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Introduction to gravitational 
wave astronomy

https://sites.google.com/view/gravityatyitp/home?authuser=0


Outline

Gravitational Waves in theories of gravity and its properties  

GW detection principle — Freely falling frames, Tidal forces 

Detection methods— Chirps, Matched filtering 
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Newtonian Gravity
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Universal Law of Gravitation
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Gravitational Waves are simply …

Propagating gravitational fields.. (similar to 
EM waves which are propagating EM 
fields)

Produced by acceleration of masses (EM 
waves produced due to accelerating 
charges)

Transverse in nature (so are EM waves)

Has two states of polarisations (similar to 
EM waves)

Interacts very weakly with intervening 
matter (unlike EM waves)
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GWs are quadrupolar,
EM waves are dipolar

Slide : K G Arun



Generation of GWs
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Conservation of “mass”  — No monopole radiation  

And the dipole radiation is forbidden due to “conservation of 
linear and angular momentum”. 

However, all (time-dependent) non-spherical motions 
according to General Relativity should produce these waves. 



Time varying fields
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Credit: GARY BROWN/SCIENCE PHOTO LIBRARY

“Apples” down the Pisa tower

Gravitational acceleration



Equivalence principle
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Source: Time Travel Research Center 

http://www.zamandayolculuk.com


Tidal forces
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Detection principle
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Effect of Gravitational 
Waves



Chirps

Video Credit: UffcomINFN 12

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-2
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Daily Cartoon

Daily Cartoon:
Friday, February 12th
By David Sipress February 12, 2016

“Was that you I heard just now, or was it two black holes colliding?”

Daily Cartoon: Friday, February 12th | The New Yorker https://www.newyorker.com/cartoons/daily-cartoon/friday-feb...

1 of 2 11/12/17, 11:48 PM



The LIGO Twins
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Image Credit: LIGO Caltech



from 35 Hz to a peak amplitude at 450 Hz. The signal-to-
noise ratio (SNR) accumulates equally in the early inspiral
(∼45 cycles from 35 to 100 Hz) and late inspiral to merger
(∼10 cycles from 100 to 450 Hz). This is different from the
more massive GW150914 binary for which only the last 10
cycles, comprising inspiral and merger, dominated the
SNR. As a consequence, the parameters characterizing
GW151226 have different precision than those of
GW150914. The chirp mass [26,45], which controls the
binary’s evolution during the early inspiral, is determined
very precisely. The individual masses, which rely on
information from the late inspiral and merger, are measured
far less precisely.
Figure 1 illustrates that the amplitude of the signal is less

than the level of the detector noise,where themaximum strain
of the signal is 3.4þ0.7

−0.9 × 10−22 and 3.4þ0.8
−0.9 × 10−22 in LIGO

Hanford and Livingston, respectively. The time-frequency
representation of the detector data shows that the signal is not
easily visible. The signal is more apparent in LIGO Hanford
where the SNR is larger. The SNR difference is predomi-
nantly due to the different sensitivities of the detectors at the
time. Only with the accumulated SNR frommatched filtering
does the signal become apparent in both detectors.

III. DETECTORS

The LIGO detectors measure gravitational-wave strain
using two modified Michelson interferometers located in
Hanford, WA and Livingston, LA [2,3,46]. The two
orthogonal arms of each interferometer are 4 km in length,
each with an optical cavity formed by two mirrors acting as
test masses. A passing gravitational wave alters the

FIG. 1. GW151226 observed by the LIGO Hanford (left column) and Livingston (right column) detectors, where times are relative to
December 26, 2015 at 03:38:53.648 UTC. First row: Strain data from the two detectors, where the data are filtered with a 30–600-Hz
bandpass filter to suppress large fluctuations outside this range and band-reject filters to remove strong instrumental spectral lines [46].
Also shown (black) is the best-match template from a nonprecessing spin waveform model reconstructed using a Bayesian analysis [21]
with the same filtering applied. As a result, modulations in the waveform are present due to this conditioning and not due to precession
effects. The thickness of the line indicates the 90% credible region. See Fig. 5 for a reconstruction of the best-match template with no
filtering applied. Second row: The accumulated peak signal-to-noise ratio (SNRp) as a function of time when integrating from the start of
the best-match template, corresponding to a gravitational-wave frequency of 30 Hz, up to its merger time. The total accumulated SNRp

corresponds to the peak in the next row. Third row: Signal-to-noise ratio (SNR) time series produced by time shifting the best-match
template waveform and computing the integrated SNR at each point in time. The peak of the SNR time series gives the merger time of
the best-match template for which the highest overlap with the data is achieved. The single-detector SNRs in LIGO Hanford and
Livingston are 10.5 and 7.9, respectively, primarily because of the detectors’ differing sensitivities. Fourth row: Time-frequency
representation [47] of the strain data around the time of GW151226. In contrast to GW150914 [4], the signal is not easily visible.

