References (at all levels) -> Hartle (beginner) (physics oriented approach) -> Shutz (11) -> Sean Caroll (intermediate) (mathematically oriented) - E. Poisson (1) (unenty math + phys.) (assences some familiarity) - R Wald (advanced) (mathematically signatures (at physics level)) - Mathias blan (lecture notes) (Amazing mealth of info.) - Landan Lifehitz J Claesics. MTN - Paddy: book - (intermediate) (very vingne selection/organisation of topics) → Weinlereg's Grav. & Cosm. _ (") vez Reall's lecture notes (2016) (advanced intermediate) Board Plan · introduce. · Ack about background. Only these boards should be . Ask questions enfficient.

BIG PICTURE: GRAVITY = GEOMETRY (why?) (and why should 9 leasn Jancy schmancy math?) PHYSICAL THEORY DYNAMICS KINEMATICS $\vec{F} = k \frac{q_1 q_2}{q_1^2} \hat{\eta}$ $\frac{d^2x^2}{dt^2} = \frac{\vec{F}'}{m_{\rm I}}$ valid for all theories specific theory in components $\frac{d^2 x^i}{dt^2} = \frac{F^i}{m_I}$ ef. Contomb's -> let us forget history & think about this set-up for a second. D 15 our kine matic structure very general? egf. D'Consider two cars with initial velocity V'& no force acting on them. Also let them be parallel 6-01 kinematics will say they will never meet. 60-

what if they are on the surface of ef. D a sphere S² - let's say equator? Equator (Aleo about perceived force!) They meet So already even at a Newtonian level we would like to generalise our pinematic structure. -> this change is only at the level of space! No change in own understanding of time! -> Aleready differential geometry is neglel. (neeful exercise, after this course, Back to semi-historical rederive Griffith's E.D course page egine.) -> only static situations. $F = kq_1q_2$ more dynamically Maxwell's equis $\partial_{\mu}F^{\mu\nu} = j^{\nu}$ ($\nabla \cdot E = \underbrace{e}_{\varepsilon_{0}} \overline{\nabla} \times \overline{B} = \underbrace{\partial \overline{E}}_{c^{2}\partial t} + \mu_{0}j$ $\overline{\nabla} \times \overline{E} = -\underbrace{2}\overline{B}$ $\overline{\nabla} \cdot \overline{B} = 0$ Special relativity. speed of light universal ! (notion of time changed!)

ne have notion of space-time] Now Kinematic structure has undergone (a deramatic change! Notion of simultaneity is not universal Also $E = mc^2 \equiv mass - Energy$ equivalence! Mosie interesting geometric structure! So for so good. Still using is Gravity = Geometry? Let's focue ou dynamice. Newstou's laws $\vec{F} = -\underline{G}Mm\hat{q}$ ($\mathfrak{F} \nabla^2 \phi = 4\pi \mathcal{G} \varrho$) $g^2 = \frac{g^2}{R} \operatorname{static}, dynamics is not <math>\mathcal{F}$ are incompatible with special selativity not a unit (this was Einstein's motivation - purely theoretical) For example, precaecion of the perihelion of the orbit of meaning is just a correction weed not be geometerical. But Granity = Geometery gives _ Jos Jace ! Grannty = Geometary aka Equinalance principle kinematics (=> dynamics?

For simplicity, let us focus on uniform fields kine matricel $q^{\text{th}} \vec{F} = m_{\text{T}} \vec{a}$ oby namical $\vec{F} = q \vec{E}$ Electrostitics $\Rightarrow \vec{a} = \hat{q}_{\vec{n}} \vec{E}$ what is the dynamical eqt. F' = mg g différence between the $\Rightarrow a^2 = \frac{m_g}{m_f} g^2$ two ? ma = ma (if it was proportional?) Experimentally true. Weak equivalence poinciple falk about Lagrangin & arc length (> Explain elevater expt. All cases.) -> talk about light. S guy dx dx dx dx > Einstein équinalence painciple. $\int \left(\frac{dt}{d\tau}\right)^2 - \left(\frac{dx}{d\tau}\right)^2$ -> Bending of light -> Tidal forces. X doorit cover. $\left(\begin{array}{c} \left(\begin{array}{c} t \\ t \\ t \end{array}\right)^{2} \left(1 - \left(\begin{array}{c} t \\ t \\ t \end{array}\right)^{2}\right)^{2}\right)$ > Granitational Redshift $= \left(\frac{d\tau dt}{d\tau} \sqrt{1 - v^2} \right)$ $Q = \int dt \left(\left(- \frac{y^2}{2} + \cdots \right) \right)$

