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In this chapter we shall tackle immediately the basic element of  the mysterious behaviour in 
its most strange form. We choose to examine a phenomenon which is impossible, 
absolutely impossible, to explain in any classical way, and which has 
in it the heart of  quantum mechanics. In reality, it contains the only mystery. We 
cannot make the mystery go away by “explaining” how it works. We will just tell you how it 
works. In telling you how it works we will have told you about the basic peculiarities of  all 
quantum mechanics.

Richard Feynman
The Feynman Lectures on Physics [Vol III, Ch 1]

2

Dawood Kothawala, Department of Physics, IIT
 Madras



Double slit experiment with BULLETS

• Probability with both slits open is the 
sum of probabilities with either slit open

• This is characteristic of a no-interference 
and signifies a particle behaviour

The Feynman Lectures on Physics [Vol III, Ch 1]3
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Double slit experiment with BULLETS

• Probability with both slits open is the 
sum of probabilities with either slit open

• This is characteristic of a no-interference 
and signifies a particle behaviour

Double slit experiment with WAVES

• Intensity with both slits open is NOT the 
sum of intensities with either slit open

• This is characteristic of an interference 
and signifies a wave behaviour

The Feynman Lectures on Physics [Vol III, Ch 1]4
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Double slit experiment with ELECTRONS

The distribution pattern is similar to that for the waves!

What wave?

The Feynman Lectures on Physics [Vol III, Ch 1]5
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Double slit experiment with ELECTRONS

The distribution pattern is similar to that for the bullets when 
one tries to observe which slit the electron passes through!

The Feynman Lectures on Physics [Vol III, Ch 1]6
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The Stern-Gerlach experiment

e-

Sz

Sx
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The Stern-Gerlach experiment

e-

e-
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The Stern-Gerlach experiment

e-

e-

What’s inside these boxes?
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The Stern-Gerlach experiment

The experimental apparatus inside the box

F = r (m ·B)
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The Stern-Gerlach experiment

The experimental apparatus inside the box
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https://www.youtube.com/watch?v=rg4Fnag4V-E
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The plaque shows schematically the apparatus of the experiment, and Stern (L) and Gerlach (R). The text says:  
In February 1922, the fundamental discovery of the space quantisation of the magnetic moments in atoms was made 
in this building of the Physikalischer Verein, Frankfurt am Main, by Otto Stern and Walther Gerlach. The Stern-Gerlach 
experiment is the foundation of important physical and technical developments of the 20th century, such as the 
nuclear resonance method, the atomic clock, or the laser. Otto Stern was awarded the Noble prize for this discovery 
in 1943.
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The Stern-Gerlach experiment

The experimental apparatus inside the box
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The Stern-Gerlach experiment
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The Stern-Gerlach experiment
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The Stern-Gerlach experiment
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The Stern-Gerlach experiment

e-

50%

50%

e-

50%

50%

50%

50%

100%

0%

19

Dawood Kothawala, Department of Physics, IIT
 Madras



Magnetic moment takes only two possible values 

This turns out to be true for many other properties, such as Energy, Angular 
momentum etc, for many systems 

Eg: A particle in a box can have only a fixed set of energies
      A harmonic oscillator can have only a fixed set of energies
      An electron in a hydrogen atom can have only fixed set of energies

Unlike in Classical Physics, physical observables associated with a system, 
such as, E, L, may not take arbitrary values
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Physical properties of a system is intimately tied to 
the kind of measurements made on the system. 
Without any such measurement, it makes no sense 
to talk of a value of a particular physical quantity. 

Eg: knowing the z-component of Spin of an electron wipes out any earlier information we 
might have had about its x-component. This is not unrelated to the uncertainty principle.

This, again, is in stark contrast to what happens in Classical Physics, 
where a system has well defined values for observable regardless of 

measurement
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r(t)

m
d2r

dt2
= F

 (r, t)
v(t)

(Schrodinger equation)

i~ @
@t
 (r, t) =


� ~2
2m

r2 + V (r, t)

�
 (r, t)

This is called the wave 
function of a system. It 
is in general a complex 
function.

