Gravitational-Wave Astronomy

K G Arun

Chennai Mathematical Institute

Mini School on Gravitation and Cosmology IIT Madras

24th November 2022

LIGO–India Scientific Collaboration

This talk

- What are Gravitational Waves?
- Why should we be interested in this?
- What have we achieved so far?
- What are the future prospects?

Gravity is curvature of space time

Image credit: ESA

Gravitational Waves

....ripples in the curvature of space-time.

Gravitational Waves are simply ...

- Propagating gravitational fields.. (similar to EM waves which are propagating EM fields)
- Produced by acceleration of masses (EM waves produced due to accelerating charges)
- Transverse in nature (so are EM waves)
- Has two states of polarisations (similar to EM waves)
- Interacts very weakly with intervening matter (unlike EM waves)

GWs are quadrupolar, EM waves are dipolar

Properties of Gravitational Waves

- Any relativistic theory of gravity will predict Gravitational Waves (GWs).
- In General Relativity (GR), GWs travel at the speed of light and has two modes of polarisations called plus and cross polarisations.
- The physical effect of a passing GWs is to set them into motion transverse to the propagation direction.

Effect of Gravitational Waves

Measure of signal strength

$$h = \frac{\Delta L}{L}$$

The challenge with direct detection

Astrophysical

Binary black hole @ 100 Mpc

$$\frac{\Delta L}{L} \sim 10^{-21} \label{eq:Lambda} \Delta L(km \; arm) \sim 10^{-18}m$$
 Smaller than the size of an atomic nucleus

Neutron Stars and Black Holes

A Neutron Star

A black hole

Hulse-Taylor Binary pulsar (1974) Indirect evidence

Nobel Prize in 1993

Why Gravitational Waves?

Our understanding of the Universe

Image credits: NASA

Gravitational Waves provide...

Whole new way of looking at the dark side of the Universe.

A new branch of Astronomy capable of revolutionising our understanding of the cosmos.

A new tool to probe fundamental Physics (Testing General Relativity.)

Compact binary mergers Most promising GW source

Binaries consisting of Neutron Stars or Black holes loose energy to GWs and they merge.

Binary black hole mergers

Binary Black Hole Evolution: Caltech/Cornell Computer Simulation

> Top: 3D view of Black Holes and Orbital Trajectory

Middle: Spacetime curvature: Depth: Curvature of space Colors: Rate of flow of time Arrows: Velocity of flow of space

Bottom: Waveform (red line shows current time)

Detecting Gravitational Waves

A video of How LIGO works

Courtesy: Caustic Soda, youtube channel

Advanced LIGO and Virgo Interferometers

Kilometre scale interferometers

Virgo Website

Sensitivity of LIGO

Matched Filtering Searching weak signals in noisy data

Very accurate theoretical modelling is crucial.

Very close interplay between Experiments, Theory, Algorithms

Gravitational waves finally captured

On 14 September 2015, the universe's gravitational waves were observed for the very first time. The waves, which were predicted by Albert Einstein a hundred years ago, came from a collision between two black holes. It took 1.3 billion years for the waves to arrive at the LIGO detector in the USA.

The signal was extremely weak when it reached Earth, but is already promising a revolution in astrophysics. Gravitational waves are an entirely new way of observing the most violent events in space and testing the limits of our knowledge.

Nobel prize press release

D Nobel Media, III, N.

Rainer Weiss

Prize share: 1/2

Elmehed

Elmehed

Prize share: 1/4

© Nobel Media Barry C. Barish Kip S. Thorne Prize share: 1/4

Nobel Prize, 2017

GWI509I4

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

G

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott *et al.** (LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

30 Msun + 35 Msun ---> 62 Msun + 3 Msun GWs

1.3 billion light years away

Several Indian Scientists played a crucial role in the Discovery.

Detected signal

LVC, PRL 116, 061102 (2016) 25

GWI 50914: Reconstructed Waveform

LVC, Phys. Rev. Lett. 116, 061102 (2016)

Template Based reconstruction and agreement with Numerical Relativity

Tests of General Relativity using GWI 50914

- Possible deviation of the observed signal from General Relativity was investigated by various means.
- The observed signal is consistent with the predicted GR waveform, within statistical uncertainties.
- These are the bounds from genuinely strong-field, radiative dynamics.
- GR rocks!

The firsts...

A milestone in astronomy

- First direct detection of a GW signal inaugurated Gravitational Wave Astronomy.
- First direct detection of black holes.
- First observation of a binary black hole merger.
- First tests of GR from highly relativistic, radiative regime.