• •	Gnavitat	nonal	gred -	shift.	(weak	2	field	c, n	on-20	elation	insti	د) د		
· · ·		Z		· · · ·	- has	8	beac	ov v	that interval	emit s of	S DT _I	light	signals	· · · ·
· · ·	 			· · · · ·	13	· ·	unif	5 m	gear gear	itati	onel	fre		· · · ·
· · ·	 		• •		- vol	nat	ís ís	۲ ۲	τ τ Β Α		(+l+	eg jale ú	have	· · · ·
• •	e e e e e e e e e e e e e e e e e e e	and - Rel	oka e	(fgr			• •	•	••••	•			clocks	to
· ·	Assume	ĒĒ	. P	holds	· · · · · · · · · · · · · · · · · · ·	· ·	· ·	•	· · · ·		· ·	· ·	tical clocks begin	with
				• • • •				•				· ·		
• •			Z	• • •			• •	•	••••	•	• •	• •		• • •
• •		· · ·	Alic	e			• •	•	Z	A =	h+ -	$\frac{1}{2}g^{2}$		
· ·	 	· · · ·			a = g	· ·	· · ·	•	· · · · · · · · · · · · · · · · · · ·	B =	⊥gt	2 .	· · · ·	· · · ·
• •			Bob	 				•	 	= NB	 . = . q	t		
· ·		$1 \Rightarrow gt$			· · · · ·	· ·	· ·	•	· · · ·	• • •	· ·	· ·	· · · ·	· · · ·
• •				• • •		, ,	•••	•	••••	•		• •		• • •
Sa	y Alice	emits	at	t=t		The	· · ·	tonaj	ector))	ş	that	· · ·	· · ·
• •	signal	is z((t) = z	$=$ (t_i) -	c(t-t		• •	•		•	• •	•••		
· ·	· · · · ·	· · ·	· · ·	h + 1	$g \pm \frac{2}{1} - c$	c(t)-	-t.) -	•	· · · ·	•	· · ·	· · ·	· · · ·	· · · ·
	et's say	i ti	meets	Bob	at	T		•					· · ·	
••••	et's say			ZB(T) = h -	+ 1/2	gt_{1}^{2}	-	· (T,-	- ti)) -=	120	·T, · · ·	-(1) .

Affice emits a second signal at $t_2 = t_1 + \Delta T_A$ $z(t) = z_{A}(t_{1}+\Delta T_{A}) - c(t-t_{1}-\Delta T_{A})$ (this defines STB) it meets Bob at $T_2 = T_1 + \Delta T_B$ $z_{B}(T_{2}) = z(T_{2}) = z_{A}(t_{1}+\Delta \tau_{A}) - c(t_{1}-\Delta \tau_{A})$ $2 - \left[\frac{1}{2}g(T_{1} + \Delta T_{B})^{2} = h + \frac{1}{2}g(t_{1} + \Delta T_{A})^{2} - c(T_{1} + \Delta T_{B} - t_{1} - \Delta T_{A})\right]$ $gT_{i}\Delta\overline{c}_{B} = h + \frac{1}{2}gt_{i}^{2} + gt_{i}\Delta\overline{c}_{A} - C(T_{i}-t_{i}) - c(\Delta T_{B}-\Delta T_{A})$ $\frac{1}{2}gT_{1}$ + m - D $\Delta T_{B} (gT_{1} + c) = \Delta T_{A} (gt_{1} + c)$ $\Delta T_{B} = \begin{pmatrix} 1 + gt_{1} \\ c \end{pmatrix} \begin{pmatrix} 1 + gT_{1} \end{pmatrix}^{-1} \Delta T_{A}$ $= \left(1 + \frac{gt_1}{c}\right) \left(1 - \frac{gT_1}{c}\right) \Delta T_A$ $\approx \left(1 + g\left(\frac{t_{1}-T_{1}}{c}\right) \Delta T_{A}\right)$ $(T_1 - t_1) = \frac{h}{c}$ $\Rightarrow \Delta \overline{U}_{B} \approx \left(1 - \frac{gh}{C^{2}}\right) \Delta \overline{U}_{A}$ Applying this to light with time peariod $\Delta \overline{\upsilon}_{A} = \frac{\lambda_{A}}{c} \qquad \Delta \overline{\upsilon}_{B} = \frac{\lambda_{B}}{c}$ (undergoes blue shift) (redshift if Bob sends light to Alice) $\lambda_{B} \approx \left(\left(1 - \frac{g_{B}^{2} h}{C^{2}} \right) \lambda_{A} \right)$ $\lambda_{B} \approx \left(1 + \Delta \phi \right) \lambda_{A}$ (2 other types of blue shift / redshift) - relativistic Doppler redsnift - Cosmological redshift

