

Physics of Interferometric Gravitational Wave Detectors

Biplab Bhawal - LIGO Laboratory, California Institute of Technology, USA

International Conference on Gravitation and Cosmology Kochi, India Jan'2004 LIGO

Gravitational Waves the effect

Leonardo da Vinci's Vitruvian man

stretch and squash in perpendicular directions at the frequency of the gravitational waves

The effect is greatly exaggerated!!

If the man were 4.5 light years high, he would grow by only a 'hairs width' LIGO (4 km), stretch (squash) = 10^{-18} m will be detected at frequencies of 10 Hz to 10^4 Hz. It can detect waves from a distance of 60 10^6 light years

How Small is 10⁻¹⁸ Meter?

The Laboratory Sites

Laser Interferometer Gravitational-wave Observatory (LIGO)

LIGO Livingston Observatory

6

LIGO Hanford Observatory

- Introduction to LIGO I configuration
- Length Control & Lock acquisition
- Misalignment & Wave-Front sensor
- Thermal Lensing & compensation
- Advanced LIGO features

LIGO

LIGO Interferometer Optical Scheme

Initial LIGO Sensitivity Goal

- Strain sensitivity
- < 3x10⁻²³ 1/Hz^{1/2} at 200 Hz
- Displacement Noise
 - » Seismic motion
 - » Thermal Noise
 - » Radiation Pressure
- Sensing Noise
 - » Photon Shot Noise
 - » Residual Gas

Seismic isolation stacks

Suspended Core Optics

- Optics suspended as simple pendulums
- Local sensors/actuators for damping and control
- Coils push/pull on tiny magnets glued to optics
- Earthquake stops to prevent break-off of tiny magnets

Suspended mass with local control

LIGO

Interferometer Length Sensing and Control

- Global Length Sensing and Control
 - » Reflection locking technique length and frequency sensing
 - » Control 4 longitudinal degrees of freedom and laser frequency
 - » Requirements:
 - Differential arm length <10⁻¹³ m rms
 - Frequency noise < $3x10^{-7}$ Hz/Hz^{1/2} at 100 Hz
 - Controller noise for diff. arm length $<10^{-20}$ m/ Hz^{1/2} at 150 Hz

• Common Modes: $(L_x + L_y)/2$, $(\ell_x + \ell_y)/2$

Phase modulation

• Phase Modulation

$$\exp\left(i\omega_c t\right) \times \exp\left[i\varepsilon_m \sin(\omega_m t)\right]$$

• Series Expansion

$$e^{i\omega_{c}t} \times \begin{bmatrix} J_{0}\left(\varepsilon_{m}\right) + J_{1}\left(\varepsilon_{m}\right)e^{i\omega_{m}t} + J_{-1}\left(\varepsilon_{m}\right)e^{-i\omega_{m}t} + \dots \end{bmatrix}$$

$$\overset{\text{CR}}{\overset{\text{SB-}}{\overset{\text{SB+}}{\overset{\text{SB+}}{\overset{\text{reg}}{\overset{\text{reg}}{\overset{\text{solution}}{\overset{\text{SB+}}{\overset{\text{SB-}}{\overset{\text{SB+}}{\overset{\text{SB-}}}{\overset{\text{SB-}}{\overset{\text{SB-}}{\overset{\text{SB-}}{\overset{\text{SB-}}{\overset{\text{SB-}}}{\overset{\text{SB-}}{\overset{\text{SB-}}}{\overset{\text{SB-}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}}{\overset{\text{SB-}}}}}}}}}}$$

 $\simeq e^{i\omega_c t} \times [1 + i\varepsilon_m \sin(\omega_m t)]$

Imag. of Cavity Field

Fabry-Perot Cavity dynamics

Signal from Power? -No

$$A_{cav} = A_{in} \frac{t_{ITM}}{1 - r_{ITM} r_{ETM} e^{i\phi}}$$
$$\approx A_{in} \sqrt{\tilde{F}} (1 + i2\pi \cdot \frac{x}{\lambda/\tilde{F}})$$

$$P_{cav} = A_{in}^2 F \times \left[1 - 4\pi^2 \left(\frac{x}{\lambda/F}\right)^2\right]$$

 $\lambda/F\simeq 10^{-8}meter$

Power: $|CR + SB^+ + SB^-|^2$

Signal (beating between CR and SBs): $2 \times Real (CR^* \times [SB^+ + SB^-])$

$$= 2 \times Real \left(CR^* \times i\varepsilon_m \sin\left(\omega_m t\right) \right)$$

When CR has got a phase, ϕ due to length change:

$$\propto Real\left((1+i\phi) \times i\varepsilon_m \sin\left(\omega_m t\right)\right)$$

$$\propto \phi . \varepsilon_m \sin \left(\omega_m t \right)$$

Phasor diagram

signal:
$$\propto \phi . \varepsilon_m \sin(\omega_m t)$$

Demodulated signal:

$$\phi \cdot \varepsilon_m \sin^2(\omega_m t) = \frac{1}{2} \phi \cdot \varepsilon_m \left[1 - \cos(2\omega_m t)\right]$$

Pass it thru low-pass filter:

$$\propto \phi.arepsilon_m$$

Interferometer Operating Condition

Carrier resonant in all cavities

Ideal: No light in anti-sym port (Dark)

