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Feynman’s path integral prescription for wave function of  a system can be used to obtain the ground state wave 
function in terms of  a suitably defined Euclidean path integral. I apply this prescription to obtain the ground 

state wave function of  a Lorentzian spacetime (M, g). This is done using timelike geodesics u emanating from an 
arbitrary event p. These not only define the casual domain of  p, but also provide a natural definition of  the 

Euclidean regime (M, gE, u) of  (M, g). I compute the leading order Einstein-Hilbert action IE = I[gE], and show 

that it is proportional to the Einstein tensor. Putting all this together finally yields a wave function  for a 

Lorentzian spacetime (M, g), whose interpretation is discussed. 
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Feynman path integral and the Wave function 

The path integral formulation of  quantum mechanics assigns a specific weightage, 

A[H]=eS[H], to each possible classical history H of  a given system, with S[H] being the action. 

The key role is then played by the sum-over-

histories of A[H]. This same sum, when 

supplied with suitable boundary conditions, 

also yields the wave-function of  the system, 

as discussed in the original paper by 

Feynman [1]. The euclidean version of  this 

prescription is then easily shown to yield the 

ground state wave function of  the system. (See 

Fig. 1.) 

In what surely must count as an audacious 

attempt, Stephen Hawking and Jim Hartle (HH) [2] sought to apply this formulation to the 

entire universe, hoping to use path integrals to define a wave-function for the universe. Their 

prescription goes in following steps (interspersed, of  course, with rigorous maths that yields 

quantitative results):  

1. Describe the universe by the Einstein-Hilbert action:! . 

2. Euclideanize the action by Wick rotation.  

3. Evaluate the dominant saddle points of  the path integral of  A[H] with some prescribed 

boundary conditions. Hence obtain the “wave function of  the universe” ! .  

The prescription is elegant and simple. Let me briefly explain the steps above: (1) is a fair 

enough input, although generalisation of  HH analysis for higher curvature actions should be 

straightforward. (2) is motivated by its success in quantum field theories without gravity, where 

it works extremely well. The issues with (2) for the case of  gravity is what will largely form the backbone 

of  this essay. Finally, (3) is essentially the standard result for path integrals applied to the 

universe. The only contentious point here is the choice of  boundary conditions. This was 

spelled out by HH, and goes by the name of  the no-boundary proposal. We will not discuss this 

here, but instead get back to the issues with (2). Amongst the many issues one must deal with 

in proceeding to understand quantum gravity via path integrals, the most important is the ill-

S[g] = ∫ L[g] = ∫V
RicSc[g] + 2∫∂V
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defined prescription of  Wick rotation ! , in which one analytically continues the time 

coordinate in the hope that it will make the path amplitudes, and hence the sum over paths, 

well behaved. The prescription works in spacetimes possessing a static timelike Killing field, 

but otherwise, it is simply useless. What works so well in other gauge theories simply does not 

work for gravity. Many researches have discussed in depth the issues of  Euclidean quantum 

gravity, and its implications for quantum cosmology, but the results, and the associated 

plethora of  prescriptions for analytic continuations, muddy the whole framework, making its 

basic postulates unconvincing and it’s utility unclear. Last, but not the least, of  the issues with 

conventional Wick rotation is that it generically yields a complex metric, with no proper 

interpretation. 

 

However, there does exists a nice, 

covariant, alternative to Wick rotation, 

provided by the class of  metrics 

! , where !  is a 

scalar field whose gradient is parallel to 

the unit timeline vector field ! ; this 

function can be chosen in an appropriate 

manner; see Fig. 2 for a typical profile, 

for which it is easily shown that !  

describe a class of  metrics that start in the 

Euclidean phase (! ), and make a (singular) transition to the Lorentzian phase (! ) 

at some length scale, say ! . This length scale, which one expects to characterise  the small 

scale structure of  spacetime, is a priori independent of  the Planck length, ! . However, 

to avoid clutter, I will set it as equal to the Planck scale. 

Causal curves and Spacetime geometry 

Having thus identified a class of  metrics that have a well defined Euclidean regime, ask: 

Q1. How does one apply this formalism to the small scale structure of  an arbitrary spacetime? In particular, 

       Q1.1. What !  must one chose?  

Q2. What becomes of  the Einstein-Hilbert action in the Euclidean regime?  

t → ± i t

g(E )
ab = gab + Θ(x) uaub Θ(x)

ua

g(E )
ab

Θ < − 1 Θ > − 1

ℓ0

10−33 cm

ua
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Q3. Which of  the well known tensors: Ricci scalar ! , Ricci tensor ! , Einstein tensor ! , or  the curvature 

tensor ! , determines the leading order Euclidean path amplitudes.  

For answers, first zoom in to an arbitrary neighbourhood of  an arbitrary spacetime event ! . 