OUTLINE	
(-) Motivation & Big picture	
(3) Manifold.	
10 Manyour	
Dectors / 1 joins. [Tensors.	
D'intere metric.	
3 Different tangent spaces & connections.	
B Conseinant desiratione & posellel temport	
(g) lowariant definations of portion (
5 Geoderics	
6 Lie derivative & Lie transport	
(b) Lie derivative & Lie Thansport (can be done after (can be do	
and the second and the se	
total flatues	
O Curvature	
10 Geoderic deviation	
ID Einstein's legtes	
and the second state of th	
(12) Grann la Movier mariel (12) ?? Schwarzschild / FRW ? - No time mostly.	
3 ?? Schwarzschild / FKM 6	
· · · · · · · · · · · · · · · · · · ·	• • •
	• • •
· · · · · · · · · · · · · · · · · · ·	

2c° rowsont veils Vectore, dual nectore & Teneore Cinformally explain Monifold) Let's find out note of Some curve change of a function $f(x^{\alpha})$ along a cuane xx(n) = daf ux $df = \frac{\partial f}{\partial x} \frac{dx^{x}}{d\lambda}$ Example gradient 2 objects (duel vector) to the curve under co-sidinate transformations, $\mathbf{x}^{\mathbf{x}} \rightarrow \mathbf{y}^{\mathbf{x}'}(\mathbf{x}^{\mathbf{x}})$ $x = \cos \theta \quad \theta \in [0, \pi_2]$ $\partial_{x} f = \frac{\partial x^{\alpha}}{\partial y^{\alpha}} \frac{\partial f}{\partial x^{\alpha}} = \frac{\partial x^{\alpha}}{\partial y^{\alpha}} \partial_{\alpha} f$ y = sino $x = (\cos 0, \sin 0)$ $\frac{dx^{\alpha}}{d\theta} = (-\sin\theta, \cos\theta)$ $u^{\alpha'} = \frac{dy^{\alpha'}}{d\lambda} = \frac{\partial y^{\alpha'}}{\partial x^{\alpha}} \frac{dx^{\alpha}}{d\lambda} = \frac{\partial y^{\alpha'}}{\partial x^{\alpha}} u^{\alpha}$ at 0=0, (0,1) ⇒ aff = invoriant. $\Theta = \Pi$, $\left(\begin{array}{c} -1 \\ 12 \end{array}, \begin{array}{c} 1 \\ 12 \end{array}, \begin{array}{c} 1 \\ 12 \end{array} \right)$ as it should be $\Theta = \Pi_{2} \ (-1,0)$ <u>Vector</u>: (V^x): any object v^x which contranseriant) + romeforms as (contravaeuant) under co-sol. Frank $V^{\alpha'} = \frac{\partial y^{\alpha'}}{\partial x^{\alpha}} V^{\alpha}$ Co-vector / 1-jorn/duel vector (Pa): any object Pa which (correspond) + 2000 allowed as D - 200 D $+ \operatorname{Panypring} \alpha = \operatorname{Px}^{\kappa} = \frac{\partial x^{\kappa}}{\partial y^{\kappa'}} \operatorname{Px}$

Contraction $V^{\alpha} P_{\alpha} \equiv invarian$	t is three fore	a scalar_
Generalising TENSOR of type (m,n): T	$-\alpha_1\alpha_2\cdots\alpha_m$ $\beta_1\beta_2\cdots\beta_n$	(order of indices matter !)
such that $T \propto 1 \propto 2 - 1 \propto 1$	$=\frac{\partial y^{\alpha'_{1}}}{\partial x^{\alpha'_{1}}} - \frac{\partial y^{\alpha'_{m}}}{\partial x^{\alpha_{m}}} - \frac{\partial x^{\beta_{1}}}{\partial y^{\beta_{1}}}$	$\frac{\partial x^{\beta_n}}{\partial y^{\beta'_n}} = \frac{\alpha_{1-\alpha}}{\beta_{1-\beta_n}}$
vector = $(1, 0)$ tensor co-vector = $(0, 1)$ tensor.		· · · · · · · · · ·
A very special tensor of type (0,2) \rightarrow generalisation of the $V.W = g_{MV}V^{M}W^{V}$ $I V I = g_{MV}V^{M}V^{V}$ $g = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	METRIC g_{my} (s) dot product. Linvasian element (+) $v = (v^{x}, v^{y}) = (1, 1)$; at $x = 0, y = 1$	Symmetric) t line $ds^2 = g_{MV} dx^M dx^V$) or $(-+++)conventions v = 2$
Polar co-delivates $g = \begin{pmatrix} 1 & 0 \\ 0 & n^2 \end{pmatrix}$ $h^2 = x^2 + y^2$ $tan^{-1}(y) = 0$	$V^{n} = \frac{\partial r(x)}{\partial x} \cdot V^{x} + \frac{\partial r}{\partial y}$ $= \frac{x}{2} + \frac{\partial r}{2}$ $= 1$	· · · · · · · · · ·
	$\Lambda_{\theta} = \frac{\partial \Theta}{\partial \Theta} (x, \lambda) \Lambda_{x} + \frac{\partial \Theta}{\partial X}$ $= -1$	