GWI708I7: Binary Neutron Star merger Gravitational Waves and Light

Another Milestone in Astronomy

- First detection of the merger of two neutron stars (predicted to exist by Hulse-Taylor 1972)
- Light and GWs from the same source! [Multi-messenger Astronomy]
- Verification of the hypothesis that binary neutron star mergers produce short gamma ray bursts.
- A direct way to measure the equation of state of the neutron star.
- Several other impacts on fundamental physics and cosmology.

This path-breaking discovery has given us unique insights about astrophysics and fundamental physics

NS-BH merger: GW200115

No light detected in association with this event

ов s е R V I N 01 R U 2015 - 2016	G Z		02 2016 - 2017								03a+0 2019 - 2020	
36 31	23 14	14 7.7	31 20	11 7.6	50 34	35 24	31 25	1.5 1.3	35 27	40 29	88 22	25 18
63	36	21	49	18	80	56	53	≤2.8	60	65	105	41
cwrso914	GW151012	GW151226	GW170104	CW170608	GW170729	GW170809	CW170814	cwirosi7	сwi7овів	CW170823	CW190403_051519	GW190408_181802
30 8.3	35 24	48 32	41 32	2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37	56	76	70	3.2	175	69	35	52	65	59	101	156
CW190412	CW190413_052954	cw190413_134308	CW190421_213856	CW190425	GW190426_190642	CW190503_185404	GW190512_180714	cw190513_205428	CW190514_065416	cw190517_055101	GW190519_153544	CW190521
42 33	37 23	69 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71	56	111	57 87	56	90	99	19	30	55	20	17	64
GW190521_074359	CW190527_092055	CW190602_175927	cw190620_030421	GW190630_185205	GW190701_203306	CW190706_222641	CW190707_093326	GW190708_232457	CW190719_215514	CW190720_000836	CW190725_174728	cw190727_060333
12 8.1	42 29	37 27	48 32	23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21 16
20	67	62	76	26	55	33	76	57	66	11	13	35
GW190728_064510	GW190731_140936	CW190803_022701	CW190805_211137	GW190814	GW190828_063405	GW190828_065509	CW190910_112807	cw190915_235702	CW190916_200658	CW190917_114630	CW190924_021846	GW190925_232845
40 23	81 24	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	53 24	11 6.7	27 19	12 8.2	25 18
61	102	19	19	18	107	34	20	76	17	45	19	4]
GW190926_050336	GW190929_012149	CW190930_133541	GW191103_012549	cwi91105_143521	CW191109_010717	GW191113_071753	CW191126_115259	GW191127_050227	CW191129_134029	CW191204_110529	CW191204_171526	GWI91215_223052
12 7.7	31 1.2	45 35	49 37	9 1.9	36 28	5.9 1.4	42 33	34 29	10 7.3	38 27	51 12	36 27
19	32	76	82	11	61	7.2	71	60	17	63	61	60
GW191216_213338	GW191219_163120	GW191222_033537	GW191230_180458	GW200105_162426	GW200112_155838	GW200115_042309	GW200128_022011	GW200129_065458	CW200202_154313	CW200208_130117	CW200208_222617	CW200209_085452
24 2.8	51 30	38 28	87 61	³⁹ 28	40 33	19 14	38 20	28 15	36 14	34 28	13 7.8	34 14
27	78	62	141	64	69	32	56	42	47	59	20	53
GW200210_092254	GW200216_220804	CW200219_094415	CW200220_061928	GW200220_124850	GW200224 222234	GW200225_060421	CW200302_015811	CW200306_093714	CW200308_173609	cw200311_115853	CW200316_215756	GW200322_091133

The events listed here pass one of two thresholds for detection. They either have a probability of being astrophysical of at least 50%, or they pass a false alarm rate threshold of less than 1 per 3 years.

ARC Centre

86 BBHs, 2 BNSs and 1 NS-BH with $p_{\rm astro} \ge 0.5$

It is raining Black holes!

Story so far

- Discoveries of binary BHs, binary NSs and NS-BH.
- Light from the BNS merger (Multi-messenger astronomy)
- A BBH with a total mass of ~150 Msun.
- Mass spectrum of BHs.
- Tests of GR, Measurement of Hubble constant, NS equation of state,...

Looking forward

World-wide network of detectors

LIGO-India

A planned GW detector in India

 Adding LIGO-India to the planned world wide network of advanced GW detectors would significantly enhance the sky coverage, duty cycle as well as the source localisation which are crucial for multi-messenger astronomy.

Design of the proposed site, Credits: T. Souradeep

3G detectors beyond Adv LIGO

Einstein Telescope

LISA mission

A milli Hertz detector to listen to supermassive BH mergers

Pic: ESA

Conclusions

- Gravitational Waves are unique messengers of the cosmos, which can complement the information we get from Light.
- First detection of gravitational waves has made a significant impact on our understanding of the Nature.
- With LIGO-India, India is slated to play a big role in the field of gravitational wave astronomy in the years to come.