Gravitational Collapse Naked Singularities and

HARADA, Tomohiro

Queen Mary, University of London, UK T.Harada@qmul.ac.uk

Contents

- 1. Introduction
- 2. Spherically Symmetric Dust Collapse
- 3. Recent Examples of Naked Singularities
- 4. Physics around Naked Singularities
- 5. Summary

1. Introduction

1-1 Gravitational Collapse

- A body may continue collapsing due to its self-gravity.
- Upper limit to the maximum possible mass of a spherical body of cold nuclear matter
- Cosmological initial density perturbations may have collapsed to BHs.
- Observational evidence for the existence of massive/supermassive BHs
- Singularity theorem
- There exist spacetime singularities in generic gravitational collapse.
- Spacetime singularity
- The smoothness of spacetime is lost
- Classical physics cannot be applicable.

1-2 Cosmic Censorship

- Cosmic Censorship Conjecture (Penrose 1969, 1979)
- Weak censorship
- A system which evolves, according to classical general does not develop any spacetime singularity which is visible non-singular initial data on a suitable Cauchy hypersurface, from infinity. relativity with reasonable equations of state, from generic
- Strong censorship
- A physically reasonable classical spacetime is globally hyperbolic.
- Physical reasonableness
- Matter fields
- Energy conditions
- Fluids with reasonable EOS's
- Fundamental fields
- Initial data
- Nonsingular/sufficiently smooth initial data
- Initial data generic in some appropriate topology

1-3 Naked Singularities

- Naked singularity (NS)
- Singularity visible to some observer
- Globally NS
- Singularity visible to an observer at infinity
- Locally NS
- NS which is not globally naked

2. Spherically Symmetric Dust Collapse

2-1 Homogeneous dust ball

- Oppenheimer-Snyder solution
- The interior and exterior are described by the Friedmann solution and the Schwarzschild solution, respectively.
- Causal Structure
- An event horizon is formed. A spacelike singularity appears inside the event horizon.

2-2 Inhomogeneous dust ball

- Lemaitre-Tolman-Bondi solution
- A general exact solution
- Causal Structure
- A central shell-focusing singularity can be naked (Eardley and Smarr 1979)

2-3 NS in LTB solution

- Appearance of shell-focusing NS
- Mathematical proof (Christodoulou 1984)
- Condition and genericity for very general cases(Joshi and Dwivedi 1993, Singh and Joshi 1996, Jhingan and Joshi 1997)
- ► The appearance of NS is generic for regular/sufficiently smooth
- Structure of the shell-focusing NS
- The redshift is finite for the first null geodesic but becomes infinite for the subsequent null geodesics.
- Curvature strong (Newman 1986, Deshingkar et al. 1999)
- Not only radial geodesics but also nonradial null geodesics come out from the NS. (Mena and Nolan 2001, Deshingkar et al. 2002)
- The shell-focusing NS's are genuine singularities. However, a dust fluid would not be physically reasonable.

3. Recent Examples of NS's

3-1 BH threshold (1)

- Critical behaviour(Choptuik 1993)
- For a one-parameter (p) family of initial data sets, there exists a critical value p* for the BH formation.
- The mass of the formed BH obeys the scaling law for supercritical collapse.

$$M_{\rm BH} \propto |p-p^*|^{\gamma} \quad {\rm for} \quad p \approx p^*$$

- For a near-critical case, the collapse first critical solution. And then it deviates from the approaches a self-similar solution, which is called a critical solution.
- A variety of matter fields
- Massless scalar field
- Axisymmetric GWs
- Radiation fluid
- ► Perfect fluid with EOS P=kp

3-1 BH threshold (2)

- Intermediate attractor(Koike et al. 1995)
- The critical solution is identified with a self-similar solution with a single unstable mode.
- The critical phenomena are well described by the intermediate behaviour around the critical solution.
- The critical exponent γ is given by the eigenvalue of the single unstable mode.