PRL 116, 241103 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JUNE 2016

241103-2
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[LVC, PRD 96, 122003 (2016)]



BBH Waveforms
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Image Credit: Kip Thorne



4 Alexandre Le Tiec

in the extreme mass-ratio limit. More recently, fully relativistic information coming
from GSF theory has been used to inform the EOB Hamiltonian.91,162–164 The ini-
tial model was also extended to account for spin e↵ects in black hole binaries.165–170

The EOB model further incorporates a description of the gravitational-wave emis-
sion and the related dissipative radiation-reaction force.171–173 Both conservative
and dissipative sectors rely heavily on resummation methods such as Padé approxi-
mants,174,175 aimed at improving the convergence of the PN series in the strong-field
regime (see however Refs. 176, 177, 178 and 179). To account for uncontrolled rel-
ativistic corrections during the late inspiral and final plunge, the EOB model also
makes use of several free parameters that are fitted by comparison to the results of
fully nonlinear NR simulations. Ongoing work focuses on calibrating several versions
of the model to NR simulations for increasingly generic binary configuations.180–186

See Refs. 187, 188 and 189 for recent reviews.

These approximation methods and numerical techniques are depicted in Fig. 1.
While the domain of validity of NR simulations does, in principle, cover the entire
parameter space, in practice it is constrained by available computational ressources.
Indeed, both wide separations and large mass ratios require exceedingly long com-
putations. The domains of validity of PN theory and BHP theory are not delimited
by sharp boundaries either; these depend on the acceptable level of error made in
approximating the exact result for any given calculation. Borrowing results from the
PN approximation and BHP theory, as well as nonperturbative information from
NR simulations, the EOB model aims at covering the entire parameter space.
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Fig. 1. Di↵erent analytical approximation schemes and numerical techniques are used to model
the orbital dynamics and gravitational-wave emission from black hole binaries, according to the
mass ratio 0 < m1/m2 6 1 and the compactness parameter 0 < M/r . 1, where M = m1 +m2 is
the total mass and r the typical binary separation.

Approximation schemes



Extracting source properties
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In general a compact binary is fully characterised 
by a set of 17 parameters comprising of  

Component Masses (2) 
Component spins (6) 
Binary’s distance (1)  
Binary’s location (2) 
Binary’s orientation (2) 
Orbital eccentricity (1) — if binary is not 
circular 
Effect of matter — tidal effects 
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Neutron-star tidal deformability and equation-of-state… Page 13 of 49 109

Fig. 2 Scaled gravitational-wave signal from the late inspiral of two equal-mass, non spinning neutron stars
for different values of Λ̃ using the IMRPhenomD_NRTidalv2 [95,96] waveformmodel. We plot the plus
polarization in the time domain in the top panel, and the real part of the plus polarization in the frequency
domain in the bottom panel. Since we employ an analytic model, waveforms have been terminated at the
peak of the time domain waveform amplitude, sometimes used to approximately signify the merger

in the binary dynamics and tidal deformability [100], a reasonable assumption unless
the magnetic field is extremely large, B ∼ 1016 − 1017 G [101–103].

Besides tidal interactions in the binary, the equation of state also affects the
quadrupole-monopole, or self-spin, term which is a 2PN phase correction. This effect
is caused by the fact that the shape of the neutron star is deformed under its own spin,
resulting in a spin-induced quadrupole moment. The degree of deformation depends
on the equation of state of the star; the leading order effect and its first correction have
been computed in [104,105]. Despite being formally a lower order term, the self-spin
contribution to the gravitational-wave phase is smaller than the tidal deformability
contribution, and can be neglected unless the neutron star is rotating significantly
[106]. The spin-induced quadrupole (and the resulting self-spin term) can be approxi-
mately calculated given the tidal deformability of the star in away that is approximately
agnostic about the underlying equation of state, through the Love-Q relation [107,108].
Waveform models can, therefore, include the self-spin term directly without the need
of additional binary parameters [109,110].

