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AF Black holes exhibit thermal instability: Schw
bhhasT ~1/M = C=0M/0T < 0 ! Instabil-

ity < p(M) ~ exp M2 = Z-(8) / oo Canonical

ensemble problematic

e Isolated black holes (isolated horizons) can
be consistently described in terms of mi-
crocanonical ensemble with fixed Ay, >>
12, (Ashtekar et. al. PRL 1998; Adv.
Phys. Math. 2000) having a microcanon-
ical entropy (Kaul, PM PRL 2000; PLB
1998)

3 _
Suc = Spm — 109 Sppr + const. + O(Sp#H)

where SBH — Ahor/‘”%lanck

e Canonical ensemble OK for asymptotically
adS black holes — S ~ A;,,. @ Hawking
and Page CMP 1983



e Understanding on ‘Unified’ basis 7 Possi-
ble

e Logarithmic corrections to canonical en-
tropy due to thermal area fluctuations
? Yes, they are universal

Based on Chatterjee, PM gr-qc/0309026; gr-
ac/0303030.

Canonical partition function : holography
7?7 PM gr-qc/0110198

Recall in canonical GR

H = Hpyr + Hpdy

such that

Hy = O



In canonical QGR

H = Hypur + Hpay

Choose as basis eigenstates of the full Hamil-

tonian |¥) ik ® | X)pay Classical Hamiltonian con-
straint —

Hyiglb)oe = O
= (formally)

Zoany = Trexp—pBH

= dim Hpy, Trbdy exp _ﬂHbdg
indep. of . bouﬁ?ia'ry

= dimHy;, — additive const. in Sgan |

= For GR systems with (internal) boundary,

Zo(B) = ). 9(Epay(n)) exp—BEpg(n) .
nez degeﬁreracy




Spin network basis of NCQGR Rovelli, Smolin
NPB 1992: Ashtekar et. al. JMP 1995, CQG
1996

e Network with links I4,...,l, carrying spins
J1y---Jn

e Spacetime curvature has support only on
network

e Area operator — diagonal with discrete spec-
trum

e Internal boundary : punctured S2 with each
puncture having a deficit angle 8 = 0(j;),1 =
1,...,p



For Apgy >> 1%, ., area spectrum dominated
by j; =1/2,Yi=1,....,p,p>>1 =

Back to Zo(B) — energy spectrum 7

Assume Ep = E(Ap) =

Zc = Y g(E(Ap)) exp—BE(Ap)
p



Poisson resummation

S o) = Y /_O:Oda; exp(—2mimz) f(x)

n——oo m—-—-oo

Restrict to p >> 1 — Ay, >> l%lanck =

Ze = [ drg(B(A®))) exp—BE(A())

— 00
dE
— /dE exp[Syc(E) — log |%| — BE]
where Sy = log g(E)
If gMC = log p(E')

_ dFE
Svc = Syc — IOg|d—|
€T

Ambiguity inherent in definition of Sy;q; irrele-
vant for BHAL, but relevant for log corrections

Saddle point approximation (E = M)

Ze ~ elSuc(M)—=BM—log |G p=1} [ ™

1/2
_SK/IC(M)]



Using Sg =109 Zo + BM

1
Sc = Syc(M) —§|09(—A)

-

dnSc

where,

A = dQSMC (dE)2|
dE2  \dz/) 'P=M
Chain rule =

?Syc (dSMC) d?E /d A2 (%)ﬂ
dA2 dA ) dEjdA | \dz) '""TM

non—univ.

Upto corrections due to thermal fluctuations
of area, S¢c = Sysc-

e Recall A ~ z for x >> 1(large area)

e Assume E(A) = const. A"



e Assume Spyc(A) ~ A

e [ he thermal fluctuation correction to the
canonical entropy of a spacetime with an
inner boundary is universal, independent
of r; it is also insensitive (for large areas)
to the log(area) corrections in the micro-
canonical entropy due to quantum space-
time fluctuations



e Substitute for Sy ¢ ; ‘Universal’ Carlip CQG
2000; Govindarajan et. al. CQG 2001; Sen
et. al. PLB 2002; ...

3 _
Sypo = SBH—Elog Spy + const. —I—O(SB}{)

=

1
Sc = Spyg—109 SBH_E log(r—1)—const.+. ..

e (If gauge group on Cauchy surface: U(1) —
SMC:SBH_%IOQSBH+--°:>

Sc=Sgyg —0.logSgy + ... !

= Non-renormalization of BHAL 7)

e Role of r : SPA OK forr > 1

— AF Schw : »r =1/2 — S becomes
complex = thermal instability



— NRBTZ:r=2forry >>£=(-N)"1/?
— AdS Schw : r=3/2 for rg >> /¢

— AdS : r = 1 Hawking-Page ‘phase tran-
sition’

Cconclusions

e Universal thermal fluc. corr. (1/2)1og Sy
in S¢ independent of r

e If Sp;c also universal, then So with both
fixed-area quantum spacetime fluctuations
+ thermal area fluctuations has universal
—log Sppy correction to Sgy (net log corr.
— O if gauge group on Cauchy surface is

U(1))



e Index r in energy-area relation signifies do-
main of validity of SPA (r > 1)

e Top priority : obtain E(A) from NCQGR