3-1 BH threshold (3)

- BH threshold as a NS
- Intuitively, a "zero-mass" BH is a NS. The curvature just outside the horizon scales as $1/\mathrm{M}^2$ for the formed BH. Take the limit $M\rightarrow 0$.
- The Choptuik critical solution actually has a NS (Gundlach and Martin-Garcia 2003)

 The critical collapse is realised as a consequence of collapse is NOT generic. the exact fine-tuning. In other words, the critical

3-2 Self-similar attractor (1)

- Attractor self-similar solution
- A spherically collapsing perfect fluid dynamically and Maeda 2001) anyfine-tuning for EOS P=k ρ (0<k \leq 0.03). (Harada approaches a self-similar solution WITHOUT

3-2 Self-similar attractor (2)

- NS in the attractor solution
- The approached solution is a self-similar solution already discovered, which describes NS formation for 0<k<0.0105. (Ori and Piran 1987)

3-2 Self-similar attractor (3)

- Generic spherical collapse results in NS nonvanishing pressure. formation for a perfect fluid with
- Fine tuning is unnecessary.
- Self-similarity hypothesis (Carr 1993, Carr and Coley Generic violation of censorship for spherical case
- This is the first example spherical collapse in GR. solution in generic of an attractor self-similar
- It is expected that systems. self-similar solutions can solutions in a variety of behaviour of more general describe the asymptotic

3-3 Other recent examples

- Spherical system of a massless scalar field (Christodoulou 1987, 1991, 1993, 1997, 1999)
- Spherical cluster of counterrotating particles (Harada et al. 1998, Jhingan and Magli 2000, Kudoh et al.
- Spherical collapse of null dust (Joshi and Dwivedi
- Spherical collapse of type II matter(Harko and Cheng 2000)
- Quasi-spherical dust collapse(Joshi and Krolak 1996, Deshingkar et al. 1998)
- Spherical dust collapse in higher dimensions (Patil 2003, Banerjee et al. 2003)
- Spherical collapse with unspecified matter fields

3-4 Highly nonspherical collapse

- Cylindrically symmetric collapse
- Nonexistence of horizons (Thorne 1972, Hayward 2000)
- Collapse with (counter)rotation (Apostolatos and Thorne 1992, Pereira and Wang 2000, Nolan 2002)
- Strong GW emission?(Echeveria 1993, Chiba 1996)
- Axisymmetric collapse
- Spindle singularity?(Shapiro and Teukolsky 1991, 1992)
- Very little is known.
- General case???
- Hoop conjecture (Thorne 1972)
- ▶ BHs form when and only when a mass M gets compacted into a region whose circumference C in every direction is $C\lesssim 4\pi M.$

Yoshino and Nambu 2002, Ida and Nakao 2002, Nakao et al. 2003) Condition in higher-dimensional gravity (Eardley and Giddings 2002,

4. Physics around NS's

4-1 Perturbation and GWs

Nonspherical perturbation of LTB spacetime (Iguchi et al. 1998, 1999, 2000)

- Both metric and matter perturbations are included evolution of perturbations up to near the Cauchy horizon linearly. The numerical simulations calculate the
- Some tetrad components of the Weyl curvature are diverging in an approach to the Cauchy horizon. Nevertheless the energy flux of GW remains finite.
- Nonlinear analysis is needed for further investigation.
- GW emission for other examples?

4-2 QFT in curved spacetime

- Diverging energy flux for a shell-focusing Harada et al. 2000, Iguchi and Harada 2001, Tanaka and Singh 2001) NS in LTB solution (Barve et al. 1998, Vaz and Witten 1998,
- The diverging flux suggest the Cauchy horizon instability due to quantum effects.
- Objections
- The calculation relies on the geometrical optics approximation, which has not been justified yet.
- The amount of energy flux is subject to a cut-off scale. (Harada et al. 2001)

4-3 "Effective" NS

- NS
- The curvature strength outside horizons is diverging.
- The censorship claims vanishing probability of its appearance, in other words, its instability.

- "Effective" NS
- The curvature strength outside horizons is beyond some cut-off scale.
- It appears with nonzero probability.

5. Summary

- It is still uncertain whether or not naked singularities are censored in physically reasonable gravitational collapse.
- However, recent examples of naked singularities suggest that "effective" naked singularities appear with nonzero (and maybe not too small) probability for physically reasonable matter fields.
- Naked singularities are worth studying as classical physics and also in some form of quantum gravity. curvature in principle observable, in the appearance of extremely strong