Differential length change ->

CR leaks thru anti-sym port

Beats with SB present there -> Signal

SBs resonant only in recycling cavity

Difference in rec cav lengths allows SBs to leak thru anti-sym port $P_{SB}(dark) = [\omega(\ell_x - \ell_y)/c]^2$

SB efficiency 100% when

 $P_{SB}(dark) = P_{SB}(input)$

LIGO

Motivation for time-domain simulation:

- Assist detector design, commissioning, and data analysis
- To understand a complex system
 - » complex hardware : pre-stabilized laser, input optics, core optics, seismic isolation system on moving ground, suspension, sensors and actuators
 - » field : non-Gaussian field propagation through non perfect mirrors and lenses, misalignment and modal mismatch ..
 - » feedback loops : length and alignment controls, feedback to laser
 - » non-linearity : cavity dynamics to actuators
 - » coupling : alignment and longitudinal, frequency and motion, between arms
 - » noise : mechanical, thermal, sensor, field-induced, laser, etc : amplitude and frequency : creation, coupling and propagation
 - » wide dynamic range : 10⁻⁶ ~ 10⁻²⁰ m

Current Team @ Caltech: B. Bhawal, M.Evans, V.Sannibale, H. Yamamoto

Hanford 2k simulation setup

	State 1 : Nothing is controlled. This is the starting point for lock acquisition.
Ē	State 2 : The power recycling cavity is held on a carrier anti-resonance. In this state the sidebands resonate in the recycling cavity.
Б Г Г Г Г	State 3 : One of the ETMs is controlled and the carrier resonates in the controlled arm.
Щ	State 4 : The remaining ETM is controlled and the carrier resonates in both arms and the recycling cavity.
T ⊨ ≠⊨	State 5 : The power in the IFO has stabilized at its operating level. This is the ending point for lock acquisition.

Lock acquisition real and simulated

Guided Lock Acquisition

Fast sensors monitor circulating powers, RF sidebands in cavities
Sequencing code digitally switches feedback state at proper transition times
Loop gains are actively scaled (every sample) to match instantaneous carrier & sideband buildups
Designed by Matt Evans (PhD thesis)

Tidal Compensation during locked state

Daily strains ~3e-8 For 4 Km ~120micrometer

Misalignments: Cavity & its eigenmodes

Ζ

• Alignment sensing and control

- » Digital Control of 12 mirror angles and the input beam direction
- » Requirement: angular fluctuations <10⁻⁸ rad rms
- » Wavefront sensors (split photodetectors)

Higher Order Modes due to misalignment

ICGC-2004, Kochi, India

Wave Front Sensor & Misalignment

Figure 1: The location of the different WFSs in H₁ during S3.

Activation of Wavefront sensors

Alignment fluctuations before engaging wavefront sensors

After engaging wavefront sensors

WFS Alignment System

Feedback Control Systems

example: cavity length sensing & control topology

•Array of sensors detects mirror separations, angles

•Signal processing derives stabilizing forces for each mirror, filters noise

•5 main length loops shown; total ~ 25 degrees of freedom

•Operating points held to about 0.001 Å, .01 μ rad RMS

•Typ. loop bandwidths from ~ few Hz (angles) to > 10 kHz (laser wavelength)

Thermal lensing

- Lens Definition: varying optical path length along trans direction
- Any concave LIGO mirror is a lens
- ... BUT Temperature gradient inside substrate
 - -> gradient of refractive index across transverse direction
 - -> Change in Optical path length across trans. direction
 - -> Change in transmitted beam wavefront
- ...that's the effect of Thermal lensing
- •Substrate heat absorption in Input mirrror:
- -> InputPower X RecyclingGain X SubstrateAbsorpCoeff
- •Surface heat absorption in Input mirrror:
- -> InputPower X RecyclingGain X ArmGain X SurfaceAbsorpCoeff

- Carrier modes mainly determined by arms (negligible effect of thermal lensing on carrier in LIGO I)
- » Sidebands coupled into recycling cavity
- » Recycling cavity is nearly degenerate [small cavity (~9 m) with large mirror curvature (~15 km)
- » Original "point design" depends on specific, balanced thermal lensing:

Beam wavefront matches with Recycling mirror ROC when maximum hot (Problem: what happens if "maximum hot" state is different from prediction?)

ICGC-2004, Kochi, India

Bad mode-overlap for SBs

- RF sideband efficiency found to be very low
 - » H1 efficiency: ~6% (anti-symmetric port relative to input)
 - » incorrect/insufficient ITM thermal lens makes the recycling cavity an unstable resonator

\Rightarrow Bad mode overlap!

LIGO

Thermal Compensation to the Rescue

•10W CW TEM00 CO2 Laser (10.6mm)

LIGO

Advanced LIGO

ICGC-2004, Kochi, India

70 80

X Center: 172.00

Y Center: 145.00

Terms: None

Filters: None

Masks:

Radius: 163.00 pix

91

40 50 60 43.1

35.0

25.0

15.0

5.0

-5.0

-15.0

-25.0

38.5

Anatomy of the projected Advanced LIGO detector performance

How much of sky can we see?