22



r(t)

v(t)
 (r, t) ! P (r, t) =  ⇤ 

probability density

br
bp
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r(t)

v(t)
 (r, t) ! P (r, t) =  ⇤ br

bp

Z
 ⇤ d3r =

Z
P (r, t) d3r = 1
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r(t)

v(t)
 (r, t) ! P (r, t) =  ⇤ br

bp

hr̂i(t) =
Z

d3r P (r, t) rOperators
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Position 
operator 

Momentum 
operator 

 (r, t) br  (r, t)r

 (r, t) bp  (r, t)�i~r

Input Output

To every “observable” (eg, position, momentum) there corresponds an 
“operator’’ which acts on the wave function in a specific manner

 (r, t) = Cei(k·r�!t)Example:

br = r 

bp = (~k) 

The above definitions of position and momentum operators therefore make perfect sense

Operators
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i~ @
@t
 (r, t) =


� ~2
2m

r2 + V (r, t)

�
 (r, t)

H =
p
2

2m
+ V (r, t)

Hence, the Schrodinger equation can be viewed as an operator version of the 
defining relation for energy in classical mechanics. 

This, however, should NOT be taken as a derivation of the SE.

Note: The quantity                is known as the Hamiltonian in Classical 
Mechanics. 
It’s specific value                         is what we call Energy.

H(r,p)

H(r,p) = E

time evolution operator
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• The resultant Schrodinger equation is known as the time-independent SE

• It describes states of a system having a definite energy E
• Such states are known as stationary states

H(r,p) = E

For the purpose of this course, we shall only be 
interested in states which have definite energy 
in presence of a time-independent potential

 (r, t) = u(r)e�
iEt
~

These are described by wave function of the form

"
� ~2
2m

r2 + V (r)

#
u(r) = Eu(r)
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Example 1
A free particle in a one dimensional box

V (r) = 0

"
� ~2
2m

@2

@x2
+ V (x)

#
u(x) = Eu(x)

zero

d2u(x)

dx2
= �

✓
2mE

~2

◆
u(x)

V (r) = 1

Discuss solutions of this equation 
and

discrete nature of possible energies E
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Example 2
Lowest energy state of a Harmonic Oscillator

"
� ~2
2m

@2

@x2
+ V (x)

#
u(x) = Eu(x)

We only mention lowest energy solution of 
this equation and the corresponding value 

of E

V (x) =
1

2
kx2

x = 0

d2u(x)

dx2
= �

"
2m

~2

 
E � V (x)

!#
u(x)
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Example 2
Lowest energy state of a Harmonic Oscillator

This is the so-called ground state of a 
quantum harmonic oscillator

V (x) =
1

2
kx2

x = 0

d2u(x)

dx2
= �

"
2m

~2

 
E � V (x)

!#
u(x)

u0(x) = (↵/⇡)1/4 e�↵x2/2

↵ = m!/~
! =

p
k/m

E = E0 =
1

2
~!
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Example 2
Lowest energy state of a Harmonic Oscillator

V (x) =
1

2
kx2

x = 0

d2u(x)

dx2
= �

"
2m

~2

 
E � V (x)

!#
u(x)

u0(x) = (↵/⇡)1/4 e�↵x2/2

↵ = m!/~
! =

p
k/m

E = E0 =
1

2
~!

Classical result: E =
p2

2m
+

1

2
kx2 E0 = 0⇒

Here, the lowest energy is zero, which happens for p = 0 = x. In Quantum Mechanics, such a 
state can not exist! 

This is an illustration of the Uncertainty Principle.
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Example 2
Lowest energy state of a Harmonic Oscillator

V (x) =
1

2
kx2

x = 0

Classical

Quantum P (x) = u0(x)
2

P (x) / 1

v(x)

Classically, the probability for finding 
the oscillator at a given x is maximum 
at the turning points, since it spends 
the most time there.

Quantum mechanically, this probability 
is maximum at x=0, where the wave 
function is maximum
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En =
~2⇡2n2

2mL2

En =

✓
n+

1

2

◆
~!

En ⇡ (�13.6eV)

n2

Energy Quantization

Free particle in a 1D box

Harmonic Oscillator

Hydrogen atom

n = ±1,±2, . . .

n = 0, 1, . . .

n = 1, 2, . . .

n 2 Z
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EP2210: Principles of Quantum Mechanics 
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