Constraining the time-variation of the gravitational constant using gravitational-wave observations of binary neutron stars

Aditya Vijaykumar (with Shasvath Kapadia and Parameswaran Ajith)

arXiv:2003.12832 Phys. Rev. Lett. 126, 141104

Motivation

- Dirac was the first to conjecture the possibility of the variation of the fundamental *constants* of nature.
- Alternative theories, especially scalar-tensor theories like Brans-Dicke, predict a time-varying gravitational constant *G*.
- There are bounds on the time variation of G from several observational channels. The strongest comes from Lunar Laser Ranging (~ 10^{-13} yr⁻¹). All bounds though come from low redshift or very high redshift (CMB).
- Can we add gravitational waves to the list?

Motivation

- There are some (very very weak!) constraints on the time variation of G from GW150914 and GW151226 [Yunes+ 2016].
- Gravitational waves carry an imprint of the *G* at the time of merger.
- Hence, if the inferred masses using the current value G_o fall outside the range of *allowed* neutron star masses by theory, it would be an indication that the value G_o at merger would be different than it is now.

Example Theory Constraints			
Repr. Parameters	GW150914	GW151226	Current Bounds
$\sqrt{ \alpha_{\rm EdGB} }$ [km]		_	10 ⁷ [56], 2 [57–59]
$ \dot{\phi} $ [1/sec]	_	_	$10^{-6} [60]$
$\sqrt{ \alpha_{\rm dCS} }$ [km]	_		10 ⁸ [61, 62]
(c_{+}, c_{-})	(0.9, 2.1)	(0.8, 1.1)	(0.03, 0.003) [63, 64]
$(eta_{ m KG},\lambda_{ m KG})$	(0.42, -)	(0.40, -)	(0.005, 0.1) [63, 64]
ℓ [μm]	$\textbf{5.4} \times \textbf{10^{10}}$	2.0×10^9	10-10 ³ [65-69]
$ \dot{G} [10^{-12}/\text{yr}]$	5.4×10^{18}	1.7×10^{17}	0.1-1 [70-74]
$m_g \; [\mathrm{eV}]$	10^{-22} [19]	10-22 [5]	$10^{-29} - 10^{-18} [75 - 79]$
$E_*^{-1} [\text{eV}^{-1}] (\text{time})$	5.8×10^{-27}	3.3×10^{-26}	-
$E_*^{-1} [eV^{-1}] (space)$	$\boldsymbol{1.0\times10^{-26}}$	5.7×10^{-26}	$3.9 \times 10^{-53} [80]$
$\eta_{ m dsrt}/L_{ m Pl}>0$	$\textbf{1.3}\times\textbf{10^{22}}$	3.8×10^{22}	_
$\eta_{ m dsrt}/L_{ m Pl} < 0$			2.1×10^{-7} [80]
$\alpha_{ m edt}/L_{ m Pl}^2 > 0$	5.5×10^{62}	2.5×10^{63}	2.7×10^2 [80]
$\alpha_{ m edt}/L_{ m Pl}^2 < 0$	0.0 × 10	2.0 \ 10	-

Yunes+ 2016

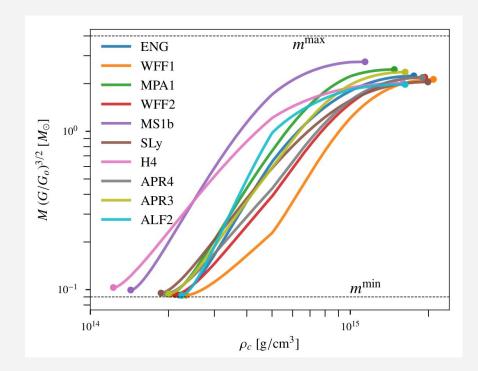
Neutron Stars

• The mass of a spherically symmetric star is determined by the TOV equation.

$$\frac{dm(r)}{dr} = 4\pi r^2 \rho(r), \quad \frac{dP(r)}{dr} = \frac{-G \, m(r) \, \rho(r)}{r^2} \, C(r),$$

C(r) is the relativistic correction.

- A dimensional analysis of the above reveals that the mass of the equilibrium configuration scales as $G^{-3/2}$. Can be verified by numerics.
- There exists a minimum (maximum) mass limit below (above) which a neutron star will get gravitationally unbound (collapse).



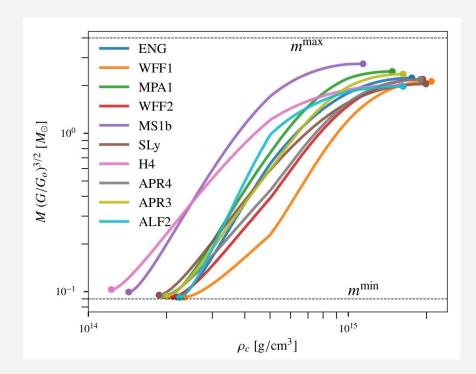
(Binary) Neutron Stars

- We entertain the possibility that the value of G during the merger G_s could be different from its current value G_g
- The maximum and minimum masses between these two epochs scale as,

$$m_{\rm s}^{\rm min, \; max} = m^{\rm min, \; max} \; (G_{\rm s}/G_{\rm o})^{-3/2}$$

The precise values of the masses will depend on the equation of state.

• We make the conservative choices $m^{max} = 4$ M_{sun} and $m^{min} = 0.1 M_{sun}$.