Finally, it is worth remembering that Eq. (7) does not include a number of point-
particle terms that are represented by the ellipsis. Those terms are of lower or the
same post-Newtonian order as the tidal terms of interest here and they have fully been
computed up to the term proportional to u7 [21]. Though smaller inmagnitude than the
tidal terms, their absence could lead to biases when measuring the tidal effects from
a gravitational-wave signal [91,111]. However, as already mentioned most waveform
models in use are constructed from a baseline binary black hole model on top of which
tidal effects have been added. The binary black hole baseline models are typically
compared against numerical relativity simulations which are used to calibrate free

123

Matter effects



Higher order Modes
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[Mehta et al., PRD 96 124010 (2022)]frequency fPlm. Figure 1 provides a comparison of the
amplitude and phase of the numerical Fourier transform of
the hybrid waveforms, along with the analytical fits given
by Eqs. (2.8) and (2.12).
Finally, the phenomenological parameters describing the

analytical model are represented as quadratic functions of
the symmetric mass ratio η

αi;lm ¼ ai;lm þ bi;lmηþ ci;lmη2;

αLi;lm ¼ aLi;lm þ bLi;lmηþ cLi;lmη
2;

βk;lm ¼ ak;lm þ bk;lmηþ ck;lmη2;

βLk;lm ¼ aLk;lm þ bLk;lmηþ cLk;lmη
2;

βL2j;lm ¼ aL2j;lm þ bL2j;lmηþ cL2j;lmη
2;

λlm ¼ aλlm þ bλlmηþ cλlmη
2Þ;

fAlm ¼ aAlm þ bAlmηþ cAlmη
2Þ=M;

fPlm ¼ aPlm þ bPlmηþ cPlmη
2Þ=M: ð2:14Þ

where the index i runs from 0 to 1, k runs from 0 to 4 and j
is 0 except for 21 mode (j ¼ 0,1); see supplemental
material [60] for numerical values of the parameters.
Figure 2 shows the values of the phenomenological
parameters estimated from the hybrid waveforms, as well
as the fits described by Eq. (2.14).

C. Assessing the accuracy of the analytical model

Here we quantify the faithfulness of the analytical model
that we constructed by computing the mismatches of these
with the hybrid waveforms, which are assumed as our
fiducial waveforms. Indeed, relative contribution of differ-
ent modes depend on the orientation of the binary with
respect to the line of sight. Figure 3 shows some examples
of the hybrid waveforms for different orientations along
with the corresponding waveforms generated from our
analytical model (by taking the inverse Fourier transform).
Computation of these polarizations hþðtÞ and h×ðtÞ is
described in Appendix C. Polarizations of the hybrid
waveforms have been computed using all the modes up

FIG. 3. Comparison between hybrid waveforms and our analytical phenomenological waveforms for a binary with total mass M ¼
20M⊙ and mass ratio q ¼ 10. Hybrid waveforms are constructed using all the modes with l ≤ 4, except the m ¼ 0 modes.
Phenomenological waveforms are constructed by taking the (discrete) inverse Fourier transform of the analytical waveforms in the
Fourier domain. The left panel corresponds to a “face-on” binary (inclination angle i ¼ 0.00) while the right panel corresponds to an
“edge-on” binary (i ¼ 1.57).

FIG. 4. The unfaithfulness (mismatch) of the analytical waveform family towards hybrids for various inclination angles ι. The
horizontal axes report the total mass of the binary and different curves correspond to different mass ratios q (shown in the legend).
Horizontal black dashed lines correspond to a mismatch of 1%. The overlaps are computed assuming the design power spectrum of
Advanced LIGO (in the “high-power, zero-detuning” configuration [54]), assuming a low-frequency cutoff of 20 Hz.

MEHTA, MISHRA, VARMA, and AJITH PHYSICAL REVIEW D 96, 124010 (2017)

124010-6
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Parameter Estimation
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LIGO Schematic Diagram

LIGO-Virgo Collaboration, PRL 116, 061102 (2016)
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Linearised Gravity

Linearised Gravity and Gravitational Waves

May 11, 2021

0.1 Einstein Equations for weak gravitational fields

Einstein Equations (EE) for weak gravitational fields take the following form,

⇤h̄µ⌫ = �16⇡G

c4
Tµ⌫ (1)

where Tµ⌫ acts as the source for h̄µ⌫ which in turn quantifies small departures
from the Minkowskian geometry. While its important that we discuss how
we do we arrive at Eq. (1), lets first discuss the equation at hand and what
it suggests. For the time being lets just note that the above EE are obtained
by writing full EE assuming that the metric tensor can be represented as a
small perturbation to the flat metric (in other words EE for weak fields)

gµ⌫ = ⌘µ⌫ + hµ⌫ (2)

where |hµ⌫ | ⌧ 1. Note that h̄µ⌫ that appears in Eq. (1) is “trace-reversed”
hµ⌫ and the two are related by

h̄µ⌫ = hµ⌫ �
1

2
⌘µ⌫ h (3)

where h = hµ
µ. As we shall see later use of h̄µ⌫ instead simplifies the algebra.

Ask class: Can you tell why h̄µ⌫ called trace-reverse of hµ⌫? Do you recall
any other tensor with the same property?