$V^{\mu} g_{\mu\nu} = g_{\mu\nu} V^{\mu}$
$\ \nabla M\ = \ \nabla^{M} \nabla_{M}\ $
$\nabla_{\mathbf{w}} W = \nabla_{\mathbf{w}} W^{\mathbf{w}} = \nabla^{\mathbf{w}} W_{\mathbf{w}}$
INVERSE METRIC (gmv) (2,0) tensor
g ^{MV} gre = S ^M e : Koroneckeer delta (Identity materix)
$\nabla \cdot \widetilde{W} = \nabla_{\mu} W_{\nu} g^{\mu\nu}$
$W_{\mu} \xrightarrow{g^{\mu\nu}} W^{\mu} = g^{\mu\nu} W_{\nu}$
Explain the idea of a tangent plane (types don't directly Teneores can be added, multiplied or contracted at a the manifold) given point and is still a teneor.
Tensors can be added, multiplied & contracted at a the manifold
given point and 18 Shu a tensol.
A tensor at pl. P & pt. Q cannot be combined
in a tensorial way, $eq!: A^{\alpha}(P) - A^{\alpha}(Q) \equiv ??$
Desiratives ?
. <u> </u>
How do we compare Tensols a 2 different tangent
$\nabla = \nabla^{*} \hat{x} + \nabla^{*} \hat{y} $ (artesia)
space? We need some type of smle. $\vec{\nabla} = \vec{\nabla} \cdot \hat{\vec{x}} + \vec{\nabla} \cdot \hat{\vec{y}}$ (artesia) $\vec{\nabla} = \vec{\nabla} \cdot \hat{\vec{e}}_{i}$ $\vec{\nabla} = \vec{\nabla} \cdot \hat{\vec{e}}_{i}$ $\vec{\nabla} = (\partial_{x} \vec{v}) \hat{\vec{e}}_{i}$ (when $i = x \cdot y$)
Consider a curve r lonsider a curve r Q: x dx but $\overrightarrow{V} = V^2 \widehat{r} + V^0 \widehat{O}$ [when $i = x \cdot y$
Consider a wave Y k a vector field A^{α} defined in its heighborhood. $Y = V^{\alpha} \hat{f}_{\alpha}$ $P: x^{\alpha}$ heighborhood. heighborhood. (x,y) $(\alpha = \alpha, \theta)$ (x,y) $(\alpha = \alpha, \theta)$
heighborhood $(x,y) = (x,y)$ $(x,y) = (x,y)$

 $\partial_{\alpha} \vec{V} = (\partial_{\alpha} v^{\alpha}) \hat{f}^{\alpha} + v^{\alpha} (\partial_{\alpha} \hat{f}^{\alpha})$ $= A^{\alpha}(Q) - A^{\alpha}(P)$ $= A^{\alpha}(x^{\beta} + dx^{\beta}) - A^{\alpha}(x^{\beta})$ $= \partial_{\alpha}\hat{v} = (\partial_{\alpha}v^{\alpha} + \Gamma^{\alpha}v^{\beta})\hat{f}_{\alpha} \quad \text{in same}$ $= \partial_{\beta}A^{\alpha}dx^{\beta}$ $= (\nabla_{\alpha}v^{\alpha})\hat{f}_{\alpha} \quad \text{basing}$ $d A^{\alpha} = A^{\alpha}(\alpha) - A^{\alpha}(P)$ Gine 22 polos example is not tensocial. $\frac{\partial x^{\beta}}{\partial y^{\beta'}} \frac{\partial y^{\alpha'}}{\partial x^{\beta}} A^{\alpha'} + \frac{\partial x^{\beta}}{\partial y^{\beta'}} \frac{\partial^2 y^{\alpha'}}{\partial x^{\beta}} A^{\alpha'}$ $\frac{\partial x^{\beta}}{\partial y^{\beta'}} \frac{\partial}{\partial x^{\beta}} \left(\frac{\partial y^{\alpha'}}{\partial x^{\alpha}} \right)$ d, Ad = non-tensial tensoial We want to define $D A^{\alpha} = A^{\alpha}_{T}(P) - A^{\alpha}(P)$ DAX = dAX + SAX $SA^{\alpha} = A^{\alpha}_{T}(P) - A^{\alpha}(Q)$ How to define SAX ? demand it is linear in A^M & dx^x $SA^{\alpha} = \prod_{M\beta}^{\alpha} A^{M} dx^{\beta}$ connection $\frac{DA^{\alpha}}{d\lambda} = \left(\partial_{\beta}A^{\alpha} + \Gamma^{\alpha}A^{m}\right)u^{\beta}$ (some literature ∇_BA^M uses AM, 3 conscient derivative (g a vector) Jr JBAM k AM;3 for VBAM)