(Binary) Neutron Stars

The phase matching condition gives us

$$\left(\frac{\pi G_{\rm o} M_{\rm o} f}{c^3}\right)^{1/3} = \left(\frac{\pi G_{\rm s} M_{\rm s} f}{c^3}\right)^{1/3}, \qquad \qquad \qquad M_{\rm o} = \frac{G_{\rm s}}{G_{\rm o}} M_{\rm s} \quad \Longrightarrow \quad m_{\rm o} = \frac{G_{\rm s}}{G_{\rm o}} m_{\rm s},$$

where m_{a} and m_{s} are the values of the masses at the current epoch and merger epoch respectively

• Invoking that m_s should lie between the maximum and minimum allowed NS masses at the epoch of merger, we get

$$m^{\min}(G_{\rm s}/G_{\rm o})^{-1/2} \le m_{\rm o} \le m^{\max}(G_{\rm s}/G_{\rm o})^{-1/2}$$

• Caveat: we assume that the redshift of the source is known either from an independent electromagnetic observation, or if the event is nearby.

Results

Using GW170817 (with EM counterpart), the value of
 G at the merger epoch is constrained to

$$4 \times 10^{-3} G_o < G_s < 9 G_o$$

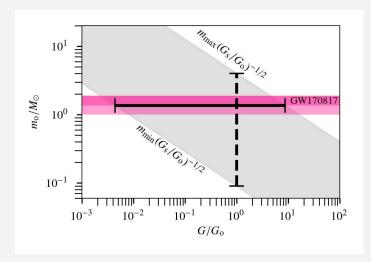
and its average rate of change is constrained to

$$-7 \times 10^{-9} \text{yr}^{-1} < \dot{G}/G_o < 5 \times 10^{-8} \text{yr}^{-1}$$

• Using GW190425 (assuming low-redshift event), the constraint is,

$$-4 \times 10^{-9} \text{yr}^{-1} < \dot{G}/G_o < 2 \times 10^{-8} \text{yr}^{-1}$$

• These bounds assume pretty conservative values of the min/max masses. Bounds go as $(1 / m^{min/max})^2$.



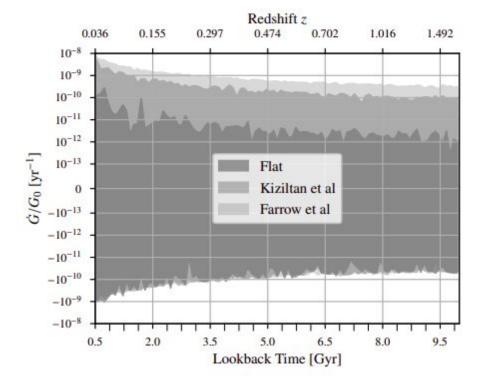
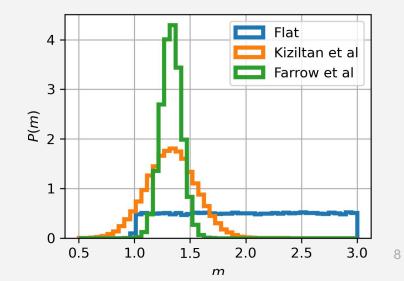


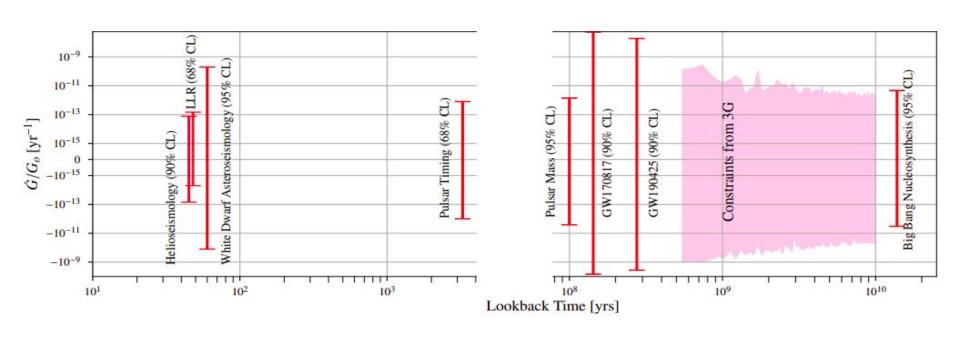
FIG. 4: Expected constraints on \dot{G}/G_o from 10 year observations of third-generation GW detectors. We assume three different mass distributions of neutron stars, and that $\sim 1\%$ of the mergers will have a detectable electromagnetic counterpart from which the cosmological redshift can be estimated.

Results

- What does the future look like?
 - Simulate a population of BNSs in the next generation of detectors, based on three different mass distributions
 [Kiziltan+ 2013, Farrow+ 2019]



Results



Summary

- We outlined a method to constrain the time variation of the gravitational constant using gravitational-wave observations from binary neutron stars.
- These constraints are fourteen orders of magnitude better than any other constraints from gravitational waves, and are comparable to some other non-GW constraints.
- These constraints will improve by a couple of orders of magnitude using future detectors, and will probe an epoch inaccessible to any other observational probe.

Future Work

- Include change in redshift evolution due to varying *G*, which will be important for high-*z* 3G BNS detections.
- Combine information from multiple events for stronger constraints, possibly using a fully bayesian approach.
- Build a map of *G* across cosmic time and hence place constraints on models of GR/cosmology with time-varying *G*.

Get in Touch:

aditya.vijaykumar@icts.res.in

https://adivijaykumar.github.io/research/

Thanks For Listening!

Any Questions?

Please Stay Safe and Healthy!