Coming back to Eq. (1), we note that it is an inhomogeneous wave equa-
tion and can be solved for h̄µ⌫ using the standard Green’s function approach.
(Note that this is the same equation that appears in EM theory and proce-
dure to arrive at the solution is identical). The solution reads,

h̄µ⌫(t, x̄) =
4G

c4

Z
Tµ⌫(t� |x̄� x̄0|/c, x̄0)

|x̄� x̄0| d3x0 (4)

1
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Static weak fields
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where x̄ and x̄0 are spatial coordinates of a field point and a source point,
respectively. Clearly, the solution suggests propagating fields at speed c. Do
you agree?

⌅ Example: Static Weak Fields

For a static source (mass distribution at rest) we have

T 00 = ⇢c2 (5)

while other components of T µ⌫ vanish for the given configuration. This
when used in Eq. (4) gives

h̄
00

=
4G

c4

Z
⇢(x̄0)

|x̄� x̄0|d
3x0 (6)

Recall that the gravitational potential in Newtonian Gravity is given
by

�̄ = �G

Z
⇢(x̄0)

|x̄� x̄0|d
3x0 (7)

Comparing Eq. (6) and (7) we conclude,

h̄
00

= �4�(x̄)

c2
(8)

Or

h00 = �2�(x̄)

c2
(9)

where we have used Eq. (3). (Verify the last step.) [Hint: Use Eq. (3)].

0.1.1 Einstein Tensor under linearised approximation

Let us now see how we can arrive at Eq. (1) starting from full EE. Essentially
this boils down to writing the Einstein Tensor in linearised approximation
of Eq. (2). This would of course would require to express Ricci Tensor and
Ricci scalar in terms of the curvature perturbations (hµ⌫ or h̄µ⌫) which in turn
requires Christo↵el symbols for weak fields. It is easy to see that Christo↵el
symbol takes the following form

�↵
µ⌫ =

1

2
⌘↵� (@µh⌫� + @⌫hµ� � @�hµ⌫) (10)

=
1

2

�
@µh

↵
⌫ + @⌫h

↵
µ � @↵hµ⌫

�
(11)

2
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Quadrupole approximation

which is equivalent to (after using Eq. (3))

@h0
µ⌫

@xµ
=

1

2

@h0

@x⌫
or in short, @µh0

µ⌫ =
1

2
@⌫h

0 (21)

where again we have replaced derivatives of h0
µ⌫ and h with respect to primed

coordinates by those w.r.t unprimed ones as they are small in magnitude.
Substituting in the above (Eq. (21)) from Eq. (19) we get (verify this)

⇤⇠µ = @⌫ h̄µ⌫ (22)

Important: The above equation tells that if we know hµ⌫ (or h̄µ⌫) in certain
coordinates, one can solve the above equation for ⇠, which in turn can be used
to write hµ⌫ (or h̄µ⌫) in new coordinates where we shall have the condition
(21) (or equivalently (20)) satisfied i.e. the divergences vanish and EE in
linearised approximation takes the form of Eq. (1).

0.1.3 Gravitational Waves

In vacuum (outside the source, far away from it), Eq. (1) reduces to

⇤hµ⌫ = 0 (23)

which again is a wave equation suggesting wave-like solutions. We can choose
without any loss of generality the direction of propagation to be x3 = z.
Further, while working under the linearised approximation, any arbitrary
wave can be treated as a superposition of various Fourier modes. Then the
Fourier mode travelling in z-direction can be written as

hµ⌫ = Aµ⌫e
ik(t�z) (note c = 1) (24)

where Aµ⌫ has 10 independent components.
Important Note: At the moment it might appear that the weak-field

solution of EE gives a complicated metric, it turns out not all components of
Aµ⌫ are independent of each other. In fact, there are only two independent
components: A11 = �A22 = A+ and A12 = A21 = A⇥ while others can be
set to zero. (see P2 of Sec. 1). Hence we have,

Aµ⌫ ⌘

2

664

0 0 0 0
0 A+ A⇥ 0
0 A⇥ �A+ 0
0 0 0 0

3

775 (25)

5

EE in Vacuum 
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Effect on matter
Geodesic Deviation Equation

Important Note: While Gravitational waves (solutions to EE equa-
tions) and Electromagnetic wave (solutions to Maxwell’s equations) are gen-
erated by completely di↵erent processes, there are striking similarities be-
tween the two. For instance, both travel at the speed of light (at least in
Einstein’s theories) are transverse in nature and have two states of polari-
sations, however, while EM waves gets easily scattered or absorbed by the
matter it passes through, gravitational waves pass right through the interven-
ing matter with almost no interactions, suggesting experiments with gravi-
tational waves (such as bending of light) are extremely di�cult to perform
(in a sense that the e↵ects are extremely tiny).