Demanding that $\mathcal{P}_{\beta}A^{h}$ + ranger covariantly, we get the transformation property of Typ $\Pi^{\alpha}_{\mu\beta} A^{\mu} = \nabla_{\beta} A^{\alpha} - \partial_{\beta} A^{\alpha} \qquad (+ A^{\mu})$ $T_{\mu'\beta'}^{\alpha'} = \frac{\partial y^{\alpha'}}{\partial x^{\alpha}} \frac{\partial x^{\mu}}{\partial y^{\mu'}} \frac{\partial x^{\beta}}{\partial y^{\beta'}} \frac{\Gamma^{\alpha}}{\mu\beta} - \frac{\partial^2 y^{\alpha'}}{\partial x^{\mu} \partial x^{\beta}} \frac{\partial x^{\beta}}{\partial y^{\beta'}} \frac{\partial x^{\mu}}{\partial x^{\mu'}}$ Exercise : Cor doinative an be generalized to other types of teneors. neige Leibnitz rule. $d(A^{\alpha}P_{\alpha}) = D(A^{\alpha}P_{\alpha}) = (DA^{\alpha})P_{\alpha} + A^{\alpha}(DP_{\alpha})$ $\partial_{\mathbf{p}}(\mathbf{A}^{\mathbf{q}}\mathbf{p}_{\mathbf{x}}) = \nabla_{\mathbf{p}}(\mathbf{A}^{\mathbf{q}}\mathbf{p}_{\mathbf{d}})$ $(\partial_{\beta}A^{\alpha})P_{\alpha} + A^{\alpha}\partial_{\beta}P_{\alpha} = (\nabla_{\beta}A^{\alpha})P_{\alpha} + A^{\alpha}\nabla_{\beta}P_{\alpha}$ $\Rightarrow \nabla_{\beta} P_{\alpha} = \partial_{\beta} P_{\alpha} - \Gamma_{\alpha\beta}^{M} P_{n}$ $\sum_{M} T^{\alpha_1 \dots \alpha_M} = \partial_{M} T^{\alpha_1 \dots \alpha_M} + T^{\alpha_1} T^{\sigma_{\alpha_2} \dots \alpha_M} + B_1 \dots B_n + M \sigma B_n B_n B_n$ + [1d2 - x10 d3. dm Mot - To Tai- am MB, OB2- Ph Until now the connection is completely arbitrary. In vanilla G.R, $\Gamma_{\mu\nu}^{\alpha} = \Gamma_{\nu\mu}^{\alpha}$ & $\nabla_{\alpha} g_{\mu\nu} = 0$ (preserves dot product) Levi-Civita com/ $= \int_{MV}^{d} = g^{\alpha\beta} \left(\partial_{\mu} g_{\beta\nu} + \partial_{\nu} g_{\mu\beta} - \partial_{\beta} g_{\mu\nu} \right) : Chainstellell symbol.$

