraints on B

Fig. 1 A comparison of models of cascade emission from TeV blazars (thick solid black curves)
with Fermi upper limits (gray curves) and HESS data (gray data points).
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