0.1.4 E↵ect of gravitational waves on matter

We bring the discussion on gravitational waves to an end by briefly discussing
the interaction of gravitational waves with say a set of particles under free-
fall — “a tool which also helps in detecting their presence”. Recall, the
discussion concerning detection of gravitational fields. We argued, it might
not be possible to detect presence or absence of a gravitational field with just
one freely-falling particle but if we have two of these then one can investigate
how gravity a↵ects the separation between them as time passes (tidal forces
were introduced). The equation that gives the relative separation between
the two freely falling test particles was derived and we know it as geodesic
deviation equation which reads

D2(�x�)

D⌧ 2
= R�

µ⌫

✓
dxµ

d⌧

◆✓
dx⌫

d⌧

◆
�x (26)

which under slow motion and weak gravity reduces to

d2

dt2
(�xi) = �Ri

0j0�x
j (Verify this) (27)

where we have assumed dt/d⌧ ' c = 1 (slow motion and weak gravity!) and
the separation of the two particles are measured simultaneously i.e �x0 = 0.
Further, it can be shown (see P3 of Sec. 1) for a wave moving in x3 = z
direction (with particles lying on the wavefront) that

Ri
0j0 = �

@�i
0j

@x0
(28)
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Using Eq. (11) and the fact that h0j = 0 (from Eq. (25)) we can write,

�i
0j =

1

2

@hi
j

@x0
(Verify this) (29)

Further, using Eq. (29) and Eq. (28) together in Eq. (27) gives

d2

dt2
(�xi) =

1

2

@2hij

@t2
�xj (30)

which has the solution

�xi = �xi,0 +
1

2
hij�x

j (31)

It is easy to see for the polarisation mode with amplitude (A+) we get

�x1 = �x1,0 +
1

2
A+e

ikt�xj (32)

�x2 = �x2,0 �
1

2
A+e

ikt�xj (33)

where we have assumed the position of the wavefront (where particles are) at
z = 0. It should be clear from the above that the instant particle on the x1-
axis moves upward, particle on the x2-axis move downward and vice-varsa. If
you try imagining, the pattern appear to be that of a ‘+’ and hence referred
to as ‘+’ polarisation (and denoted by h+). Similarly, solutions with other
mode would move the particles in the x1 � x2 plane in a pattern that would
appear as a ‘⇥’ and hence referred to as ‘⇥’ polarisation. This repeats over
each cycle of the wave. A more illuminating example which is usually shown
is when a wave falls on a plane containing a ‘circular ring of freely falling
particle” (see Fig. 1).
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Multipole Expansion
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+ - +
Monopole Dipole
(V- I/r) (V-l/r 2)

Quadrupole
(V-1/r3)

Figure 3.27

Octopole
(V- 1/r4)

Evidently the potential of a dipolegoeslike l/r2 at large r;aswemight have anticipated,
it falls off more rapidly than the potential of a point charge. Incidentally, if we put together
a pair of equal and opposite dipolesto make a quadrupole, the potential goeslike l/r3;for
back-to-back quadrupoles (an octopole)it goeslike 1/r4;and soon. Figure 3.27summarizes
this hierarchy; for completeness I have included the electricmonopole(point charge), whose
potential, of course,goeslike 1/r.

Example3.10pertainedto avery specialchargeconfiguration. Iproposenow to develop
a systematic expansionfor the potentialof an arbitrary localizedchargedistribution, in

powersof 1/r.Figure 3.28definesthe appropriate variables;the potential at r isgiven by
V(r) - -p(r)dr. (3.91)4;r60

Using the law ofcosines,

42 ---- r2 + (r\177) 2 -2rr'cosO\177 = r 2 1+ -2 \177 cos0\177 ,
or

* = r\177/1 + 6 (3.92)
where

For points well outsidethe chargedistribution, 6 is much lessthan 1,and this invites a
binomial expansion:

1 l(1 1(13253)-- \177 -- q-6)-1/2\177 -- 1- \1776 + - + (3.93)

P

Figure 3.28

3.4.MULTIPOLEEXPANSION 147

+ - +
Monopole Dipole
(V- I/r) (V-l/r 2)

Quadrupole
(V-1/r3)

Figure 3.27

Octopole
(V- 1/r4)

Evidently the potential of a dipolegoeslike l/r2 at large r;aswemight have anticipated,
it falls off more rapidly than the potential of a point charge. Incidentally, if we put together
a pair of equal and opposite dipolesto make a quadrupole, the potential goeslike l/r3;for
back-to-back quadrupoles (an octopole)it goeslike 1/r4;and soon. Figure 3.27summarizes
this hierarchy; for completeness I have included the electricmonopole(point charge), whose
potential, of course,goeslike 1/r.