A tensor field is said to be parallel transported along a	• •
curve V if its covariant derivative along the crave	• •
vanishes: $DT^{\alpha} = u^{\gamma} \nabla_{\gamma} T^{\alpha} = 0$	
\circ	
eg. Sphere.	
	• •
GEODESICS - Recap what Tamoy says. maybe connect to	• •
parallel transport.	ι. in
(if possible show $\varepsilon = h^{\alpha} n \alpha$ wast along affinely parameterised graderic) also $u^{\alpha} \nabla_{\alpha} u^{\beta} = 0$ (affinel pos	innetace
lif possible our E=hink wing also we Ta u ^B = 0 affirely preamiterised gooderic) also we Ta u ^B = 0 (tangent vector is pacallel transported transported alon the Grequieed for symmetrices structure Γ_{AB}^{M} , \leq path dependent good	• •
Lie differentiation : Covariant derivative required certer the	* * *
Crequieed for symmetrices stancture T'AB - path dependent good	(eenc)
Crequieed for symmetries structure : ["" > path dependent good & Geodesic deviation but valid eqt")	
interest were the	
Consider a cuarre Y = integral mare parts.	• •
tgt. vector $u^{\alpha} = dx^{\alpha}$ = vector field	· ·
Ala and a second a se	
Now $x'^{\alpha} = x^{\alpha'} + u^{\alpha} d\lambda$	
P:xª con le interpreted as a co-ordinate + sansformation	· · ·
$A^{\alpha'}(x') = \frac{\partial x^{\alpha'}}{\partial x'} A^{\beta'}(x)$	
∂_{λ_L}	
$= (S^{\alpha}_{\beta} + \partial_{\beta} u^{\alpha} d\lambda) A^{\beta}(\lambda)$	• •
$= A^{\alpha}(x) + \partial_{\beta} u^{\alpha} A^{\beta}(x) d\lambda$	• •
$= A^{\alpha'}(x) + \partial_{\beta} u^{\alpha} A^{\beta}(x) d\lambda$ i.e. $A^{\alpha'}(Q) = A^{\alpha}(P) + \partial_{\beta} u^{\alpha} A^{\beta}(x) d\lambda$	· ·

But $A^{\alpha}(Q) = A^{\alpha}(\chi^{\beta} + \mu^{\beta}d\lambda)$
$= A^{\alpha}(x^{\beta}) + u^{\beta}\partial_{\beta}A^{\alpha}d\lambda$
$= A^{\alpha}(P) + u^{\beta} \partial_{\beta} A^{\alpha}(P) d\lambda$
$Z_{u} A^{\alpha}(P) = A^{\alpha}(Q) - A^{\alpha'}(Q)$ $d\lambda$
$= u^{\beta} \partial_{\beta} A^{\alpha} - \partial_{\beta} u^{\alpha} A^{\beta}$
Exercise: Z _h A ^a is a tensor. Show this.
For scalars $X_{\mu}\phi = \mu^{\alpha}\partial_{\alpha}\phi$ (Ex. show this)
For correctors $X_{\mu}(v^{\alpha}w_{\alpha}) = u^{\beta}\partial_{\beta}(v^{\alpha}w_{\alpha}) = u^{\beta}\partial_{\beta}v^{\alpha}w_{\alpha} + u^{\beta}v^{\alpha}\partial_{\beta}w_{\alpha}$
$(\chi_{\mu}v^{\alpha})W_{\alpha} + v^{\alpha}(\chi_{\mu}w_{\alpha}) = u^{\beta}\partial_{\beta}v^{\alpha}w_{\alpha} + u^{\beta}v^{\alpha}\partial_{\beta}w_{\alpha}$
$\left(u^{\beta}\partial_{\beta}v^{\alpha} - \partial_{\beta}u^{\alpha}v^{\beta}\right)w_{\alpha} + v^{\alpha}\left(z_{n}w_{\alpha}\right) = \left(u^{\beta}\partial_{\beta}v^{\alpha}\right)w_{\alpha} + u^{\beta}v^{\alpha}\partial_{\beta}w_{\alpha}$
$v^{\alpha}(\lambda_{\mu}w_{\alpha}) = v^{\alpha}(\mu^{\beta}\partial_{\beta}w_{\alpha} + w_{\beta}\partial_{\alpha}u^{\beta}) \qquad \forall v^{\alpha}$
$\Rightarrow \left[z_{\mu} w_{\chi} = \mu^{\beta} \partial_{\beta} w_{\chi} + w_{\beta} \partial_{\chi} u^{\beta} \right]$
Ex. Generalise to <u>orbitrary</u> <u>tensols</u> .
die fransport. Xn T Xn = 0 along a avane verter with tal verter