Things in this mesoscopic domain will look somewhat like Fig. 3. Depicted here are timelike 

geodesics and null cones anchored at ! . Consider now all time like geodesics emanating from 

! , and set the affine parameter !  to zero at ! . Now, it is simple to show that the congruence 

in consideration is hyper surface orthogonal, and hence one can move an affine distance !  

along each member of  it, to construct a hyper surface on which our function !  would take 

the value -1. This construction takes care of  Q1 above. It also yields all the ingredients to 

answer Q2; we simply evaluate the Ricci scalar !  corresponding to ! . This requires 

exact expressions for various geometric quantities associated with the foliation that we have 

set up, such as its intrinsic and extrinsic curvature. These can be derived as covariant Taylor 

expansions in ! . The lowest order term will suffice for our considerations, since that also 

happens to yield the leading curvature dependence. Higher orders in !  will bring in higher 

curvature terms in the action, which I will ignore here. 

The Euclidean Einstein-Hilbert action 

After a long computation [3], we finally get an answer to Q3 that is, at the same time, 

unexpected and extremely intriguing: 

R Rab Gab

Rab
cd

p0

p0

p0 λ p0

λ = ℓ0

Θ

R[g(E )
ab ] g(E )

ab

λ

λ
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where !  represent the average of  !  over the unit !  dimensional hyperbolic space. 

We note, in particular, that 

If  !  for all time like vectors ! , so is ! . 

For the cognoscenti, the significance of  the above result can not be overemphasised. It hints at 

a connection between the so-called positive action conjecture in Euclidean gravity, with (the 

geometrical version of) the weak energy condition in classical general relativity.  1

Wave function of  spacetime and Einstein tensor 

One now uses the Euclidean action, and interprets the ground state wave function 

!   

as a function whose modulus squared would give the probability for a space like hypersurface 

!  to emerge at a constant geodesic distance !  from a spacetime event ! . Applied to all 

spacetime events, one then defines the total wave function by ! . What would be the 

τab uaub (D − 1)

Gabuaub > 0 ua IE

Ψp0 [ΣG,p0] ∼ e−(2/D)ℓ2
0 Gabτab

ΣG,p0
ℓ0 p0

Ψ = Π
p0

Ψp0

There is already a connection between positive energy theorem in (D+1) dimensions and positive action 1

conjecture in D dimensions - former implies the latter.
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Fig. 4 Comparison between Feynman’s definition of  ground state wave function for point 
particle paths, and the set-up described here involving geodesic timelike paths. The 
construction suggested here therefore seems to be more than similarities of  prescription; it 
suggests that timelike curves indeed do play a key role in emergence of  spacetime in a 
quantum theory.



meaning of  this wave function? This is not completely clear, but presumably it must have some 

interpretation in terms of  emergence of  a spacetime with a given Lorentzian metric ! . 

There exists a very close relationship between our set-up and the original one by Feynman, 

although we are not doing quantum dynamics of  point particle. This is depicted and 

explained in Fig. 4. These observations might not only help provide a rigorous justification 

for our boundary conditions and interpretation of  the wave function, but might even help in 

evaluating and understanding better the structure of  the gravitational path integral 

	 	 	 	 	 !  

gab

Z = ∫ 𝒟gab 𝒟ua exp i I [g(E )
ab ]
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Fig. 5 Left: Emergence of  spacetime can be described in terms of  emergence of  a causal 
future (or past) of  an event p0. This, in turn, is described in terms of  a wave function that is 
determined by the Euclidean action constructed from all timelike geodesics emanating from 
p0. Right: Nucleation of  a Lorentzian universe from a Euclidean phase a la Hawking and 
Hartle. The figure illustrates conceptual similarities of  the two ideas. The key difference is 
the observer dependent euclideanisation applied to arbitrary spacetime here.



This remains a daunting task. Daunting, but not impossible! One can indeed extract 

quantitative results by plugging in the action and attempting to evaluate !  in some suitable 

approximation. The set-up we have described is essentially rooted in the question about what 

would happen if  spacetime turns euclidean at the smallest of  scales. Very often, following the 

path set by HH, it has been considered that spacetime near singularities might be euclidean. 

What we are saying here is similar in spirit, but different in almost every other aspect! (see 

Fig. 5). Our results depend, of  course, on the specific “proposal” for Euclideanization which, 

being so, can not be derived any more that one can derive Wick rotation. However, IF one 

accepts the proposal given here, and the resultant Euclidean metric it yields, rest of  the 

conclusions follow rigorously. Specifically, the result establishes a very direct relation between 

a quantum wave function !  and the Einstein tensor ! , a relation that arises in no trivial 

manner from specific mathematical details of  the geodesic structure of  spacetime (see [3] for 

details). A final step would be to incorporate the effects due to vacuum fluctuations [4], and 

account for yet another feature of  small scale structure of  spacetime - the existence of  a lower 

bound to spacetime intervals [5]. These are under investigation. 
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