Example3.10pertainedto avery specialchargeconfiguration. Iproposenow to develop
a systematic expansionfor the potentialof an arbitrary localizedchargedistribution, in

powersof 1/r.Figure 3.28definesthe appropriate variables;the potential at r isgiven by
V(r) - -p(r)dr. (3.91)4;r60

Using the law ofcosines,

42 ---- r2 + (r\177) 2 -2rr'cosO\177 = r 2 1+ -2 \177 cos0\177 ,
or

* = r\177/1 + 6 (3.92)
where

For points well outsidethe chargedistribution, 6 is much lessthan 1,and this invites a
binomial expansion:

1 l(1 1(13253)-- \177 -- q-6)-1/2\177 -- 1- \1776 + - + (3.93)

P

Figure 3.28

3.4.MULTIPOLEEXPANSION 147

+ - +
Monopole Dipole
(V- I/r) (V-l/r 2)

Quadrupole
(V-1/r3)

Figure 3.27

Octopole
(V- 1/r4)

Evidently the potential of a dipolegoeslike l/r2 at large r;aswemight have anticipated,
it falls off more rapidly than the potential of a point charge. Incidentally, if we put together
a pair of equal and opposite dipolesto make a quadrupole, the potential goeslike l/r3;for
back-to-back quadrupoles (an octopole)it goeslike 1/r4;and soon. Figure 3.27summarizes
this hierarchy; for completeness I have included the electricmonopole(point charge), whose
potential, of course,goeslike 1/r.

Example3.10pertainedto avery specialchargeconfiguration. Iproposenow to develop
a systematic expansionfor the potentialof an arbitrary localizedchargedistribution, in

powersof 1/r.Figure 3.28definesthe appropriate variables;the potential at r isgiven by
V(r) - -p(r)dr. (3.91)4;r60

Using the law ofcosines,

42 ---- r2 + (r\177) 2 -2rr'cosO\177 = r 2 1+ -2 \177 cos0\177 ,
or

* = r\177/1 + 6 (3.92)
where

For points well outsidethe chargedistribution, 6 is much lessthan 1,and this invites a
binomial expansion:

1 l(1 1(13253)-- \177 -- q-6)-1/2\177 -- 1- \1776 + - + (3.93)

P

Figure 3.28

148 CHAPTER3. SPECIALTECHNIQUES

or, in terms of r,F,and 0':

[ -' cos0,)+ '

156 (\177)3 (\177 2cos0,)3+...]
1 1+ (cos0')+ (3cos20'-1)/2r

_ _ 2cos0')2

In the last stepIhave collectedtogether like powersof (F/r);surprisingly, their coefficients
(the terms in parentheses)areLegendrepolynomials!Theremarkable resultTM is that

-\177 - -\177 P.(cos o'),
n=O

(3.94)

where0'isthe angle betweenr and if. Substituting this backinto Eq.3.91,and noting that
r is a constant, as far as the integration is concerned,Iconcludethat

V (r)-- (r')n P\177(cos

4yr\177 0 r (n+l)rt=0
(3.95)

or, moreexplicitly,

V(r) 1 p(r')dr'+ r'cos0'p(r')dr'
4rr60

F f (r')2r3 2 , (3.96)

This is the desiredresult--themultipole expansionof V in powersof 1/r.The
first term (n ---- 0) is the monopolecontribution (it goeslike l/r);the second(n = 1)
is the dipole(it goeslike l/r2);the third is quadrupole;the fourth octopole;and soon.
As it stands, Eq.3.95isexact,but it is useful primarily as an approximation scheme:the
lowestnonzeroterm in the expansionprovidesthe approximate potential at larger, and the
successiveterms tell us how to improve the approximation if greaterprecisionisrequired.

11Incidentally, this affords a second way of obtaining the Legendre polynomials (the first being Rodrigues'
formula); 1/0.iscalled the generating function for Legendre polynomials.



Monopole and dipole radiation

Quadrupole approximation

The post-Newtonian approximation has so far been the
most powerful of these methods, and it yields the most
insight into the emission mechanisms. Its fundamental
result is the quadrupole formula, which gives the first
approximation to the radiation emitted by a weakly rel-
ativistic system.

The quadrupole formula is analogous to the dipole
formula of electromagnetism. In this language,
monopole means spherical, which emits no radiation.
This is also true in electromagnetism, where it is linked
to conservation of charge. The “monopole moment” in
electromagnetism is the total charge of a system, and
since that does not change, there can be no spherical
radiation.

Again in electromagnetism, the dipole moment is
defined as the integral

di =

∫

ρxid
3x,

where ρ is the charge density and xi is a Cartesian co-
ordinate. If this integral is time-dependent, then the
amplitude of the electromagnetic waves will be propor-
tional to its first time-derivative ddi/dt, and the radiated
energy will be proportional (as we remarked earlier) to
the square of the time derivative of this amplitude, i.e.
to

∑

i |d2di/dt2|2.
In the post-Newtonian approximation to general rel-

ativity, the calculation goes remarkably similarly. The
monopole moment is now the total mass-energy, which
is the dominant source of the gravitational field for
non-relativistic bodies, and which is constant as long
as the radiation is weak. (Radiation will carry away
energy, but in the post-Newtonian approximation that
is a higher-order effect.) The dipole moment is given
by the same equation as above, but with ρ interpreted
as the density of mass-energy.