$9f Z_n T^{\alpha_1 \dots \alpha_m} = 0$	then in th	re co-ordinate
. .	eystem u	$\alpha \stackrel{*}{=} S_{0}^{\alpha}$ $= \partial_{\beta} u^{\alpha} = 0$
· · · · · · · · · · · · · · · · · · ·	N W Z	"=" equalitis
$u^{\gamma} \partial_{\gamma} T^{\alpha}_{\beta - \beta_{n}} = 0 \Leftarrow$		ginen w-ordint system
$\frac{\partial}{\partial x^{\circ}} T^{\alpha_{1}} = 0 \qquad ie$	Ta,	closen't depend
$ \cdot \cdot$	on ×°	· · · · · · · · · · · ·
. Lie desinstine is the	national operat	ion to calefine
symmetories.		
· · · · · · · · · · · · · · · · · · ·		
Killing vectore		· · · · · · · · · · · ·
A symmetry of a spacetime is	defined by	the isometries
of the metoic. eg, ds ² = 1m dxn dx ⁿ = - dt ² +	$dx^2 + dy^2 + dz^2$	· · · · · · · · · · · ·
$S_{\mathbf{E}} = \left(\begin{array}{c} 0 \\ 1 \end{array}\right)^{\mathbf{x}} = \left(\begin{array}{c} 0 \\ 2 \end{array}\right)^{\mathbf{x}} = \left(\begin{array}{c} $	x but s	exist.
$\frac{3}{2}\gamma = (2)^{2}$	do esn'	t seem manifest in these co-ordinates
$\int_{z} = (\partial_{z})^{\alpha} =$	22	in these co-solinetes
$ds^2 = \eta_{\mu} dx^{\mu} dx^{\nu} = -$	$42^{2} + da^{2} + a^{2} da^{2}$	$\frac{2}{+} \frac{1}{2} \frac{1}$
· · · · · · · · · · · · · · · · · · ·	$\phi = \partial_{\phi}$ obvio	is But dx, dy not obvious

definition. -> all 3 that satisfy Killing's eqt. $\chi_{g} = 0 = \nabla_{\mu} g_{\nu} + \nabla_{\nu} g_{\mu}$ as hefore, in some ω -solinete system where $3^{\nu} \neq s_{(1)}^{\nu}$ then $\partial_{(1)} g_{MY} = 0$. they help define conserved quantities for us as well. example = ux 3x $\frac{d(u^{\prime} u_{\lambda})}{d}$ $\frac{d}{d\lambda}\left(u^{\alpha}S_{\lambda}\right) = u^{\beta}\nabla_{\beta}\left(S_{\alpha}u^{\alpha}\right)$ $= u^{\alpha} u^{\beta} \nabla_{\beta} S_{\alpha} + S_{\alpha} u^{\beta} \partial_{\beta} u^{\alpha}$ $= \left(u^{\beta} \nabla_{\beta} u^{\alpha} \right) U_{\alpha}$ + up norgen = NONB (B32) =0 $sef: 3(t) = \frac{\partial x}{\partial t}$ $E = m u^{\alpha} g_{(t)}^{\alpha}$ [Mention maximel symmetry] Local flatness The EEP says one can get aid of gramity by going to a preely falling pame. How do use implement this mathematically? Ask & freestyle the discussion. $\chi'^{\kappa} = A^{\kappa} B^{\kappa} B^{\kappa} + O(\chi^2)$ $\Rightarrow g_{\alpha\beta} = A^{\alpha}_{\alpha'} A^{\beta}_{\beta} g_{\alpha\beta}$ Mas

CURVATURE (think of 2d for the moment) What the hell is convature - curved? - curved? important to understand exterinsic 4 intrinsic cuevature, How can an ant on S² understand or figure out avenuature of the sphere? egf Area of circle in 2d or sum of angles in A Mode generally, (tgt. space closed loop) = explain ally tation Define $R^{m} \operatorname{ves} A^{\nu} = [\nabla_{e}, \nabla_{\sigma}]A^{\nu} \quad \forall A^{\nu}$ = $\nabla_{e} \overline{\nabla_{\sigma}}A^{\nu} - \nabla_{\sigma} \nabla_{e}A^{\nu}$ (convention) $\Rightarrow R^{\mu} re\sigma = \partial_e \Gamma^{\mu} \sigma - \partial_{\sigma} \Gamma^{\mu} re + \Gamma^{\mu} r \sigma - \Gamma^{\mu} \sigma \Gamma^{\lambda} re v$ · Remile 5] (3 perspaties) Propreties · R [reo] = 0 · Bianchi identity V R made + Ve R mora = D Vx R mv eo Contractions $\begin{cases} \text{Bianchi} \Rightarrow \\ \nabla_{m} R^{M} v = \frac{1}{2} \nabla_{v} R \end{cases}$ $R_{\mu\nu} = R^{\alpha} \mu \alpha \nu$ $R = g^{\mu\nu} R_{\mu\nu} = R^{\alpha} \alpha$

