Introduction to gravitational

 wave astronomy

 wave astronomy}

Chandra Kant Mishra IIT Madras

Mini School on Gravitation and Cosmology
25-27 Nov, ITM

Outline

* Gravitational Waves in theories of gravity and its properties
* GW detection principle - Freely falling frames, Tidal forces
* Detection methods - Chirps, Matched filtering

Newtonian Gravity

Universal Law of Gravitation

$$
\mathbf{F}=-\frac{G M m}{r^{2}} \hat{\mathbf{r}}
$$

Gravitational Waves are simply ...

- Propagating gravitational fields.. (similar to EM waves which are propagating EM fields)
- Produced by acceleration of masses (EM waves produced due to accelerating charges)
- Transverse in nature (so are EM waves)
- Has two states of polarisations (similar to EM waves)
- Interacts very weakly with intervening matter (unlike EM waves)

GWs are quadrupolar, EM waves are dipolar

Generation of GWs

* Conservation of "mass" - No monopole radiation
- And the dipole radiation is forbidden due to "conservation of linear and angular momentum".
* However, all (time-dependent) non-spherical motions according to General Relativity should produce these waves.

Time varying fields

Source: HUBBLESITE.org
Credit: ANU Centre for Gravitational Physics

"Apples"
 down the Pisa tower

Gravitational acceleration

$$
\mathbf{a}=\mathbf{F} / m=-\frac{G M}{r^{2}} \hat{\mathbf{r}}
$$

Credit: GARY BROWN/SCIENCE PHOTO LIBRARY

Equivalence principle

Source: Time Travel Research Center

Tidal forces

Detection principle

Effect of Gravitational

 Waves

Chirps

Video Credit: blffcomINFN

DAILY CARTOON: FRIDAY, FEBRUARY 12TH

By David Sipress February 12, 2016

[^0]
Livingston

20) सी

The LIGO Twins

Image Credit: LIGO Caltech

Hanford
Livingston

Matched filtering

Signal-to-noise

Template Bank

250,000 waveforms
[LVC, PRD 96, 122003 (2016)]

BBH Waveforms

Approximation schemes

Extracting source properties

- In general a compact binary is fully characterised by a set of 17 parameters comprising of
- Component Masses (2)
- Component spins (6)
- Binary's distance (1)
- Binary's location (2)
- Binary's orientation (2)
* Orbital eccentricity (1) - if binary is not circular
- Effect of matter - tidal effects

Approximation schemes

Matter effects

Higher order Modes

Parameter Estimation

additional slides

LIGO Schematic Diagram

LIGO-Virgo Collaboration, PRL 116, 061102 (2016)

Video Credit: $\$ JJffcomINFN

Linearised Gravity

$$
\begin{aligned}
& R_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R=\frac{8 \pi G}{c^{4}} T_{\alpha \beta} \\
& \quad+ \\
& g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad \rightarrow \square \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \\
& \nabla^{2}-\mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}}=\square^{2} \quad \& \bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h \\
& \\
& \bar{h}_{\mu \nu}(t, \bar{x})=\frac{4 G}{c^{4}} \int \frac{T_{\mu \nu}\left(t-\left|\bar{x}-\bar{x}^{\prime}\right| / c, \bar{x}^{\prime}\right)}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime}
\end{aligned}
$$

Static weak fields

$$
\begin{aligned}
& \bar{h}_{\mu \nu}(t, \bar{x})=\frac{4 G}{c^{4}} \int \frac{T_{\mu \nu}\left(t-\left|\bar{x}-\bar{x}^{\prime}\right| / c, \bar{x}^{\prime}\right)}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime} \\
& \\
& \pm \\
& T^{00}=\rho c^{2} \quad \longrightarrow \quad \rightarrow \quad \bar{h}^{00}=\frac{4 G}{c^{4}} \int \frac{\rho\left(\bar{x}^{\prime}\right)}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime}
\end{aligned}
$$

$$
\bar{h}^{00}=-\frac{4 \Phi(\bar{x})}{c^{2}} \quad \text { OR } \quad h^{00}=-\frac{2 \Phi(\bar{x})}{c^{2}}
$$

$$
\bar{\Phi}=-G \int \frac{\rho\left(\bar{x}^{\prime}\right)}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime}
$$

Quadrupole approximation

$$
\square h_{\mu \nu}=0
$$

Fourier Mode in z-dir $\quad h_{\mu \nu}=A_{\mu \nu} e^{\mathrm{i} k(t-z)}$

Non-zero components

$$
\begin{aligned}
A_{11}= & -A_{22}=A_{+} \text {and } A_{12}=A_{21}=A_{\times} \\
& A_{\mu \nu} \equiv\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & A_{+} & A_{\times} & 0 \\
0 & A_{\times} & -A_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Effect on matter

Geodesic Deviation Equation

$$
\frac{D^{2}\left(\delta x^{\lambda}\right)}{D \tau^{2}}=R_{\mu \nu \kappa}^{\lambda}\left(\frac{d x^{\mu}}{d \tau}\right)\left(\frac{d x^{\nu}}{d \tau}\right) \delta x^{\kappa}
$$

For weak fields

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}}\left(\delta x^{i}\right)=-R_{0 j 0}^{i} \delta x^{j} \quad \frac{d^{2}}{d t^{2}}\left(\delta x_{i}\right)=\frac{1}{2} \frac{\partial^{2} h_{i j}}{\partial t^{2}} \delta x^{j} \\
\text { Solution } \quad \delta x_{i}=\delta x_{i, 0}+\frac{1}{2} h_{i j} \delta x^{j}
\end{gathered}
$$

It is easy to see for the polarisation mode with amplitude $\left(A_{+}\right)$we get

$$
\begin{aligned}
\delta x_{1} & =\delta x_{1,0}+\frac{1}{2} A_{+} e^{\mathrm{i} k t} \delta x^{j} \\
\delta x_{2} & =\delta x_{2,0}-\frac{1}{2} A_{+} e^{\mathrm{i} k t} \delta x^{j}
\end{aligned}
$$

Multipole Expansion

$$
V(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{1}{2} \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} .
$$

Dipole
$\left(V \sim 1 / r^{2}\right)$

($V \sim 1 / r^{3}$)

$$
\begin{aligned}
V(\mathbf{r})= & \frac{1}{4 \pi \epsilon_{0}}\left[\frac{1}{r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{r^{2}} \int r^{\prime} \cos \theta^{\prime} \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}\right. \\
& \left.+\frac{1}{r^{3}} \int\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos ^{2} \theta^{\prime}-\frac{1}{2}\right) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\ldots\right]
\end{aligned}
$$

Monopole and dipole radiation

Monopole

$$
M=\int \rho d x^{3}
$$

Dipole

$$
\begin{aligned}
d_{i} & =\int \rho x_{i} d^{3} x \\
\dot{d}_{i} & =\int \rho v_{i} d^{3} x
\end{aligned}
$$

Quadrupole approximation

Quadrupole

$$
Q_{j k}=\int \rho x_{j} x_{k} d^{3} x .
$$

Quadrupole Formula

$$
h_{j k}=\frac{2 G}{r c^{4}} \frac{d^{2} Q_{j k}}{d t^{2}}
$$

[^0]: "Was that you I heard just now, or was it two black holes colliding?"