However, here general relativity departs from elec-
tromagnetism. The time-derivative of the dipole mo-
ment is, since the mass-energy is conserved, just the
integral of the velocity vi:

ḋi =

∫

ρvid
3x. (10)

But this is the total momentum in the system, and (to
lowest order) this is constant. Therefore, there is no en-
ergy radiated due to dipole effects in general relativity.
The gravitational field far from the source does con-
tain a dipole piece if ḋi is non-zero, but this is constant
because it reflects the fact that the source has non-zero
total momentum and is therefore moving through space.

To find genuine radiation in general relativity one
must go one step beyond the dipole approximation to
the quadrupole terms. These are also studied in elec-
tromagnetism, and the analogy with relativity again

is close. The fundamental quantity is the spatial ten-
sor (matrix) Qjk, the second moment of the mass (or
charge) distribution:

Qjk =

∫

ρxjxkd3x. (11)

A gravitational wave in general relativity is represented
by a matrix hjk rather than a single scalar h, and its
source (in the quadrupole approximation) is Qjk.

As in electromagnetism, the amplitude of the radi-
ation is proportional to the second time-derivative of
Qjk, and it falls off inversely with the distance r from
the source. A factor of G/c4 is needed in order to get a
dimensionless amplitude h, and a factor of 2 to be con-
sistent with the definition in Equation (8). The result
for hjk is:

hjk =
2G

rc4

d2Qjk

dt2
. (12)

General relativity describes waves with a matrix be-
cause gravity is geometry, and the effects of gravity are
represented by the stretching of space-time. This ma-
trix contains that distortion information. Here is the
information about the transverse action of the waves
that the quasi-Newtonian model of the last section did
not get right.

Simple estimates

If the motion inside the source is highly non-spherical,
then a typical component of d2Qjk/dt2 will (from Equa-
tion (11)) have magnitude Mv2

N.S., where v2
N.S. is the

non-spherical part of the squared velocity inside the
source. So one way of approximating any component
of Equation (12) is

h ∼
2GMv2

N.S.

rc4
. (13)

Comparing this with Equation (8) we see that the ratio
ε of the wave to the Newtonian potential is simply

ε ∼
v2

N.S.

c2
.

By the virial theorem for self-gravitating bodies, this
will not be larger than

ε < φint/c2, (14)

where φint is the maximum value of the Newtonian
gravitational potential inside the system. This provides
a convenient bound in practice. It should not be taken
to be more accurate than that.

For a neutron star source one has φint ∼ 0.2c2. If
the star is in the Virgo cluster, then the upper limit on
the amplitude of the radiation from such a source is 5×
10−22. This has been the goal of detector development
for decades, to make detectors that can observe waves
at or below an amplitude of 10−21.
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Quadrupole approximation

The post-Newtonian approximation has so far been the
most powerful of these methods, and it yields the most
insight into the emission mechanisms. Its fundamental
result is the quadrupole formula, which gives the first
approximation to the radiation emitted by a weakly rel-
ativistic system.

The quadrupole formula is analogous to the dipole
formula of electromagnetism. In this language,
monopole means spherical, which emits no radiation.
This is also true in electromagnetism, where it is linked
to conservation of charge. The “monopole moment” in
electromagnetism is the total charge of a system, and
since that does not change, there can be no spherical
radiation.

Again in electromagnetism, the dipole moment is
defined as the integral

di =
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3x,

where ρ is the charge density and xi is a Cartesian co-
ordinate. If this integral is time-dependent, then the
amplitude of the electromagnetic waves will be propor-
tional to its first time-derivative ddi/dt, and the radiated
energy will be proportional (as we remarked earlier) to
the square of the time derivative of this amplitude, i.e.
to

∑

i |d2di/dt2|2.
In the post-Newtonian approximation to general rel-

ativity, the calculation goes remarkably similarly. The
monopole moment is now the total mass-energy, which
is the dominant source of the gravitational field for
non-relativistic bodies, and which is constant as long
as the radiation is weak. (Radiation will carry away
energy, but in the post-Newtonian approximation that
is a higher-order effect.) The dipole moment is given
by the same equation as above, but with ρ interpreted
as the density of mass-energy.