DMR MV - 1 DM gmv R $\nabla^{\mathcal{M}}\left(R_{\mathcal{M}\mathcal{V}}-\frac{1}{2}Rg_{\mathcal{M}\mathcal{V}}\right)=0$ Gun (what is Riemann?) Geodesic demation Consider a geodesic congenience $x^{\mu}(\tau, \lambda)$ $x^{\mu}(\overline{\tau}, 0) = \Upsilon_{b}$ $x^{\mu}(\tau, I) = \gamma_{I}$ $\frac{\partial x^{\mu}}{\partial t} = u^{\mu}$ $\frac{\partial \mathbf{r}^{\mathsf{M}}}{\partial \lambda} = \mathbf{g}^{\mathsf{M}}$ Now $\frac{\partial}{\partial \lambda} = \frac{\partial \xi^{m}}{\partial \tau}$ (partial derivatives commenter) \rightarrow $3^{\alpha} \nabla_{\alpha} u^{\mu} = u^{\alpha} \nabla_{\alpha} 3^{\mu}$ Acceleration of the seperation vector, $\frac{D^{2} S^{M}}{DT^{2}} = u^{\alpha} \nabla_{\alpha} \left(u^{\beta} \nabla_{\beta} S^{M} \right) = u^{\alpha} \nabla_{\alpha} \left(s^{\beta} \nabla_{\beta} u^{M} \right)$ $= u^{\alpha} \left(\nabla_{\beta} u^{\beta} \right) \left(\nabla_{\beta} u^{\alpha} \right) + u^{\alpha} s^{\beta} \nabla_{\alpha} \nabla_{\beta} u^{\alpha}$ $= s^{\alpha} \nabla_{\alpha} u^{\beta} \nabla_{\beta} u^{\alpha} + u^{\alpha} s^{\beta} \left[\nabla_{\alpha}, \nabla_{\beta} \right] u^{\alpha} + u^{\alpha} s^{\beta} \nabla_{\beta} \nabla_{\alpha} u^{\alpha}$ $= u^{\alpha} \xi^{\beta} R^{M} \lambda_{\alpha\beta} u^{\lambda} + \xi^{\alpha} \left(\nabla_{\alpha} u^{\beta} \nabla_{\beta} u^{M} + u^{\beta} \nabla_{\alpha} \nabla_{\beta} u^{M} \right)$ $\frac{D^2 g^{\mu}}{P t^2} = u^{\mu} u^{\lambda} g^{\beta} R^{\mu}_{\lambda \alpha \beta}$

Einstein's regths		· · · · · · · · ·	
· · · · · · · · ·		· · · · · · · · ·	
$\nabla^2 ($	$p = 4\pi Gl$	· · · · · · · · ·	· · · · · · ·
· · · · · · · · · · · · · · · · · · ·			
	+ this	is more density I tensor gen	in lieation
in weak field lini			
of geodesic equ.	ive · · · · · · · · · · ·	Two stress	-/
$r_{\alpha w} \phi \sim h_{ov}$			evergy momentum
⇒ generalisation			tenso
	Ο Ι Ομγ	$\nabla_{\mu}T^{\mu}v = 0$	(geniedisation
	[02] a Tur		of continuity eqt.)
		· · · · · · · · ·	
	(0,2) & (0,2) symmetric symm	teic	
	$D^2 g_{\mu\nu} = O$	(Einstande	
	R _m = K Tmv	(ETASIAN'S	guess)
	but $\nabla_{\mu}R^{\mu}\gamma = \frac{1}{2}\nabla_{\gamma}R^{\mu}$		
		· · · · · · · · ·	
	be a bat R=KT.		$\sum_{i=1}^{N} e^{i \mathbf{k}} \mathbf{y}^{i} = \mathbf{D}$
	so if me want	$\bigvee_{\mu} (1 + \gamma) = \bigcup_{i=1}^{n} (1 + \gamma)$	
	· · · · · · · · · · · · · · · · · · ·	$\nabla_{\gamma} R = 0 \implies \nabla$	
		$\Rightarrow \partial_{\gamma}T = 0$	
		T is constant	f
	· · · · · · · · · · · · · · · · · · ·	every shere	
			0
· · · · · · · · · · · ·	the second state of the second		
	mars distribution, Ty		

But Gmr = Rmr - 1Rgmr is perfect VnGM = O from Bianchi doutily ° . Guv= KTuv : Einsteines field eque In jest, conscernation of energy-momentum is a consequence of the Bianchi Identity 1, a consequence of geanctery ? is fixed by meak-field consistency with Newtonian grannity $K = \frac{8\pi G}{c^4}$ In absence of matter, RMV-1Rgmv=0 7 RMV = D = seems simple no? Gmv = KTMV HELL NO 1 10 - coupled highly non-lineal portial differential eqtre. for the metaric WE CANNOT SOLVE THIS IN GENERAL ! But with assumptions of a high degree of symmetry some solutions are known. Stores eff. Schwarzschild & Friedman - Robertson - Walker-Lemaitre & Black Special adativity Notes Special adativity Minkowski () Coemology Also Gravitational wave solutione! ~ Gwis