However, here general relativity departs from elec-
tromagnetism. The time-derivative of the dipole mo-
ment is, since the mass-energy is conserved, just the
integral of the velocity vi:

ḋi =

∫

ρvid
3x. (10)

But this is the total momentum in the system, and (to
lowest order) this is constant. Therefore, there is no en-
ergy radiated due to dipole effects in general relativity.
The gravitational field far from the source does con-
tain a dipole piece if ḋi is non-zero, but this is constant
because it reflects the fact that the source has non-zero
total momentum and is therefore moving through space.

To find genuine radiation in general relativity one
must go one step beyond the dipole approximation to
the quadrupole terms. These are also studied in elec-
tromagnetism, and the analogy with relativity again

is close. The fundamental quantity is the spatial ten-
sor (matrix) Qjk, the second moment of the mass (or
charge) distribution:

Qjk =

∫

ρxjxkd3x. (11)

A gravitational wave in general relativity is represented
by a matrix hjk rather than a single scalar h, and its
source (in the quadrupole approximation) is Qjk.

As in electromagnetism, the amplitude of the radi-
ation is proportional to the second time-derivative of
Qjk, and it falls off inversely with the distance r from
the source. A factor of G/c4 is needed in order to get a
dimensionless amplitude h, and a factor of 2 to be con-
sistent with the definition in Equation (8). The result
for hjk is:

hjk =
2G

rc4

d2Qjk

dt2
. (12)

General relativity describes waves with a matrix be-
cause gravity is geometry, and the effects of gravity are
represented by the stretching of space-time. This ma-
trix contains that distortion information. Here is the
information about the transverse action of the waves
that the quasi-Newtonian model of the last section did
not get right.

Simple estimates

If the motion inside the source is highly non-spherical,
then a typical component of d2Qjk/dt2 will (from Equa-
tion (11)) have magnitude Mv2

N.S., where v2
N.S. is the

non-spherical part of the squared velocity inside the
source. So one way of approximating any component
of Equation (12) is
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Comparing this with Equation (8) we see that the ratio
ε of the wave to the Newtonian potential is simply

ε ∼
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N.S.
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.

By the virial theorem for self-gravitating bodies, this
will not be larger than

ε < φint/c2, (14)

where φint is the maximum value of the Newtonian
gravitational potential inside the system. This provides
a convenient bound in practice. It should not be taken
to be more accurate than that.

For a neutron star source one has φint ∼ 0.2c2. If
the star is in the Virgo cluster, then the upper limit on
the amplitude of the radiation from such a source is 5×
10−22. This has been the goal of detector development
for decades, to make detectors that can observe waves
at or below an amplitude of 10−21.
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tain a dipole piece if ḋi is non-zero, but this is constant
because it reflects the fact that the source has non-zero
total momentum and is therefore moving through space.

To find genuine radiation in general relativity one
must go one step beyond the dipole approximation to
the quadrupole terms. These are also studied in elec-
tromagnetism, and the analogy with relativity again

is close. The fundamental quantity is the spatial ten-
sor (matrix) Qjk, the second moment of the mass (or
charge) distribution:

Qjk =

∫

ρxjxkd3x. (11)

A gravitational wave in general relativity is represented
by a matrix hjk rather than a single scalar h, and its
source (in the quadrupole approximation) is Qjk.

As in electromagnetism, the amplitude of the radi-
ation is proportional to the second time-derivative of
Qjk, and it falls off inversely with the distance r from
the source. A factor of G/c4 is needed in order to get a
dimensionless amplitude h, and a factor of 2 to be con-
sistent with the definition in Equation (8). The result
for hjk is:

hjk =
2G

rc4

d2Qjk

dt2
. (12)

General relativity describes waves with a matrix be-
cause gravity is geometry, and the effects of gravity are
represented by the stretching of space-time. This ma-
trix contains that distortion information. Here is the
information about the transverse action of the waves
that the quasi-Newtonian model of the last section did
not get right.

Simple estimates

If the motion inside the source is highly non-spherical,
then a typical component of d2Qjk/dt2 will (from Equa-
tion (11)) have magnitude Mv2

N.S., where v2
N.S. is the

non-spherical part of the squared velocity inside the
source. So one way of approximating any component
of Equation (12) is

h ∼
2GMv2

N.S.

rc4
. (13)

Comparing this with Equation (8) we see that the ratio
ε of the wave to the Newtonian potential is simply

ε ∼
v2

N.S.

c2
.

By the virial theorem for self-gravitating bodies, this
will not be larger than
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where φint is the maximum value of the Newtonian
gravitational potential inside the system. This provides
a convenient bound in practice. It should not be taken
to be more accurate than that.

For a neutron star source one has φint ∼ 0.2c2. If
the star is in the Virgo cluster, then the upper limit on
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will not be larger than
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to be more accurate than that.

For a neutron star source one has φint ∼ 0.2c2. If
the star is in the Virgo cluster, then the upper limit on
the amplitude of the radiation from such a source is 5×
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